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S.1. Justification of Assumption (A1)

As stated in the discussion of Appendix A.1, the following proposition and remarks show that the

condition in (A1) is satisfied in many cases.

Proposition 1. In model (2.1), suppose Y = m(X) + ¢ = g(By X) + ¢ where e L X, and Vg(-)
1s bounded, and By : p X d is the dimension reduction directions. Assuming that X has a compact
support and it is block-wise independence in the sense that XY and XUl are independent when
|i — j| > T for some positive integer T. Suppose the distance variances dVar(Xm) are bounded
away from 0, i.e. min{dVar(XM),... dVar(XP)} > ¢ for some positive constant c. Then, there
exists v such that

o) +az+-F+ap <,
where v = y(d) is only related to d.

PROOF OF PROPOSITION 1. For notation simplicity, we consider X7+ as an example. Let X[lTH] =

(x® ..., xBT+1) and X[QTH] = (xT+21 .. X)), the Taylor’s series of m(X) with a mean-

value form remainder is

om(x
m(X) = x| [TQ] +m(0, X5y = 2, + 75, (S.1)
Oxy T =X X
where X[lTH] is a point between 0 and X[lTH]. It is obvious that Z, is independent with X7+



by the block-wise independence condition. Since X has a compact support, and Vg(-) is bounded,

2T+1
12| < Z | X1 50wg (B (X, X T

2741
< >0 IXEsve (B (X X5 T (52)
i=1
2T+1
< Al A Z ||ﬁ[i]||7 almost surely
i=1

where A; = supycpq || Vg(v)|| and sup; | X < Ay almost surely.
By the definition of Rpy; given in (2.5), we can denote it by Rr11 =Y — cryq - X[T+1 | where
cry1 = Cov(XITHY /\/W We have
Cov(XTHU v = Cov(XTHU m(X) 4+ €) = Cov(XITH 2, + Zy +¢)
= Cov(XTHU 7)) = E(xT+1. 7)) — B(x[TH) . E(Z)).
Therefore, by (S.2),

2T+1

|Cou(XTHLY)| < [R(XITH. 20)] + [B(XTH) - B(21)| < 24043 3 |81
i=1
We can conclude by the conditions that
2T+1
erin < Az ) [18Y). (8.3)
i=1

Denote the characteristic function of any random variable U by ¢y (t) = E[ FtU} then

[Pxima v —ep s xirn (88) = Qxirn ()Py_epy.xiran ()]
= |90X[T+1],Z1+Z2+57CT+1~X[T+1] (S,t) - SOX[T+1](S)§0Z1+Z2+67(;T+1-X[T+1] (t)}g
= |<p€(t)‘2|QOX[TJrl],Z1+ngcT+1-X[T+1] (5,8) = oxr+1(8)P 2,4 Zy—cpyy-xIT+1) (t)’2
< |90X[T+1],Z1+Z2ch+1-X[T+1] (8,8) = ox1m+1(8)P 2, 4 Zy—cppy xT+1 (t)‘Q (5.4)
< 2|QX 1711 2y 4 2y — ey a-x 11 (5, 1) — <Px[T+11,ZQ(Svt)’2 .
+ 2| xiri1 7, (8, 1) — ©x1r+11(5)P 2, 4 2y —ep sy X741 (mg
_ 2’E|:e\/jl(3X[T+l]+tZ2)(e\/jlt(zl—CT+1'X[T+1]) _ 1)} ’2

2l ()BT VT X
< 2E|e (SX[T+1]+tZ2)( V=Tt(Z1—erp- XY 1)|2
+ 2|pxir+ (s)|2E|e‘Etz2 |2E’eﬁt(zl’cT+1'X[T+l]) - 1|2

— 2E|eﬁt(ZI*CT+1-X[T+”) - 1|2 + 2| xir+n (S)|2E|eﬁt(zl""”1'x[””) —1]A



y (S.2) and (S.3), there exists a constant A4 > 0 such that

2T+1 .
|Zy — epyr - XTFU < 40 ) 181 (S.5)

i=1
Then, using (S.4) and (S.5) and the definition of distance covariance (Székely et al., 2007), there is

a constant As such that

2T+1
dCov?* (Rr1, XIT1) < 4g ( 2 ||5M|l)

By the condition of distance variance, we have

2T+1 2 2T+1
dCor®(Rr41, XTHY) < A6< > IIﬁ[’]H) < Ag- (2 +1) Y I8Y)1

i=1 i=1
for some positive constant Ag. Moreover, note that all the constants mentioned above are uniform

for j =1,2,...,p, we have

P
ay +ag + -+ Z dCor?*( XV, R;)
P Jj+r ,
Z @r+1) Y 89
j=1 i=j—T
J+T p
=As2T+1) > > I8
i=j—T j=1

= Ag(2T + 1)%d.

