Supplementary files to "Community Detection in General Hypergraph via Graph Embedding"

Yaoming Zhen and Junhui Wang
School of Data Science
City University of Hong Kong

Proof of Proposition 1. Denote $S=\left\{\Theta \in \Omega \mid e_{L}\left(\Theta, \Theta^{*}\right) \geq \epsilon_{n}\right\}$. Let

$$
\begin{aligned}
I & :=P\left(\sup _{S}\left(\mathcal{L}_{\lambda}\left(\Theta^{*} ; \mathcal{A}\right)-\mathcal{L}_{\lambda}(\Theta ; \mathcal{A})\right) \geq 0\right) \\
& =P\left(\sup _{S} \frac{1}{\varphi(n, m)} \sum_{\substack{n+1, \text { ord } \\
\delta_{i_{1} \ldots i_{m}}}}\left(L\left(\theta_{i_{1} \ldots i_{m}}^{*} ; a_{i_{1} \ldots i_{m}}\right)-L\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)\right)+\lambda_{n}\left(J\left(\boldsymbol{\alpha}^{*}\right)-J(\boldsymbol{\alpha})\right) \geq 0\right) .
\end{aligned}
$$

We now decompose S as follows. Let $S_{u}=\left\{\Theta \in \Omega \mid 2^{u-1} \epsilon_{n} \leq e_{L}\left(\Theta, \Theta^{*}\right)<2^{u} \epsilon_{n}\right\}$, for $u=1,2, \ldots$. It immediately follows that $S=\bigcup_{u=1}^{+\infty} S_{u}$. Consequently, by the union bound, we have

$$
\begin{aligned}
I & \leq \sum_{u=1}^{+\infty} P\left(\sup _{S_{u}} \frac{1}{\varphi(n, m)} \sum_{\delta_{i_{1} \ldots i m}^{n+1, o r d}=0}\left(L\left(\theta_{i_{1} \ldots i_{m}}^{*} ; a_{i_{1} \ldots i_{m}}\right)-L\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)\right)+\lambda_{n}\left(J\left(\boldsymbol{\alpha}^{*}\right)-J(\boldsymbol{\alpha})\right) \geq 0\right) \\
& :=\sum_{u=1}^{+\infty} I_{u}
\end{aligned}
$$

Define an empirical process

$$
\begin{aligned}
\nu_{n, m}(\Theta, \mathcal{A})=\frac{1}{\varphi(n, m)} & \sum_{\substack{\delta_{i_{1} \ldots i_{m}}^{n+1, o r d}=0}}\left(L\left(\theta_{i_{1} \ldots i_{m}}^{*} ; a_{i_{1} \ldots i_{m}}\right)-\right. \\
& \left.L\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)-E\left(L\left(\theta_{i_{1} \ldots i_{m}}^{*} ; a_{i_{1} \ldots i_{m}}\right)-L\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)\right)\right),
\end{aligned}
$$

for some independent but not identical data. It then follows that

$$
I_{u} \leq P\left(\sup _{S_{u}} \nu_{n, m}(\Theta, \mathcal{A}) \geq \inf _{S_{u}}\left(e_{L}\left(\Theta, \Theta^{*}\right)+\lambda_{n} J(\boldsymbol{\alpha})-\lambda_{n} J\left(\boldsymbol{\alpha}^{*}\right)\right)\right)
$$

Since $\inf _{S_{u}}\left(e_{L}\left(\Theta, \Theta^{*}\right)+\lambda_{n} J(\boldsymbol{\alpha})-\lambda_{n} J\left(\boldsymbol{\alpha}^{*}\right)\right) \geq 2^{u-1} \epsilon_{n}-\frac{1}{2} \epsilon_{n} \geq 2^{u-2} \epsilon_{n}:=M_{u}$ and Lemma 1 shows that $E \sup _{S_{u}} \nu_{n, m}(\Theta, \mathcal{A}) \leq M_{u} / 2$ when n is large enough, we obtain

$$
I_{u} \leq P\left(\sup _{S_{u}} \nu_{n, m}(\Theta, \mathcal{A}) \geq M_{u}\right) \leq P\left(\sup _{S_{u}} \nu_{n, m}(\Theta, \mathcal{A}) \geq E \sup _{S_{u}} \nu_{n, m}(\Theta, \mathcal{A})+M_{u} / 2\right) .
$$

Note that for any $Y \sim \operatorname{Bernoulli}(p)$ with $p=s_{n}(1+\exp (-\theta))^{-1}$, we have

$$
\begin{aligned}
E\left(L(\theta ; Y)-L\left(\theta^{*} ; Y\right)\right) & =-2 p^{*} \log \left(\frac{p}{p^{*}}\right)^{1 / 2}-2\left(1-p^{*}\right) \log \left(\frac{1-p}{1-p^{*}}\right)^{1 / 2} \\
& \geq-2 p^{*}\left(\frac{p^{1 / 2}}{\left(p^{*}\right)^{1 / 2}}-1\right)-2\left(1-p^{*}\right)\left(\frac{(1-p)^{1 / 2}}{\left(1-p^{*}\right)^{1 / 2}}-1\right) \\
& =\left(p^{1 / 2}-\left(p^{*}\right)^{1 / 2}\right)^{2}+\left((1-p)^{1 / 2}-\left(1-p^{*}\right)^{1 / 2}\right)^{2},
\end{aligned}
$$

where $p^{*}=s_{n}\left(1+\exp \left(-\theta^{*}\right)\right)^{-1}$. It immediately follows that on the set $S_{u}, D^{2}\left(\Theta, \Theta^{*}\right) \leq$ $e_{L}\left(\Theta, \Theta^{*}\right)<2^{u} \epsilon_{n}$.

We now turn to bound the variance of the empirical process by the averaged squared Hellinger distance $D^{2}\left(\Theta, \Theta^{*}\right)$ over S_{u}. Denote $\widetilde{\mathcal{P}}, \widetilde{\mathcal{P}}{ }^{*}, \overline{\mathcal{P}}, \overline{\mathcal{P}}^{*}$ to be some tensors sharing the same shape as \mathcal{P} with entries $\tilde{p}_{i_{1} \ldots i_{m}}=p_{i_{1} \ldots i_{m}}^{1 / 2}, \tilde{p}_{i_{1} \ldots i_{m}}^{*}=\left(p_{i_{1} \ldots i_{m}}^{*}\right)^{1 / 2}, \bar{p}_{i_{1} \ldots i_{m}}=\left(1-p_{i_{1} \ldots i_{m}}\right)^{1 / 2}$, $\bar{p}_{i_{1} \ldots i_{m}}^{*}=\left(1-p_{i_{1} \ldots i_{m}}^{*}\right)^{1 / 2}$, respectively, if $\delta_{i_{1} \ldots i_{m}}^{n+1, \text { ord }}=0$ and zero otherwise. It is clear that

$$
\frac{1}{\varphi(n, m)}\left(\left\|\widetilde{\mathcal{P}}-\widetilde{\mathcal{P}}^{*}\right\|_{F}^{2}+\left\|\overline{\mathcal{P}}-\overline{\mathcal{P}}^{*}\right\|_{F}^{2}\right)=D^{2}\left(\Theta, \Theta^{*}\right)<2^{u} \epsilon_{n}
$$