Therefore, the statement follows by selecting v = Ag(2T + 1)%d. O

Remark 1. The block-wise independence can also be extended to serial dependence with appropri-
ate decreasing rate as commonly used in time series analysis, such as a-mixing assumption; see Fan
and Yao (2008). In addition, v can be proportional to d under these conditions. Thus, d = o(log(n))
by condition (A1), which means that the reduced dimension d is also able to diverge but should

has a sub-logarithm rate.

S.2. Proofs of Theorems 1 and Theorem 2

We first consider the partial derivatives of regression function m(-). Since the first and second order
partial derivatives of function ¢(-) are bounded under Assumption (A2), the partial derivatives of

m(+) will be controlled by the coefficients in By.



Lemma 1. Under conditions (A2), we have for 1 < j, k < p,

Omx)| _ o 1101
Sup | Tair | =~ OB

& mix) = (4] K]
sup | o igg | = OUBY - 18F1)-

PROOF OF LEMMA 1. The first order partial derivative with respect to zl! is

om(x)

SUb 7o

x€ERP

= sup |[8Y]"Vg(By x)| < sup. 182 IVa(Bg )|l = O(IB2]),  (S.6)

x€ERP

where Vg(Bj x) is the gradient of g(-) at point By x. In (S.6), the inequality holds by Cauchy-
Schwartz inequality, and the last equation holds by Condition (A2). Similarly,

" m(x) LT T\ alkl
SUp | o rTag | = SUp |8V (B X))
< sup (|89, (B )8 < 89189 sup [y (BT 0 (57)
= oI5 18],

where H,(B, x) is the Hessian matrix of g(-) at point By x, and ||H, (B, x)| represents its largest
eigenvalue. In (S.7), the first inequality holds by Cauchy-Schwartz inequality, while the second

inequality holds because of the property of eigenvalue. O

For ease of exposition, we introduce the following notations. A local approximation of m(z) by

a polynomial of total order r is given as

mz) ~ Y L (Dkm)(x) (e - 0K, (53)

0<k|<r
where
p
e (N ) B R M SE Y 2
j=1
5 kP U d
xM = (@M o @PHET N =N N
0<|k|<r j=0gll=0  klrl=0
k4o kPl =5
and

O*m(y)
D(yI)ET - p(y )R |

(D¥m)(x) =




By linear regression and distance correlation estimation (Székely et al., 2007), & — a and the

rate of convergence is O, (n~'/2). Then, by condition (A3)

) U g g el
‘Kh(x;a)—Kh(x;aHgC-’(hdl,...,h&p _ haha)’
(e a1 hew—dp _ 1
_ 21 [p]
=C- H e i xp)H (S.9)

— 0, k’gf() 1),

where the last equation holds because of &; —a; = O,(n~/2) and h® > h for all j. The estimation
problem can be written as minimizing

n 2

> {Yi D b(x) (X = x)*| K (X; —x;é) (S.10)

i=1 0<[k|<1

—

with respect to by (x). Denote the minimizer of (S.10) by by (x), then we have estimation (Dkm)(x) =
k!by (x). The minimization of (S.10) leads to the set of equations

= > Eh(x)si(x), 0< il <1, (S.11)
0<[K|<1
where
1 n
ti(x) = gZYi[Zi(h a) —z(h; )P K, (X; — x; &),
=1
55(x) = % S 2k @) — a(h; Q)P Ky (Xi — x: &), (.12)
1=1
ith
s 211 217

Define 7(x) = (7’0(x),...,7p(x))—r7 where 79(x) = t(o,...,0)(X), T1(X) = t(1,..0)(X),..., p(X) =
t(o,...,1)(x). Arranging hk'alA)k(x), 0 < |k| <1 in the same order, we can obtain 6 as an estimator of
column vector 0(x) = (6p(x),..., 91[,(x))—r = (m(x), k2 rml(x),..., hormP) (x))T. Then, let S(x)
be a (p+1) x (p+ 1) matrix, where the (k,1) entry is s;(x) with (k —1)-th and (I — 1)-th elements
in jare 1 for 1 <k,l <pand k # [. Other entries in S(x) can be obtained similarly. Thus, the set

of equations in (S.11) can be written in matrix as



Since S(x) is positive semi-definite when K (-) > 0, we can henceforth assume the matrix is invertible

and write

as the solution of the set of equations (S.11).

A fundamental decomposition for the error f(x) — 6(x) is provided next. Firstly, let

{00 = 5 D1 mOX0) Zilhs @) — sl )P K (X — ;). (S.14)
we have N
t(x) —tj(x) = % Z m(X:)[Zi(h; @) — z(h; )P K (X — x; é). (5.15)

The Taylor series of m(X;) at point x with a mean-value form of remainder is
_ Lok k Lok s k
m(Xi) = D (D m)()(X; = %)+ Y 5 (Dm) (%)X — %), (S.16)
0<|k|<1 [k|=2
where %; is a point between x and X;. Substituting (S.16) and (S.12) to (S.15), we find
* 1 ‘o
GO =500 = D ke (Dm)(x)sp(x) + e5(x),
0<|k|<1

where
ej(x) = % > 'R Z(ka)(ii)[zi(h; a) — z(h; &) *HK, (X — x; ). (S.17)

By (S.11) and (D*m)(x) = k!bk(x), we obtain
)= B (%) — bie(x)]sji(x) — (). (S.18)
0< ki<t

For 0 < |j| < 1, using the same arrangement as for 7(x), we can define the (p 4+ 1) column vector

7*(x) and e(x) as follows

t?O,...,O)Exg 6(07.__,0)(X)

.0 X eq,....0)(x)

o) = | T e = | 0
o, 1(x) e,...,1)(x)



Thus,
0(x) — 0(x) = S™H(x)T*(x) + ST (x)e(x). (S.19)
In the following proof, we use C' to represent any positive constants that may be different from

case to case.

Lemma 2. Let D be any compact subset of RP and conditions (A1) and (A3) hold. Assume
h=h, =0 and p, log(n)/(nhlnal) — 00 as n— 0o. Then, for each j with 0 < |j| <3,

sup |sj(x) — Blsi()]] = 0((“;2505?))1/2) ..
PROOF OF LEMMA 2. By the condition of random vector X in (A1), we have fx(x) < Cy on the
support. By condition (A1), (A3) and equation (S.9),

E S I S RN R ~log(h)
[Els; (]| = /Rp ( pen T Tay )JKh(u—X;a)fx(u)du+O(W)
1 _ MM [P _ 2] . —log(h
<G /R (u halx R = h%m )"Kh(u —x;a)du + O(hciif(z)) (S.20)
- — log(h)
— j
Cl/RptK(t)dt—i—O( hn ) < oo.

Thus, we have |E[sj(x)]| = O(1). Next, by (S.9), (S.20) and condition (A3)
i Varlsyo0] = WV ( [24(0,50 = a0 0)) B, (X1 = xi60) ) + o(0)

= h',f"E([zl(hn; o) — z(hy; a)]ZjK,an (X1 —x; a)) — hlel (E[sj(x)})2 + o(hle)

u[l] — :L'[l] u[p] — m[p} 2j
- h%l LA th ) [

1 2(u[1] — x[l] u[p] — .’L'[p]

. y T a,
ny ne?

el )] fx (w)du + O
=0(1) + O(hlel)y = 0(1).

(S.21)
P
Let L = L(n) = {(hlaﬁjﬁzl())l/z—‘ , where [-] represents ceiling function. For computation
n og(n

. .. 1/2 p/2
n n
sunphClty, assume (m) h/-‘,;l‘+2‘j‘+2 log(n)]

Since D is compact, it can be covered by L(n) cubes I = I, ; centered at x; with side length ¢,

is a positive integer, and L = L(n) = [

for k=1,...,L(n). Clearly, £, < Co/LY?(n) for some positive constant Co. Then, we can write
sup |sj(x) — Elsj(x)]| = max su sj(x) — Elsj(x
sup 5500~ Blsy(o)l| = _maxe | sup[si6x) — By x)]

< (x) — s . — EJs;
< LB S5, 1100 0+ o) — Bl

+ max su E[s;(x1.)] — E[s;(x
o sup [Blsy(xe)] — Blsy (<))

=1+IT+1III



Since both X and K (-) have compact support in R?, by (S.12), (S.13), condition (Al) and (A3),

|33() — 55(x1)|

_nhllf" iz:;[zi(hQ o) — z(h; )P Kn (X; —x; &) — [Zi(h; o) — z(h; )P K (X — xp &) ’
hllf‘l 2_; [Zi(h: @) — a(h; )V K (X = x:.&) = [Zi(hs @) — 2 (hs ) P (X — 3 d)‘
+ ’[Zi(h; a) — 2 (h; P KL (Xi — x; &) — [Zi(h; @) — 2 (h; @) P K (X — x5 d)‘
_nhl',;"' z”; Kn (X — x4; &) ’[Zi(hQ a) - a(h; @) = [Zi(h; ) - z(h; @)}

i \[th; &) — (s )}

| athi ) 0500 - (21005 0) ~ (1)
(S.22)
By the definition of I, we have

sup  |[Zi(h; o) — z(h; )P — [Zs(h; ) — 2z, (h; )P | < R Hle,,,
xeDNIy
and
XESBEI (Zi(h; &) — z(h; &)] — [Zi(h; &) — 2z (h; d)]H < hy /Dby

Since kernel function K} (+) is bounded and X has a compact support, we can substitute two previous

inequalities to (S.22) to get

<1 S {Csh e, + hHCE - Cht /ot )

= le
nhn ' i1

o, 1 (S.23)
—o( B ) _ o[ Og(n)}l/2 s,
pledtlil+ nhle!
From (S.23) we can immediately get
1 = o([mblg(ln)f”) a.s. (S.24)
nhn

The remaining task is to show I = O([p"log(")] 1/2> almost surely. Write

@
nhln l

——{[Zi(h; @) —z(h; )P K (Xi—x; &) —E[[Zi(h; ) —2(h; ) P K, (Xi—x; &) }. (S.25)



Then for each n > 0,
P(II>n) < L(n) max P(|sj(xx) — E[sj(xx)]| >n).