Applying these shorthand notations, we have

$$
\begin{aligned}
& \frac{1}{\varphi(n, m)} \sum_{\delta_{i_{1}, \ldots, i m}^{n+1, \text { ord }}=0} E\left(L\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)-L\left(\theta_{i_{1} \ldots i_{m}}^{*} ; a_{i_{1} \ldots i_{m}}\right)\right)^{2} \\
= & \frac{4}{\varphi(n, m)} \sum_{\substack{\delta_{i_{1}, \ldots, i m}^{n+\text { ord }}=0}}\left(\left(\tilde{p}_{i_{1} \ldots i_{m}}^{*}\right)^{2}\left(\log \tilde{p}_{i_{1} \ldots i_{m}}-\log \tilde{p}_{i_{1} \ldots i_{m}}^{*}\right)^{2}+\left(\bar{p}_{i_{1} \ldots i_{m}}^{*}\right)^{2}\left(\log \bar{p}_{i_{1} \ldots i_{m}}-\log \bar{p}_{i_{1} \ldots i_{m}}^{*}\right)^{2}\right) \\
:= & \tilde{g}(\widetilde{\mathcal{P}})+\bar{g}(\overline{\mathcal{P}}) .
\end{aligned}
$$

By Taylor's expansion of $\tilde{g}(\widetilde{\mathcal{P}})$ up to the second order at \widetilde{P}^{*} over S_{u}, it holds true that

$$
\tilde{g}(\widetilde{\mathcal{P}})=\frac{4}{\varphi(n, m)}\left\|\widetilde{\mathcal{P}}-\widetilde{\mathcal{P}}^{*}\right\|_{F}^{2}+o\left(\frac{1}{\varphi(n, m)}\left\|\widetilde{\mathcal{P}}-\widetilde{\mathcal{P}}^{*}\right\|_{F}^{2}\right)
$$

Similarly,

$$
\bar{g}(\overline{\mathcal{P}})=\frac{4}{\varphi(n, m)}\left\|\overline{\mathcal{P}}-\overline{\mathcal{P}}^{*}\right\|_{F}^{2}+o\left(\frac{1}{\varphi(n, m)}\left\|\overline{\mathcal{P}}-\overline{\mathcal{P}}^{*}\right\|_{F}^{2}\right)
$$

Therefore,

$$
\frac{1}{\varphi(n, m)} \sum_{\delta_{i_{1}, \ldots, i m}^{n+1, r d}=0} E\left(L\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)-L\left(\theta_{i_{1} \ldots i_{m}}^{*} ; a_{i_{1} \ldots i_{m}}\right)\right)^{2}=4 D^{2}\left(\Theta, \Theta^{*}\right)+o\left(D^{2}\left(\Theta, \Theta^{*}\right)\right)
$$

On the set S_{u}, the variance of $\nu_{n, m}(\Theta, \mathcal{A})$ can be bounded as

$$
\begin{aligned}
\operatorname{Var}\left(\nu_{n, m}(\Theta, \mathcal{A})\right) & \leq \frac{1}{\varphi^{2}(n, m)} \sum_{\delta_{i_{1} \ldots, \ldots m}^{n+1, \text { ord }}=0} E\left(L\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)-L\left(\theta_{i_{1} . . i_{m}}^{*} ; a_{i_{1} \ldots i_{m}}\right)\right)^{2} \\
& <\frac{5 D^{2}\left(\Theta, \Theta^{*}\right)}{\varphi(n, m)} \leq \frac{5 \times 2^{u} \epsilon_{n}}{\varphi(n, m)}=\frac{20 M_{u}}{\varphi(n, m)} .
\end{aligned}
$$

Also note that $\left|L(\theta ; Y)-L\left(\theta^{*} ; Y\right)\right|$ can be upper bounded as

$$
\left|L(\theta ; Y)-L\left(\theta^{*} ; Y\right)\right| \leq \max \left\{\left|\log \frac{1+\exp (-\theta)}{1+\exp \left(-\theta^{*}\right)}\right|,\left|\log \frac{1-s_{n}(1+\exp (-\theta))^{-1}}{1-s_{n}\left(1+\exp \left(-\theta^{*}\right)\right)^{-1}}\right|\right\} \leq \log 2+c_{0}^{m}
$$

where the last inequality comes from the fact that

$$
\frac{1}{2} \exp \left(-c_{0}^{m}\right) \leq \frac{1+\exp (-\theta)}{1+\exp \left(-\theta^{*}\right)}, \frac{1-s_{n}(1+\exp (-\theta))^{-1}}{1-s_{n}\left(1+\exp \left(-\theta^{*}\right)\right)^{-1}} \leq 2 \exp \left(c_{0}^{m}\right)
$$

It then follows that

$$
\frac{L\left(\theta_{i_{1} \ldots i_{m}}^{*} ; a_{i_{1} \ldots i_{m}}\right)-L\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)-E\left(L\left(\theta_{i_{1} \ldots i_{m}}^{*} ; a_{i_{1} \ldots i_{m}}\right)-L\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)\right)}{2\left(\log 2+c_{0}^{m}\right)} \in[-1,1] .
$$

Finally, let $\tilde{\nu}_{n, m}(\Theta, \mathcal{A})=\varphi(n, m)\left(2 \log 2+2 c_{0}^{m}\right)^{-1} \nu_{n, m}(\Theta, \mathcal{A})$ and $\tilde{M}_{u}=\varphi(n, m)(2 \log 2+$ $\left.2 c_{0}^{m}\right)^{-1} M_{u}$. By the concentration inequality in Theorem 1.1 of Klein et al. (2005), we obtain

$$
\begin{aligned}
I_{u} & \leq \exp \left(-\frac{\left(\tilde{M}_{u} / 2\right)^{2}}{2\left(2 E \sup _{S_{u}} \tilde{\nu}_{n, m}(\Theta, \mathcal{A})+\sup _{S_{u}} \operatorname{Var}\left(\tilde{\nu}_{n, m}(\Theta, \mathcal{A})\right)\right)+3 \tilde{M}_{u} / 2}\right) \\
& <\exp \left(-\frac{\left(\varphi(n, M) M_{u} /\left(4 \log 2+4 c_{0}^{m}\right)\right)^{2}}{2\left(\frac{\varphi(n, M)}{2\left(\log 2+c_{0}^{m}\right)} M_{u}+\frac{5 \varphi(n, m)}{\left(\log 2+c_{0}^{m}\right)^{2}} M_{u}\right)+3 \frac{\varphi(n, M)}{4\left(\log 2+c_{0}^{m}\right)} M_{u}}\right) \\
& =\exp \left(-\frac{2^{u} \varphi(n, M) \epsilon_{n}}{16\left(7 c_{0}^{m}+7 \log 2+40\right)}\right) \leq \exp \left(-c_{2} u \varphi(n, M) \epsilon_{n}\right):=\xi^{u},
\end{aligned}
$$

where $c_{2}=\frac{1}{16}\left(7 c_{0}^{m}+7 \log 2+40\right)^{-1}$. It immediately follows that

$$
I \leq \sum_{u=1}^{+\infty} \xi^{u}=\frac{\xi}{1-\xi}
$$

Simple algebra immediately implies that $I \leq(1+I) \xi \leq 2 \xi$, which completes the proof.