1<k<L(n)

By assumption (A1) and (A3), let

for j with 0 < |j| < 4. We have by (S.25),

2A
Vii(x)| < 7@ as. i=1,...,n
nhy
Define
1
An = o lpa bl log ()12,
then by the restriction of h,,, for large enough n,
|
A”}Vj,i(xn < > t=1,...,n.

Thus, exp{£\,Vj,i(x)} <1+, Vji(x) + A2V (x) because e < 1+t + ¢ for [t| < 1/2. Based on

nvj,i

this inequality, we have
E [ei&%,i(x)] <1+ A2E[VE(x)] < MBI, (S.26)

By (S.26), Markov’s inequality and the independence of {V;;}7 4,

E [ekn i Vj,i(Xk)] +E [e—kn 2 Vj,i(xk)]

eAnn

< Qe—xnn{exi S E[vgi<xk>]} (S.27)

P([si(xx) — E[sj(xx)]] > n) <

_ 26—/\nn {eki\/ar[sj- (x1)] }

Denote the upper bound on nh‘na‘Var[sj(x)] by constant As, then by (S.21) and (S.27),

A2 A,
1S1;1§az<(n)P(‘sj(xk) — E[SJ(Xk)]‘ > n) < 2exp{ — A+ hlnal }
lox[y71/2
Let n = n, = As[pnlog(n)/(nhn")]'", we have
P(II > n,) < L(n)ex _ A + A log(n) p = L(n)n=%" (S.28)



_ Az _ Ay
where a = i ToA7

Then, it follows by (S.28) and the Borel-Cantelli lemma that

By selecting a large enough Az, we can ensure L(n)n~ % is summable.

log(n)1/2
11 =00, = O([pn gl(al)] / ) (S.29)
nhy
Consequently, Lemma 2 follows from (S.23), (S.24) and (S.28) . O

Then, the strong consistency of matrices S can be obtained.

Lemma 3. Under the same conditions as in Lemma 2, we have, uniformly in x € D,
S(x) — E(S(x)), a.s. as n — oo.

We next consider the uniform strong consistency of the error term e;(x) given in (S.17).

Lemma 4. Let D be any compact subset of RP. Let condition (A1) - (A4) hold, we have for each
Jwith0<[jl <1,

_ o (, 2rPalog(n) /2
igg |ej(x) — E[ej(x)H = O<wn[nh|7f‘|] > a.s.

sup |ej(x)| = O(w7) a.s. (S.30)
xeD

Proor or LEMMA 4. For notation simplicity, we can write
¢i(x)= ) Guksj(x), 0<jl <1,
|k|=2
where

——(D*m)(%:)[Zi(h; @) — z2(h; @) ¥ K, (X; — x; é&).

k!

n hk~a
Gn,k+j (X) =

i=1
For |k| = 2, by the definition of (D¥m), there are j, k € {1,...,p} such that

0?m(x)

k-a k — pojtag

If aj = 0 or ay, = 0, then hX¥(D*m)(x) = 0; otherwise, by Lemma 1,
sup 1= (Dm) (x)| < Chiz+ox - 87 - 8]
xeRP
for some constant C' and specific pair (j, k) € {1,...,p}%. By (S.9), since k! > 1,

|E[Grcr(x)]] < Chg s |8V [[BM]] - [Elswrj(x)]| = Chgrter - ||8YT] - 5],

10



Thus,
sup |Elej(x)]| < sup Z |E[Gh j+x(x)]]

xERP xERP

k=2
< 3> Chgates g0 -8
oo (S.31)
2
o (X 1) ol
aﬂéO
Similarly,
sup |Gt (%) = E[Gricys (¥)]| < Chgater |0 || g1 - sup |s145(%) — Elsicej(x)] .
for some positive constant C'. Then,
sup [ej(x) = Elej(x)]] < D sup |G (%) = E[Gr et (%)]]
xeD |k\:2’(ED
ajtay i pnlog TL) 1/2
< D> Chgrter || gE)] - 81 O<[nh°‘(] ) (S.32)
a; #0 o #0 n
1
_ O(wg[zwg(m]l/Q) o,
nhl!

Obviously, (S.30) directly follows by (S.31) and (S.32). Similar results for vector e(x) can also be
obtained. 0

Using similar methods as in Lemma 2, we can get asymptotic result for ¢;(x).

Lemma 5. Let D be any compact subset of R and conditions (A1) - (A4) hold. LetY be bounded
almost surely. For each j with 0 < |j| <1,

sup |t} (x)| = O<[2%10gogm] 1/2) a.s.
xeD nhn

Proof of Lemma 5. Using the same definition of Ij’s, we have

sup [tf(x)| = max su t5(x
x€g| _]( )| 1SkSL(’ﬂ)x€D£Ik| ( )|

< max sup
ISkSL(n) xeDNIy

=I+411.

5 (x) =t (xi)| + | |5 (i)

Now by equality (S.14), since Y is almost surely bounded and X has a compact support, we have

11



almost surely

{[Zi(h; @) — z2(h; )P K (X, — x3&) — [Zi(hy @) — 2o (B @)K (X — X5 d)}‘

n

C
thzz

i=1

[Z;(h; o) — z(h; a)]th(Xi - x; d) —[Z;(h; @) — zi(h; a)]th(Xi — Xg; d) ’,

for some constant C' > 0. Follow the same steps used in (S.22) and (S.23), we have

1/2
n nl
[ o og(n)]l/z s,
hatt LHe(n) nhi

For II, we can follow the same steps used for (S.29) in the proof of Lemma 2 to get
1
II=0 [pn Og(n)]l/Q
nh‘na‘

Thus, the statement follows.
Then, we can prove Theorem 1 by combining the results of previous lemmas.

PROOF OF THEOREM 1. By condition (A5) and Lemma 3, suppose Apmin(S(x)) > ¢ > 0 for large
enough n, where \,,;, represents the smallest eigenvalue. Thus, A\ (S71H(x)) < ¢! < 0o, where

Amaz 18 the largest eigenvalue. Then, we have by Lemma 5 that

1
sup |57 (06177 (0,0 < 500 7 (0),,,, = O [P

xeD xeD
Here, |u,q. denote the largest absolute element in a vector u. Similarly, by Lemma 4 and condition

(A5),

sup |S_1(X)e(x)| =0(w?) as.

xeD
Therefore, the result follows after dividing both sides by hy’. O

Before the proof of Theorem 2, we propose the following lemma firstly.

Lemma 6. Let M and N be two symmetric p X p matrices with eigen-decomposition

P
M=) dvivl, M >X>- >0,
i=1

12



and

P
N =Y dwul, & >06> >3,
i=1
where \’s and §’s are eigenvalues of M and N, v’s and u’s are orthogonal unit eigenvectors corre-

spondingly. Furthermore, let
>\nj_1+1:"':>\nj:5\ja ng=0<n <---<ng=p, j=1,...,s,

such that

AL > A > o> A > 0.
Suppose Ag—1 —As > ¢ >0 and M — N = O(a), where O(«) represents any matrix that each entry
is of order O(«) for simplicity. Then,
(i) | i — ;| = O(pa), fori=1,...,p;
(i1) ’ Z;an_1+1 wu — Z?‘Zjn_j_1+l vivﬂ =O0(pa) forj=1,...,s.
Proof of Lemma 6. By von Neumanna’s ineqaulity and the property of trace, we have

P

Y (N = 8:)% < Vir[(M = N)2] = O(pav),

=1

Ai =i = V(N —6i)* <

which shows (i).
Let U = (uy,...,u,) and V = (vq,...,V,). By the definitions of u;’s and v;’s, the eigenvalues

of U and V are either 1 or -1. Therefore,

P p
N = Z Awu) + 2(51 - M)uu

i=1 i=1

=> X > wu] + U diag(sy — M, 62— Aoy, 0, — Ap) UT
j=1 i€L;

=N+ O(pa),

where L; = (n;j_1 + 1,...,n;). Then, it is obvious that M — N’ = O(pa).
When s =1, (ii) is trivial. Assume (ii) is true for s =¢, when s =t +1,

t t

S G = ) > wu => (A= A1) Y viv] + O(pa), (5.33)

j=l1 icL; Jj=1 i€L;
where the LHS equals to [N’ — I,] and the RHS is [M — I, + O(pa)]. Multiply from right by
Vg, k € Lyy1 on both sides of (S.33), we have



which implies that u;rvk = O(pa) for 1 <i < ny and k € Lyy1. Thus, we have
U[ V> =0(pa), VU, =0(pa), (8:34)
where
Uy =(uy,...,u,,), Uz = (Wn41,- - Uy ) Vi= (Vi, oo, Vi, ) Vo = (V1o - -5 Ving gy )-

By the property of singular value, the largest singular value of Vi, V5 and Uy, Uy are not larger

than 1. By (S.34) and note that nsy1 = p,
V, UyUg Vo =V, (I, - U;U] )Vy =V, Vo + O(pa) =1, + O(pa). (S.35)