Lemma 1. Under the conditions of Proposition 1, $E\left(\sup _{S_{u}} \nu_{n, m}(\Theta, \mathcal{A})\right) \leq M_{u} / 2$ for any integer $u \geq 1$ when n is large enough.

Proof of Lemma 1. Denote $f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)=L\left(\theta_{i_{1} \ldots i_{m}}^{*} ; a_{i_{1} \ldots i_{m}}\right)-L\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)$, and hence $\nu_{n, m}(\Theta, \mathcal{A})=\varphi^{-1}(n, m) \sum_{\delta_{i_{1} \ldots i_{m}}^{n+1, o r d}=0}\left(f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)-E f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)\right)$. Let $\mathcal{A}^{\prime}=$ $\left(a_{i_{1} \ldots i_{m}}^{\prime}\right)$ be an independent copy of \mathcal{A} and $\boldsymbol{\tau}=\left(\tau_{i_{1} \ldots i_{m}}\right)_{\delta_{i_{1} \ldots, \ldots m}^{n+1, \text { ord }}=0}$ be a collection of independent

Rademacher random variables. By the standard symmetrization argument, we have

$$
\begin{aligned}
E_{\mathcal{A}} \sup _{S_{u}} \nu_{n, m}(\Theta, \mathcal{A}) & =\frac{1}{\varphi(n, m)} E_{\mathcal{A}} \sup _{S_{u}} \sum_{\substack{\delta_{i_{1} \ldots, i_{m}}^{n+1, \text { ord }}=0}}\left(f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)-E_{\mathcal{A}^{\prime}} f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}^{\prime}\right)\right) \\
& \leq \frac{1}{\varphi(n, m)} E_{\mathcal{A}, \mathcal{A}^{\prime}} \sup _{S_{u}} \sum_{\substack{\delta_{i_{1} \ldots, \text { ord }}^{n+1}=0}}\left(f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)-f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}^{\prime}\right)\right) \\
& =\frac{1}{\varphi(n, m)} E_{\mathcal{A}, \mathcal{A}^{\prime}, \boldsymbol{\tau}} \sup _{S_{u}} \sum_{\delta_{i_{1} \ldots, \text { ord }}^{n+1}=0} \tau_{i_{1} \ldots i_{m}}\left(f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)-f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}^{\prime}\right)\right) \\
& \leq \frac{2}{\varphi(n, m)} E_{\mathcal{A}, \tau} \sup _{S_{u}}\left|\sum_{\delta_{i_{1} \ldots, i_{m}}^{n+1, o r d}=0} \tau_{i_{1} \ldots i_{m}} f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)\right|,
\end{aligned}
$$

where the second equality comes from the fact that $f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)-f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}^{\prime}\right)$ and $\tau_{i_{1} \ldots i_{m}}\left(f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)-f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}^{\prime}\right)\right)$ share the same distribution.

Denote $X(\Theta ; \mathcal{A})=\varphi^{-1 / 2}(n, m) \sum_{\delta_{i_{1} \ldots i_{m}}^{n+1, o r d}=0} \tau_{i_{1} \ldots i_{m}} f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)$ as the Rademacher process. For any $\Theta^{(1)}, \Theta^{(2)} \in S_{u}$, and $\zeta \in \mathbb{R}$, we have $E_{\boldsymbol{\tau} \mid \mathcal{A}} \exp \left(\zeta\left(X\left(\Theta^{(1)} ; \mathcal{A}\right)-X\left(\Theta^{(2)} ; \mathcal{A}\right)\right)\right) \leq$ $\exp \left(\frac{1}{2} \zeta^{2} \rho^{2}\left(\Theta^{(1)}, \Theta^{(2)} ; \mathcal{A}\right)\right)$, where

$$
\rho^{2}\left(\Theta^{(1)}, \Theta^{(2)} ; \mathcal{A}\right)=\varphi^{-1}(n, m) \sum_{\substack{\delta_{i_{1} \ldots i_{m}}^{n+1, o r d}=0}}\left(f\left(\theta_{i_{1} \ldots i_{m}}^{(1)} ; a_{i_{1} \ldots i_{m}}\right)-f\left(\theta_{i_{1} \ldots i_{m}}^{(2)} ; a_{i_{1} \ldots i_{m}}\right)\right)^{2},
$$

showing that $X(\Theta ; \mathcal{A})$ is a sub-Gaussian process with respect to the metric ρ when \mathcal{A} is given. Thus, by Theorem 3.11 of Koltchinskii (2011), there exists a positive constant c_{5}, such that

$$
\varphi^{-1 / 2}(n, m) E_{\mathcal{A}, \tau} \sup _{S_{u}}\left|\sum_{\substack{n+1, o r d \\ \delta_{i_{1} \ldots i_{m}}^{n}=1}} \tau_{i_{1} \ldots i_{m}} f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} \ldots i_{m}}\right)\right| \leq \frac{c_{5}}{2} E_{\mathcal{A}} \int_{0}^{\operatorname{diam}\left(S_{u}\right)} H^{1 / 2}\left(\varepsilon ; S_{u}, \rho\right) d \varepsilon,
$$

where $\operatorname{diam}\left(S_{u}\right)$ is the diameter of S_{u} and $H\left(\varepsilon ; S_{u}, \rho\right)$ is the metric entropy. Note that
 $f\left(\theta_{i_{1} \ldots i_{m}} ; a_{i_{1} . . i_{m}}\right)$ are Lipschitz continuous with Lipschitz constant 1. For any $\Theta^{(1)}, \Theta^{(2)} \in S_{u}$,
by triangle inequality, and Cauchy-Schwarz inequality, we have