Let Uy = V1G1 + V2 Gy, where Gy : ng X (p—ny) and Ga @ (p—ny) X (p—ne). By (S.33) and
(S.34),

Uy = V3Gy + V(G + V{ V2Ga) = V3G + Vi (V] Us) = VoG + O(pa). (S.36)
Then, by (S.35) and (S.36)
GG, =V, VGG,V Vy =V, UyUg Vy +O(pa) =1, ., + O(pa). (S.37)

From (S.36) and (S.37), it follows that

Z wu, = U,U] =V,V, +0(n0) = Z viv, 4+ O(pa), (S.38)
JELi41 JELi41
and that
-1 ) =1 )
Aj Z wu, + N\ Z wu, = Z Aj Z vivy + N\ Z viv, + O(pa).
j=1 €L, 4€L UL 41 j=1 €L, 1€L ULt

By induction,

Z wu, = Z viv, +0(pa), j=1,...,t—1, (S.39)
‘€L, =
and
Z wu, = Z viv, + O(pa). (S.40)
1€L ULy 1€LULy 1
Therefore, (ii) is true for s = ¢ + 1 by (S.38) - (S.40). O
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PROOF OF THEOREM 2. By condition (Al), we can denote the support of X by D, which is a

compact set in RP. Then, for every x € D,
b(x) = b(x) + Ab,(x) = ByVg(B, x) + Ab,(x), (S.41)

where Ab,(x) = (b[nll (x),...,bgf] (x))T is a p-dimensional vector. By high-dimensional linear
regression, it is easy to know that bm (x)=0 (\/pn/n) when «; = 0. Otherwise, by Theorem 1,
we have b (x) = O(cl?) almost surely with ci/! = (%ﬁg@j)lﬂ +w? /hy?. Since \/pn/n = o(c bl
for all j’s, it is obvious that bL{](x) = Op(cgf])‘

Let (By, Bo) be a p x p orthogonal matrix, we can write

« ~ Vg(By X;) + BJ Ab,(X;) )
b; := (B, B - :
i = (Bo 0)< B Ab,(X;)
and N
1§:Bfﬁ (Bo, Bo)Gp(pn, hn)(Bo, Bo) " (S.42)
n . ] - 0, 0 n pna n 0 0 M .

In the previous equality, Gy, (pn, hn) is a p X p matrix defined as

Clom )._Z Vo(BJ X)) + By Abu(X;) \ ( Va(BJ X)) + By Abu(X;)
fret By Ab,(X,) By Abn(X;)

3 A%l) A%z)

- Aﬁf’) A;4)

1 n
AL = = B X))V g(BJ X,
nZ{VQ( 0 ])v g( 0 J)

n

where

j=1
+230TAb (X;)V " 9(Bg X;) + By Abu(X;)[Ab,(X;)] " Bo}

A® = (AT ZBOT Ab, (X;)V g(BJ X;)
1 & .
A = 52;1 By Ab,,(X;)[Ab,(X;)]" Bo.

By condition (A6), Vg(Bj x) is bounded for all possible x. For a p-dimensional unit vector j3,

1/2
BT Ab,(x) < 18- |Abn(x)] < [Z (2 + 3 pn/n} =0, in probability.

aj7é0 (J¢j=0

Therefore,
By Ab,(x)V ' g(Bg x) = €(ow),
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where £(0,,) represents matrix that each entry is of order O,(c,,). And similarly,
By Ab,(X;)[Ab,(X;)] " By = (7).
By the central limit theorem, one is easy to derive that

S VBTV BIX,) = [ Ve(BIOV g(BIx) fx()ix + E(1/V).

i=1 e

Consequently, we have
A = / Vg(Bg x)V ' g(Bg x) fx(x)dx + E(0) := A + (o, + 1//n).
RP

By (i) of Lemma 6, it can be known that the eigenvalues of AS) is asymptotically converge to the
cigenvalues of A in probability with order O(d- (on +1/y/n)).
Next,

AP =BJ [ Ab(x)Ab'(x)fx(x)dxBy + E(v/1/n) := AY + £(v/1/n).

RP
Since the eigenvalue of Ab(x)Ab' (x) is either 0 or [|Ab(x)||? = O, (c2), the eigenvalues of matrix

A have order O(02). By (i) of Lemma 6 again, the eigenvalues of matrix A have order
O(c2 + (p — d) /).

Let Ay > --- > A, be the eigenvalues of 3 and Bl, .. ,Bp be their corresponding unit orthogonal
eigenvectors. By the Eigenvalue Interlacing Theorem and property of p,,, d,, and h,, in the assump-
tions, we have min{\y,...,A\¢} > ¢ > 0 and max{Ag11,..., A} = O(02 + (p — d)/v/n) = o(1).
Therefore, the “top-d” eigenvalues can be distinguish from others asymptotically.

Similar to AS), it can be shown that A,(f) = (/\7(13))T = E(cfn + 1/\/5) It is noteworthy to
mention that, by the definition of (B, BO), the norm of each column or row vector has order 1.

Then, by (S.42), we have in probability
Y = BoAYB] +&(on +1/v/n).
Let B = (Bl, ceey Bd), using (ii) of Lemma 6, we can get
BB — By By = &(dnpnom + dppn/v/n)  in probability. (5.43)
Therefore, by assumption (A7),
‘BBT—BOTBOT 50 asn— .

This completes the proof. O
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Remark 2. Note that we allow d = d, — oo providing that (S.43) converges. Considering the

requirement on d = d, given in Remark 1, the estimator of CMS is also consistent when d, =

o(log(n)).

S.3. Proofs of Theorem 3 and Theorem 4

We start with the following Lemma.

Lemma 7. Suppose conditions in Theorem 8 hold, we have

CV(dF) = o)+ {Q @I + /) 1+ 0,1}
where (o(d) = E|Y — 1(pa(U) > 1/2)|. (1(d) and (2(d) are two non-negative values given in
Appendiz.

For the constants in the lemma, let

S eafpl) () £ () + (1/2)p5 (0) fa(w)}

a(li+2/dfd(u)1+2/d

a(u) =

where ¢, 4 = fv:\lv\|<1 v2dv with vg being the s-th element of vector v. Then,

= 7fd(u0) ol (u an
D = [ i a2 ) and

Ja(uo)
a [[Pa(uo) |l

where Vol?~! denotes the natural (d — 1)-dimensional volume where 2 inherits as a subset of R?.

Ca(d) = a(uo)deold_l(uo),

It is obvious that ¢; > 0 and {; > 0, while the equality holds if and only if a(u) = 0 for all u € Q.

PROOF OF LEMMA 7. For notation simplicity, let 7, = {(U;,Y;),i = 1,...,n} = SFP, where
U; = (PD)"X,. Since Y € {0, 1}, it is easy to obtain that

1 n

R 1
CV(d,k) = = D [¥i = 1pa(U) > 5)
i=1

29 (¥ = 100,00 > DI = ¥~ 1000 > )+ 2 D% = 10pu(U) > 5)

where pg\;(U;) is the kNN estimation of P(Y; = 1|U;) based on delete-one-observation 7, \(Uj, Y7).

Let Rg%ﬂ = E|Y¢ — 1(pg,\i(Us) > %)|7 where the expectation is computed with respect to

(U;,Y;)™ ;. We will first show that

%Z {m—l(ﬁd,\i(Ui) > §>|—|Yi—1<pd(Ui> > ;)\} = RENN —Co(d) o, (1 +(k/n) 7). (S44)

17



For notation simplicity, denote |Y; — 1(pg\;(U;) > )| and |Y; — 1(pa(U;) > )| by £i(d) and

&;(d) respectively. Thus, we can compute the expectation

[12{51 - G} = RS, - o)

and the variance

Var[ Z{& &( ]—n—QE[Z{& &( ]2 ([ii& D2
:n—QE[;Zl{éxd)—&(d)}{éj(d)—éj(d)}} [RENY, — Go(@)]”.

Consider the first term on the RHS, since (U;,Y;)™ ; are independent and identically distributed,

w B[S (0 - 6@ HEW@ - 6@} = B[{é@) - 6@} E @ - & )]

i=1 j=1

_ E[{&(d) CG@YE D) - 6@} - 1{[U — U > r(Us k) + (U, k)}}

(S.45)
+B[{60) - §@HEW - (@} 1T, = Ul < (Ui k) 4 (0.
— I+ 11,
where 7(u, k) := [[U ) — ul| is the distance between u and its k-th nearest neighbor.

When the distance ||U; — Uj|| > r(U;, k) +r(Ujy, k), pa,\i(Us) and pg ) ;(U;) are independent,
since there is no Uy such that both ||U, — U;|| < 7(U;, k) and ||U, — Uy|| < 7(Uj, k) are satisfied.
Thus, {{Al(d) —&(d)} and {fj(d) —¢&;(d)} are independent under this condition. Then,

I <E{&(d) — &(d)}B{E(d) — &(d)} = [RENN, — Go(@)]”. (S.46)

For term II, we can assume r(U;, k) > T(U‘ k) without loss of generality. Since & (d) and & (d)
can only be 0 or 1, {&(d) — &(d) }H{&(d) — &(d)} < |&(d) — &(d)|. Then,

11 <Bll&() - ()] 11U, - U] < (U, B) +r<Uj7k>}}

I R 1 1
<B{|[¥ - 104U > )] = ¥ = 10a(0) > )| 1{10; = 0yl < 20(U.)