$$
\begin{aligned}
& \rho^{2}\left(\Theta^{(1)}, \Theta^{(2)} ; \mathcal{A}\right) \\
\leq & \varphi^{-1}(n, m) \sum_{\substack{\delta_{i_{1} \ldots i m}^{n+1, o r d}=0}}\left|\theta_{i_{1} \ldots i_{m}}^{(1)}-\theta_{i_{1} \ldots i_{m}}^{(2)}\right|^{2} \\
= & \varphi^{-1}(n, m) \sum_{\delta_{i_{1} \ldots i_{m}}^{n+1, o r d}=0}\left|\mathcal{I} \times_{1}\left(\boldsymbol{\alpha}_{i_{1}}^{(1)}\right)^{T} \times_{2} \ldots \times_{m}\left(\boldsymbol{\alpha}_{i_{m}}^{(1)}\right)^{T}-\mathcal{I} \times_{1}\left(\boldsymbol{\alpha}_{i_{1}}^{(2)}\right)^{T} \times_{2} \ldots \times_{m}\left(\boldsymbol{\alpha}_{i_{m}}^{(2)}\right)^{T}\right|^{2} \\
\leq & \varphi^{-1}(n, m) m \sum_{\delta_{i_{1} \ldots i m}^{n+1, o r d}=0} \sum_{j=1}^{m}\left\|\boldsymbol{\alpha}_{i_{j}}^{(1)}-\boldsymbol{\alpha}_{i_{j}}^{(2)}\right\|_{2}^{2}\left(\Pi_{l=1}^{j-1}\left\|\boldsymbol{\alpha}_{i_{l}}^{(1)}\right\|_{2}^{2}\right)\left(\Pi_{l=j+1}^{m}\left\|\boldsymbol{\alpha}_{i_{l}}^{(2)}\right\|_{2}^{2}\right) \\
\leq & \varphi^{-1}(n, m) m^{2} n^{m-1} c_{0}^{2(m-1)}\left\|\boldsymbol{\alpha}^{(1)}-\boldsymbol{\alpha}^{(2)}\right\|_{F}^{2} .
\end{aligned}
$$

As a result,

$$
\rho\left(\Theta^{(1)}, \Theta^{(2)} ; \mathcal{A}\right) \leq \frac{m n^{m / 2} c_{0}^{m}}{\varphi^{1 / 2}(n, m)}\left\|\frac{1}{\sqrt{n} c_{0}}\left(\boldsymbol{\alpha}^{(1)}-\boldsymbol{\alpha}^{(2)}\right)\right\|_{F}
$$

which directly leads to

$$
H\left(\varepsilon ; S_{u}, \rho\right) \leq H\left(\frac{\varepsilon \varphi^{1 / 2}(n, m)}{m n^{m / 2} c_{0}^{m}} ; B(n \times r),\|\cdot\|_{F}\right) \leq n r \log \frac{3 m n^{m / 2} c_{0}^{m}}{\varepsilon \varphi^{1 / 2}(n, m)} \leq c_{6} n r \log \frac{1}{\varepsilon},
$$

for some constant c_{6} that depends on m, where $B(n \times r)$ is the unit ball in $\mathbb{R}^{n \times r}$ with respect to F-norm and the last inequality comes form the fact that $n^{m / 2}$ and $\varphi^{1 / 2}(n, m)$ are of the same order. As such,

$$
E_{\mathcal{A}} \sup _{S_{u}} \nu_{n, m}(\Theta, \mathcal{A}) \leq \frac{c_{5}}{\varphi^{1 / 2}(n, m)} E_{\mathcal{A}} \int_{0}^{\operatorname{diam}\left(S_{u}\right)} \sqrt{c_{6} n r \log \frac{1}{\varepsilon}} d \varepsilon
$$

By concavity,

$$
\begin{aligned}
E_{\mathcal{A}} \int_{0}^{\operatorname{diam}\left(S_{u}\right)} \sqrt{c_{6} n r \log \frac{1}{\varepsilon}} d \varepsilon & \leq \int_{0}^{E_{\mathcal{A}} \operatorname{diam}\left(S_{u}\right)} \sqrt{c_{6} n r \log \frac{1}{\varepsilon}} d \varepsilon \\
& \leq \int_{0}^{\sqrt{E_{\mathcal{A}} \operatorname{diam}^{2}\left(S_{u}\right)}} \sqrt{c_{6} n r \log \frac{1}{\varepsilon}} d \varepsilon
\end{aligned}
$$

According to the same argument of bounding the variance of $\nu_{n, m}(\Theta, \mathcal{A})$, we have

$$
\begin{aligned}
E_{\mathcal{A}} \rho^{2}\left(\Theta^{(1)}, \Theta^{(2)} ; \mathcal{A}\right) & \leq 2\left(E_{\mathcal{A}} \rho^{2}\left(\Theta^{(1)}, \Theta^{*} ; \mathcal{A}\right)+E_{\mathcal{A}} \rho^{2}\left(\Theta^{(2)}, \Theta^{*} ; \mathcal{A}\right)\right) \\
& \leq 2\left(5 \times 2^{u} \epsilon_{n}+5 \times 2^{u} \epsilon_{n}\right)=5 \times 2^{u+2} \epsilon_{n}
\end{aligned}
$$

implying that $\sqrt{E_{\mathcal{A}} \operatorname{diam}^{2}\left(S_{u}\right)} \leq\left(5 \times 2^{u+2} \epsilon_{n}\right)^{1 / 2}$. Putting the pieces together, we have

$$
\begin{aligned}
E_{\mathcal{A}} \sup _{S_{u}} \nu_{n, m}(\Theta, \mathcal{A}) & \leq \frac{c_{5}}{\varphi^{1 / 2}(n, m)} \int_{0}^{\left(5 \times 2^{u+2} \epsilon_{n}\right)^{1 / 2}} \sqrt{c_{6} n r \log \frac{1}{\varepsilon}} d \varepsilon \\
& =\frac{c_{5} \sqrt{c_{6} n r}}{\varphi^{1 / 2}(n, m)} \int_{\left(5 \times 2^{u+2} \epsilon_{n}\right)^{-1 / 2}}^{+\infty} \frac{\sqrt{\log \varepsilon}}{\varepsilon^{2}} d \varepsilon \\
& \leq \frac{c_{5} \sqrt{c_{6} n r}}{\varphi^{1 / 2}(n, m) \sqrt{\log \left(5 \times 2^{u+2} \epsilon_{n}\right)^{-1 / 2}}} \int_{\left(5 \times 2^{u+2} \epsilon_{n}\right)^{-1 / 2}}^{+\infty} \frac{\log \varepsilon}{\varepsilon^{2}} d \varepsilon \\
& =\frac{c_{5} \sqrt{5 \times 2^{u+2} c_{6} n r \epsilon_{n}} 1+\log \left(5 \times 2^{u+2} \epsilon_{n}\right)^{-1 / 2}}{\varphi^{1 / 2}(n, m)} \\
& \leq c_{7} \sqrt{\frac{2^{u-2} n r \epsilon_{n}}{\varphi(n, m)} \log \frac{1}{\sqrt{\epsilon_{n}}}},
\end{aligned}
$$

where c_{7} is a positive constant. Since $M_{u}=2^{u-2} \epsilon_{n}$, for $u=1,2, \ldots$, we have

$$
E_{\mathcal{A}} \sup _{S_{u}} \nu_{n, m}(\Theta, \mathcal{A}) \leq c_{7} \epsilon_{n} \sqrt{\frac{2^{u-2} n r}{\varphi(n, m) \epsilon_{n}} \log \frac{1}{\sqrt{\epsilon_{n}}}} \leq \frac{1}{2} M_{u}
$$

where the second inequality follows from the assumption that $\frac{n r}{\varphi(n, m) \epsilon_{n}} \log \frac{1}{\sqrt{\epsilon_{n}}} \leq c_{1}$ with c_{1}
taking to be $1 /\left(4 c_{7}^{2}\right)$.
Proof of Theorem 1. By the definition of $\widehat{\Theta}$, it follows from Proposition 1 that

$$
\begin{aligned}
& P\left(D^{2}\left(\widehat{\Theta}, \Theta^{*}\right) \geq \epsilon_{n}\right) \leq P\left(e_{L}\left(\widehat{\Theta}, \Theta^{*}\right) \geq \epsilon_{n}\right) \\
& \leq P\left(\sup _{\left\{\Theta \in \Omega \mid e_{L}\left(\Theta, \Theta^{*}\right) \geq \epsilon_{n}\right\}} \mathcal{L}_{\lambda}\left(\Theta^{*}\right)-\mathcal{L}_{\lambda}(\Theta) \geq 0\right) \leq 2 \exp \left(-c_{2} \varphi(n, M) \epsilon_{n}\right),
\end{aligned}
$$

which implies that $D^{2}\left(\widehat{\Theta}, \Theta^{*}\right)=O_{p}\left(\epsilon_{n}\right)$ as $\varphi(n, m) \epsilon_{n}$ diverges.
Next, we bound the F-norm of the different between $\widehat{\Theta}$ and Θ^{*},

$$
\begin{aligned}
\frac{1}{n^{m}}\left\|\widehat{\Theta}-\Theta^{*}\right\|_{F}^{2} & =\frac{1}{n^{m}} \sum_{\delta_{i_{1} \ldots i_{m}}^{n+1}=0}\left(\hat{\theta}_{i_{1} \ldots i_{m}}-\theta_{i_{1} \ldots i_{m}}^{*}\right)^{2}+\frac{1}{n^{m}} \sum_{\delta_{i_{1} \ldots i_{m}}^{n+1}=1}\left(\hat{\theta}_{i_{1} \ldots i_{m}}-\theta_{i_{1} \ldots i_{m}}^{*}\right)^{2} \\
& \leq \frac{m!}{n^{m}} \sum_{\delta_{i_{1} \ldots, \ldots r}^{n+1, o r d}=0}\left(\hat{\theta}_{i_{1} \ldots i_{m}}-\theta_{i_{1} \ldots i_{m}}^{*}\right)^{2}+\frac{1}{n^{m}} \sum_{\delta_{i_{1} \ldots i_{m}}^{n+1}=1}\left(\hat{\theta}_{i_{1} \ldots i_{m}}-\theta_{i_{1} \ldots i_{m}}^{*}\right)^{2} .
\end{aligned}
$$

As the first term usually dominates the second term on diagonal elements, it suffices to bound the first term.

Let $g(x)=\log \frac{x^{2}}{s_{n}-x^{2}}$. By Lagrange's mean value theorem, there exists a constant $c_{8}=$ $\max \left\{\frac{2\left(1+\exp \left(c_{0}^{m}\right)\right)^{3 / 2}}{\exp \left(c_{0}^{m}\right)}, \frac{2\left(1+\exp \left(-c_{0}^{m}\right)\right)^{3 / 2}}{\exp \left(-c_{0}^{m}\right)}\right\}$, such that

$$
\left|\theta_{i_{1} \ldots i_{m}}-\theta_{i_{1} \ldots i_{m}}^{*}\right|=\left|g\left(p_{i_{1} \ldots i_{m}}^{1 / 2}\right)-g\left(\left(p_{i_{1} \ldots i_{m}}^{*}\right)^{1 / 2}\right)\right| \leq \frac{c_{8}}{\sqrt{s_{n}}}\left|p_{i_{1} \ldots i_{m}}^{1 / 2}-\left(p_{i_{1} \ldots i_{m}}^{*}\right)^{1 / 2}\right|
$$

where the inequality follows from the assumption that $\max _{i_{1}, \ldots, i_{m}} \theta_{i_{1} \ldots i_{m}} \leq c_{0}^{m}$. It further implies that

$$
\varphi^{-1}(n, m) \sum_{\substack{\delta_{i_{1} \ldots i_{m}}^{n+1, \text { ord }}=0}}\left(\theta_{i_{1} \ldots i_{m}}-\theta_{i_{1} \ldots i_{m}}^{*}\right)^{2} \leq \frac{c_{8}^{2}}{s_{n}} D^{2}\left(\Theta, \Theta^{*}\right)
$$

Therefore,

$$
\frac{m!}{n^{m}} \sum_{\substack{\delta_{i_{1} \ldots, \ldots m}^{n+1, o r d}=0}}\left(\hat{\theta}_{i_{1} \ldots i_{m}}-\theta_{i_{1} \ldots i_{m}}^{*}\right)^{2} \leq \frac{c_{8}^{2} m!\varphi(n, m)}{n^{m} s_{n}} D^{2}\left(\widehat{\Theta}, \Theta^{*}\right)
$$

Since $D^{2}\left(\widehat{\Theta}, \Theta^{*}\right)=O_{p}\left(\epsilon_{n}\right)$, it immediately follows that $\frac{1}{n^{m / 2}}\left\|\widehat{\Theta}-\Theta^{*}\right\|_{F}=O_{p}\left(\sqrt{\epsilon_{n} / s_{n}}\right)$.
Lemma 2. Under the conditions of Theorem 1, if $\lim _{n \rightarrow+\infty} \lambda_{n} \epsilon_{n} s_{n}^{-2}\left(\log s_{n}^{-1}\right)^{-1}>0$, then with probability at least $1-n^{-2}$, there exists a positive constant c_{9} such that

$$
\frac{1}{n^{m / 2}}\left\|\mathcal{I} \times_{1} \hat{Z} \hat{C} \times_{2} \ldots \times_{m} \hat{Z} \hat{C}-\mathcal{I} \times_{1} Z^{*} C^{*} \times_{2} \ldots \times_{m} Z^{*} C^{*}\right\|_{F} \leq c_{9} \sqrt{\epsilon_{n} / s_{n}} .
$$

Proof of Lemma 2. We first prove a claim that $J(\hat{\boldsymbol{\alpha}})=O_{p}\left(\epsilon_{n} / s_{n}\right)$. By the definition of $\hat{\boldsymbol{\alpha}}$, we have $\lambda_{n} J(\hat{\boldsymbol{\alpha}})<\mathcal{L}_{\lambda}(\hat{\boldsymbol{\alpha}} ; \mathcal{A}) \leq \mathcal{L}_{\lambda}\left(\boldsymbol{\alpha}^{*} ; \mathcal{A}\right) \leq \mathcal{L}\left(\boldsymbol{\alpha}^{*}, \mathcal{A}\right)+\frac{1}{2} \epsilon_{n}$. Note that

$$
\varphi(n, m) \mathcal{L}\left(\boldsymbol{\alpha}^{*}, \mathcal{A}\right)=\sum_{\substack{\delta_{i_{1} \ldots i_{m}}^{n+1, \text { ord }}=0}}\left(a_{i_{1} \ldots i_{m}} \log \frac{1-p_{i_{1} \ldots i_{m}}^{*}}{p_{i_{1} . . i_{m}}^{*}}+\log \frac{1}{1-p_{i_{1} \ldots i_{m}}^{*}}\right):=\sum_{\substack{\delta_{i_{1} \ldots i_{m}}^{n+1, \text { ord }}=0}} X_{i_{1} \ldots i_{m}}
$$

which is the sum of $\varphi(n, m)$ independent two-value random variables with $E X_{i_{1} \ldots i_{m}}$ of the order $s_{n} \log \frac{1}{s_{n}}$ and $E X_{i_{1} \ldots i_{m}}^{2}$ of the order $s_{n}\left(\log \frac{1}{s_{n}}\right)^{2}$. Since $\left|X_{i_{1} \ldots i_{m}}\right|=O\left(\log \frac{1}{s_{n}}\right)$, it follows from Bernstein inequality that there exists some constant c_{10}, such that

$$
P\left(\frac{1}{\varphi(n, m)} \sum_{\substack{\delta_{i_{1} \ldots, \text { ord }}^{n+1}=0}}\left(X_{i_{1} \ldots i_{m}}-E X_{i_{1} \ldots i_{m}}\right)>t\right) \leq \exp \left\{-\frac{c_{10} \varphi^{2}(n, m) t^{2}}{\varphi(n, m) s_{n}\left(\log \frac{1}{s_{n}}\right)^{2}+\varphi(n, m) t \log \frac{1}{s_{n}}}\right\} .
$$

Taking $t=\frac{2}{\sqrt{c_{10}}} \varphi^{-1 / 2}(n, m) s_{n}^{1 / 2}\left(\log \frac{1}{s_{n}}\right)(\log n)^{1 / 2}$, with probability at least $1-n^{-2}$ it holds true that

$$
\mathcal{L}\left(\boldsymbol{\alpha}^{*}, \mathcal{A}\right)=\frac{1}{\varphi(n, m)} \sum_{\substack{\delta_{i_{1} \ldots i m}^{n+1, \text { ord }}=0}} X_{i_{1} \ldots i_{m}} \leq c_{11} s_{n} \log \frac{1}{s_{n}}
$$

for some positive constant c_{11}. The desired claim follows immediately after the assumption that $\lim _{n \rightarrow+\infty} \lambda_{n} \epsilon_{n} s_{n}^{-2}\left(\log s_{n}^{-1}\right)^{-1}>0$ and the fact that $\epsilon_{n}=o\left(s_{n} \log \frac{1}{s_{n}}\right)$.

We now turn to quantify the difference between $\mathcal{I} \times_{1}(\hat{Z} \hat{C}) \times_{2} \ldots \times_{m}(\hat{Z} \hat{C})$ and $\mathcal{I} \times_{1}$
$Z^{*} C^{*} \times_{2} \ldots \times_{m} Z^{*} C^{*}$. Applying the triangle inequality yields that

$$
\begin{align*}
& \frac{1}{n^{m / 2}}\left\|\mathcal{I} \times_{1} \hat{\boldsymbol{\alpha}} \times_{2} \ldots \times_{m} \hat{\boldsymbol{\alpha}}-\mathcal{I} \times_{1}(\hat{Z} \hat{C}) \times_{2} \ldots \times_{m}(\hat{Z} \hat{C})\right\|_{F} \\
\leq & \frac{1}{n^{m / 2}} \sum_{j=0}^{m-1}\|\hat{\boldsymbol{\alpha}}-\hat{Z} \hat{C}\|_{F}\|\hat{\boldsymbol{\alpha}}\|_{F}^{j}\|\hat{Z} \hat{C}\|_{F}^{m-1-j}=m c_{0}^{m-1} \sqrt{J(\hat{\boldsymbol{\alpha}})}=O_{p}\left(\sqrt{\epsilon_{n} / s_{n}}\right), \tag{1}
\end{align*}
$$

where the last equality follows form the claim above. Similarly,

$$
\begin{equation*}
\frac{1}{n^{m / 2}}\left\|\mathcal{I} \times_{1} \boldsymbol{\alpha}^{*} \times_{2} \ldots \times_{m} \boldsymbol{\alpha}^{*}-\mathcal{I} \times_{1}\left(Z^{*} C^{*}\right) \times_{2} \ldots \times_{m}\left(Z^{*} C^{*}\right)\right\|_{F} \leq m c_{0}^{m-1} \sqrt{J\left(\boldsymbol{\alpha}^{*}\right)}=O\left(\sqrt{\epsilon_{n}}\right) \tag{2}
\end{equation*}
$$

Finally, combing (1), (2) and Theorem 1 immediately leads to the desired probability bound.

Lemma 3. Let $\widehat{\mathcal{B}}=\mathcal{I} \times{ }_{1} \hat{C} \times_{2} \ldots \times_{m} \hat{C}$ be the estimation counterpart of \mathcal{B}^{*}. Denote $\mathcal{M}^{*}=\mathcal{B}^{*} \times_{2} Z^{*} \times_{3} \ldots \times_{m} Z^{*}$ and $\widehat{\mathcal{M}}=\widehat{B} \times_{2} \hat{Z} \times_{3} \ldots \times_{m} \hat{Z}$. Under the conditions of Theorem 1 as well as Assumptions A and B, if $\lim _{n \rightarrow+\infty} \lambda_{n} \epsilon_{n} s_{n}^{-2}\left(\log s_{n}^{-1}\right)^{-1}>0$ and $K=o\left(\gamma_{n}^{2} s_{n} / \epsilon_{n}\right)$, then with probability at least $1-n^{-2}$, the following event F holds. F : for any $k \in[K]$, there exists an unique $k^{\prime} \in[K]$, such that

$$
\frac{1}{n^{(m-1) / 2}}\left\|\widehat{\mathcal{M}}_{k^{\prime}}-\mathcal{M}_{k}^{*}\right\|_{F}=o\left(\gamma_{n}\right)
$$

Proof of Lemma 3. We first prove existence. Denote F_{0} be the event that there exists $k \in[K]$ and a constant c_{12} such that $\frac{1}{n^{(m-1) / 2}}\left\|\widehat{\mathcal{M}}_{k^{\prime}}-\mathcal{M}_{k}^{*}\right\|_{F} \geq c_{12} \gamma_{n}$, for any $k^{\prime} \in[K]$. It follows that
$\frac{1}{n^{m / 2}}\left\|\widehat{\mathcal{B}} \times{ }_{1} \hat{Z} \times \times_{2} \ldots \times_{m} \hat{Z}-\mathcal{B}^{*} \times_{1} Z^{*} \times_{2} \ldots \times_{m} Z^{*}\right\|_{F} \geq \frac{1}{n^{m / 2}}\left(\sum_{i \in N_{k}^{*}}\left\|\left(\widehat{\mathcal{M}} \times{ }_{1} \hat{Z}\right)_{i}-\mathcal{M}_{k}^{*}\right\|_{F}^{2}\right)^{1 / 2} \geq c_{12} \gamma_{n} \sqrt{\frac{n_{k}}{n}}$.

Moreover, by Assumption B and the condition $K=o\left(\gamma_{n}^{2} s_{n} / \epsilon_{n}\right)$, we have

$$
\gamma_{n} \sqrt{\frac{n_{k}}{n}} \geq \gamma_{n} \sqrt{\frac{\min _{k \in[K]} n_{k}}{n}} \geq \gamma_{n} \sqrt{\frac{\max _{k \in[K]} n_{k}}{c_{4} n}} \geq \gamma_{n} \sqrt{\frac{1}{c_{4} K}} \gg \sqrt{\frac{\epsilon_{n}}{s_{n}}} .
$$

Hence, it follows form Lemma 2 that

$$
P\left(F_{0}\right) \leq P\left(\frac{1}{n^{m / 2}}\left\|\widehat{\mathcal{B}} \times_{1} \hat{Z} \times_{2} \ldots \times_{m} \hat{Z}-\mathcal{B}^{*} \times_{1} Z^{*} \times_{2} \ldots \times_{m} Z^{*}\right\|_{F} \geq c_{12} \gamma_{n} \sqrt{\frac{n_{k}}{n}}\right) \leq n^{-2}
$$

Therefore, with probability at least $1-n^{-2}, F_{0}^{C}$, the complement of F_{0} holds; that is, the existence holds with high probability.

We now prove uniqueness condition on F_{0}^{C}. Assume there exist $k_{1} \neq k_{2} \in[K]$ such that $\frac{1}{n^{(m-1) / 2}}\left\|\widehat{\mathcal{M}}_{k_{i}}-\mathcal{M}_{k}^{*}\right\|_{F}=o\left(\gamma_{n}\right)$ for $i \in[2]$. By existence, there exists $a \in[K]$ and $b_{1} \neq b_{2} \in[K]$ such that $\frac{1}{n^{(m-1) / 2}}\left\|\widehat{\mathcal{M}}_{a}-\mathcal{M}_{b_{j}}^{*}\right\|_{F}=o\left(\gamma_{n}\right)$ for $j \in[2]$. On one hand, the triangle inequality yields that

$$
\frac{1}{n^{(m-1) / 2}}\left\|\mathcal{M}_{b_{1}}^{*}-\mathcal{M}_{b_{2}}^{*}\right\|_{F} \leq \frac{1}{n^{(m-1) / 2}}\left\|\widehat{\mathcal{M}}_{a}-\mathcal{M}_{b_{1}}^{*}\right\|_{F}+\frac{1}{n^{(m-1) / 2}}\left\|\widehat{\mathcal{M}}_{a}-\mathcal{M}_{b_{2}}^{*}\right\|_{F}=o\left(\gamma_{n}\right)
$$

On the other hand, Assumption A and B imply that

$$
\frac{1}{n^{(m-1) / 2}}\left\|\mathcal{M}_{b_{1}}^{*}-\mathcal{M}_{b_{2}}^{*}\right\|_{F} \geq \sqrt{\frac{\min _{k \in[K]} n_{k}^{m-1}}{n^{m-1}}}\left\|\mathcal{B}_{b_{1}}^{*}-\mathcal{B}_{b_{2}}^{*}\right\|_{F} \geq c_{3} c_{4}^{(1-m) / 2} \gamma_{n}
$$

which is a contradiction. Hence, F_{0}^{C} also implies uniqueness, showing that F holds with probability at least $1-n^{-2}$.

Proof of Theorem 2. Based on Lemma 3, with probability at least $1-n^{-2}$, there exists a permutation $\pi^{*} \in S_{K}$ such that for each $k \in[K], k^{\prime}=\pi^{*}(k)$ satisfies $n^{(1-m) / 2} \| \widehat{\mathcal{M}}_{k^{\prime}}-$ $\mathcal{M}_{k}^{*} \|_{F}=o\left(\gamma_{n}\right)$. We want to show $\lim _{n \rightarrow+\infty} \min _{\pi \in S_{K}} \frac{1}{n} \sum_{i=1}^{n} 1\left\{\psi_{i}^{*} \neq \pi\left(\hat{\psi}_{i}\right)\right\}=O_{p}\left(\epsilon_{n} s_{n}^{-1} \gamma_{n}^{-2}\right)$. Let
$\hat{N}_{k}=\left\{i: \hat{\psi}_{i}=k\right\}$, for $k \in[K]$. Note that

$$
\begin{aligned}
\min _{\pi \in S_{K}} \sum_{i=1}^{n} \mathbf{1}\left\{\psi_{i}^{*} \neq \pi\left(\hat{\psi}_{i}\right)\right\} & =\min _{\pi \in S_{K}}\left|\bigcup_{k=1}^{K}\left\{i: \psi_{i}^{*}=k, \hat{\psi}_{i} \neq \pi^{-1}(k)\right\}\right|=\min _{\pi \in S_{K}} \sum_{k=1}^{K}\left|N_{k}^{*} \backslash \hat{N}_{\pi^{-1}(k)}\right| \\
& =\min _{\pi \in S_{K}} \sum_{k=1}^{K}\left|N_{k}^{*} \backslash \hat{N}_{\pi(k)}\right|
\end{aligned}
$$

where the last equality follows from the fact that π^{-1} is also a permutation in S_{K}. It then suffices to show that for the particular permutation π^{*},

$$
\sum_{k=1}^{K} \frac{\left|N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}\right|}{n}=O_{p}\left(\epsilon_{n} s_{n}^{-1} \gamma_{n}^{-2}\right)
$$

In fact, by Lemma 2, we have

$$
\begin{aligned}
& P\left(\sum_{k=1}^{K} \frac{\left|N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}\right|}{n}=O\left(\epsilon_{n} s_{n}^{-1} \gamma_{n}^{-2}\right)\right)=P\left(\sum_{k=1}^{K} \frac{c_{3}^{2} \gamma_{n}^{2}\left|N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}\right|}{4 c_{4}^{m-1} n}=O\left(\epsilon_{n} s_{n}^{-1}\right)\right) \\
\geq & P\left(\sum_{k=1}^{K} \frac{c_{3}^{2} \gamma_{n}^{2}\left|N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}\right|}{4 c_{4}^{m-1} n} \leq \frac{1}{n^{m}}\left\|\widehat{\mathcal{B}} \times_{1} \hat{Z} \times_{2} \ldots \times_{m} \hat{Z}-\mathcal{B}^{*} \times_{1} Z^{*} \times_{2} \ldots \times_{m} Z^{*}\right\|_{F}^{2}\right)+ \\
& P\left(\frac{1}{n^{m}}\left\|\widehat{\mathcal{B}} \times_{1} \hat{Z} \times_{2} \ldots \times_{m} \hat{Z}-\mathcal{B}^{*} \times_{1} Z^{*} \times_{2} \ldots \times_{m} Z^{*}\right\|_{F}^{2}=O\left(\epsilon_{n} s_{n}^{-1}\right)\right)-1 \\
\geq & P\left(\sum_{k=1}^{K} \frac{c_{3}^{2} \gamma_{n}^{2}\left|N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}\right|}{4 c_{4}^{m-1} n} \leq \frac{1}{n^{m}}\left\|\widehat{\mathcal{B}} \times_{1} \hat{Z} \times_{2} \ldots \times_{m} \hat{Z}-\mathcal{B}^{*} \times_{1} Z^{*} \times_{2} \ldots \times_{m} Z^{*}\right\|_{F}^{2}\right)-n^{-2} .
\end{aligned}
$$

For any tensors $\mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{3}$ sharing the same shape, it is easy to verify the following by triangle
inequality, $\left\|\mathcal{T}_{1}-\mathcal{T}_{2}\right\|_{F}^{2} \geq \frac{1}{2}\left\|\mathcal{T}_{3}-\mathcal{T}_{2}\right\|_{F}^{2}-\left\|\mathcal{T}_{1}-\mathcal{T}_{3}\right\|_{F}^{2}$. Consequently,

$$
\begin{aligned}
& \frac{1}{n^{m}}\left\|\widehat{\mathcal{B}} \times_{1} \hat{Z} \times_{2} \ldots \times_{m} \hat{Z}-\mathcal{B}^{*} \times_{1} Z^{*} \times_{2} \ldots \times_{m} Z^{*}\right\|_{F}^{2} \geq \frac{1}{n^{m}} \sum_{k=1}^{K} \sum_{i \in N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}}\left\|\left(\widehat{\mathcal{M}} \times_{1} \hat{Z}\right)_{i}-\mathcal{M}_{k}^{*}\right\|_{F}^{2} \\
\geq & \frac{1}{n^{m}} \sum_{k=1}^{K} \sum_{i \in N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}}\left(\frac{1}{2}\left\|\mathcal{M}_{\left(\pi^{*}\right)^{-1}\left(\hat{\psi}_{i}\right)}^{*}-\mathcal{M}_{k}^{*}\right\|_{F}^{2}-\left\|\widehat{\mathcal{M}}_{\hat{\psi}_{i}}-\mathcal{M}_{\left(\pi^{*}\right)^{-1}\left(\hat{\psi}_{i}\right)}^{*}\right\|_{F}^{2}\right) \\
\geq & \sum_{k=1}^{K} \frac{\left|N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}\right|}{n^{m}}\left(\min _{i \in N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}} \frac{1}{2}\left\|\mathcal{M}_{\left(\pi^{*}\right)^{-1}\left(\hat{\psi}_{i}\right)}^{*}-\mathcal{M}_{k}^{*}\right\|_{F}^{2}-\max _{i \in N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}}\left\|\widehat{\mathcal{M}}_{\hat{\psi}_{i}}-\mathcal{M}_{\left(\pi^{*}\right)^{-1}\left(\hat{\psi}_{i}\right)}^{*}\right\|_{F}^{2}\right) \\
\geq & \sum_{k=1}^{K} \frac{\left|N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}\right|}{n^{m}}\left(\frac{c_{3}^{2} \gamma_{n}^{2} n^{m-1}}{2 c_{4}^{m-1}}-\max _{i \in N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}}\left\|\widehat{\mathcal{M}}_{\hat{\psi}_{i}}-\mathcal{M}_{\left(\pi^{*}\right)^{-1}\left(\hat{\psi}_{i}\right)}^{*}\right\|_{F}^{2}\right)
\end{aligned}
$$

where the last inequality follows from Assumption A and B. Combining these with Lemma 3, we have

$$
\begin{aligned}
& P\left(\sum_{k=1}^{K} \frac{\left|N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}\right|}{n}=O\left(\epsilon_{n} s_{n}^{-1} \gamma_{n}^{-2}\right)\right)+n^{-2} \\
\geq & P\left(\sum_{k=1}^{K} \frac{c_{3}^{2} \gamma_{n}^{2}\left|N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}\right|}{4 c_{4}^{m-1} n} \leq \sum_{k=1}^{K} \frac{\left|N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}\right|}{n^{m}}\left(\frac{c_{3}^{2} \gamma_{n}^{2} n^{m-1}}{2 c_{4}^{n-1}}-\max _{i \in N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}}\left\|\widehat{\mathcal{M}}_{\hat{\psi}_{i}}-\mathcal{M}_{\left(\pi^{*}\right)^{-1}\left(\hat{\psi}_{i}\right)}^{*}\right\|_{F}^{2}\right)\right) \\
\geq & P\left(\bigcap _ { k = 1 } ^ { K } \left\{\frac{c_{3}^{2} \gamma_{n}^{2}}{\left.\left.4 c_{4}^{m-1} \leq \frac{c_{3}^{2} \gamma_{n}^{2}}{2 c_{4}^{m-1}}-\max _{i \in N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}} \frac{1}{n^{m-1}}\left\|\widehat{\mathcal{M}}_{\hat{\psi}_{i}}-\mathcal{M}_{\left(\pi^{*}\right)^{-1}\left(\hat{\psi}_{i}\right)}^{*}\right\|_{F}^{2}\right\}\right)}\right.\right. \\
\geq & P\left(\bigcap_{k=1}^{K}\left\{\max _{i \in N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}} \frac{1}{n^{m-1}}\left\|\widehat{\mathcal{M}}_{\hat{\psi}_{i}}-\mathcal{M}_{\left(\pi^{*}\right)^{-1}\left(\hat{\psi}_{i}\right)}^{*}\right\|_{F}^{2}=o\left(\gamma_{n}^{2}\right)\right\}\right) .
\end{aligned}
$$

Finally, the definition of π^{*} implies that

$$
P\left(\sum_{k=1}^{K} \frac{\left|N_{k}^{*} \backslash \hat{N}_{\pi^{*}(k)}\right|}{n}=O\left(\epsilon_{n} s_{n}^{-1} \gamma_{n}^{-2}\right)\right) \geq 1-n^{-2}-n^{-2}=1-2 n^{-2}
$$

and thus the desired consistency result follows immediately.

References

Klein, T., Rio, E., et al. (2005). Concentration around the mean for maxima of empirical processes. The Annals of Probability, 33(3):1060-1077.

Koltchinskii, V. (2011). Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems: Ecole d'Eté de Probabilités de Saint-Flour XXXVIII-2008, volume 2033. Springer Science \& Business Media.