= B{ |13, (0) > 5) = 1pa(U) > )] - 1{10s = U] < 20(U, 9} |

By the boundedness of pg(u) in (B2) and the boundedness of d, ps(u) has Lipschitz continuity

condition. By (B3) one can prove that f(z) > fyn > 0 for some constant fp,;,. According
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to the proofs in Chaudhuri and Dasgupta (2014) (Lemma 2, Theorem 3 and Theorem 5), let
On = {u e W||pg(u) — 3| <A}, where A = /1 log 2 —&—Al(%)l/d for any d > 0. Then

100U > 1)~ 1(pa(U) > )| < 1(Us € 02)+1((Uy,..., Up) € 8) +1((Us, ..., Un) € ),

where ®; and P, are small sets such that E[l((Ul7 ..., Uy) € <I>r)] < 62 for r = 1,2. Therefore,

we have
B[ [14,,(U) > ) - 10a(0) > )] - 1{]U: ~ | < 200, 1)}

<E[1(U; € da) - 1{||U; — Uj|| < 2r(U,, k:)}}

+E[1((U1,...,Un) € @1)] —s—E{l((Ul,...,Un) € %)}

=E|1(U; € 0a) - E[1{||U; - U;| < 2T(Ui,k)}‘Ui]] + 252

Next, we derive the property of (U, k). By Lemma 6.4 in Gyorfi et al. (2006), we have
E[r(U, 1) < en~%/4,

Split Uy, ..., U, into k 4 1 segments such that the first & of them have |7 ] elements and rest in
the last segment. Let r;(U, 1) be the distance from U to the nearest point in j-th segment, then

N
BIr(U.k)) < max Blr;(U.1)%] < 277"

For any € > 0, let M = /¢/2¢, for alln € N

r(U, k) E[r(U, k)?]/(k/n)i
P((k/n)}i >M) < 2 <e.

Thus, (U, k) = O,((k/n)a) for all U = (PD,)T X.
By (B3),

E[1{|U; — U;|| < 2r(Uy, k) }|U;] = Fa(Baru, 1) (U)|U;) = Caa2%r(U;, k)4,

for some positive constant C. In the following proof, C' will always denote positive constant but

may be different in different places. Since d is bounded,
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Then, using equation (2.1) in Samworth et al. (2012) which can be derived from (B4), we have

1 1. 2 E\Y?
‘pd(u)—§’< k10g6+A1<2n> })

E[1(U; € 0a)] = Fd({u ew

- 5 L\ 1/ (S.48)
Let § = 75, by (S.47) and (S.48)
B1(0; € 02) - B[1{|[U; - Uyl < 2r(0:, 0} U]
—El(U'Ea)-O(k/) =0 M+ ﬁ %
- i=oA A n 2n ’
Thus, it follows that
k2100 [k \ T
II< 0(n + (2”) > +0((1/k)?) (S.49)

For a large enough n, substitute (S.46) and (S.49) into equation (S.45),

w8 3 (6 - 6@} () - )]

i=1 j=1

< [Ra(CENY) = Go(d)]” + O(kmlogk + (’;) ) +o((1/k)?).

n

Consequently,

Var{ Z{g, &l( } = O(kl/:()gk + (;;)d> +o((1/k)%).

It is obvious that O(%) = 0((1/k)?) when k = o(n?/%), O((%)%l) = o((%)%) when d > 7
and O ((£) didl) =0((1/k)?) when d < 7 and k = o(n*'). In conclusion, by (B5) and Chebyshev’s
inequality, for every € > 0,

’”_1 D i (& &)~ [Ra(CENY) — a(d)] ‘ o n~t Z?zl{éi 3
P< = (/)7 1 g ) S V"““( =t (k/n)d )

2k 4 (k/n)Y )72 Var[ Z{fl &( }
2kt 4 (k/n) 42 co((1/k)* + (k/n)s/d) —0, asn— oo.

Thus, equation (S.44) is shown.
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Using Theorem 1 in Samworth et al. (2012) with w,; = k=! for i € {1,...,k},

RENY, — Gofd) = {@(d)k1+<2<d>(1f1)3}{1+op<1>}

(S.50)
—{a@i + a@/m? fi o,y
Substitute (S.50) into (S.44), we have
W= 10000 > I - ¥ - 10u0) > )
= {Cl(d)kl + Cao(d) (k/n) }{1 +o,()} + 0, (K71 + (k/n)7) (S.51)
~{a@r + a@rm o)
In addition, by the central limit theorem, we have
- Z |Yi — 1(pa(U \ = Go(d) + Op(n™1?) = Go(d) + 0p (k). (S.52)
Thus, substitute (S.51) and (S.52) to (0.3),
cviak) =Gl + {al@r +a@ () Ha+ o,
which completes the proof. O

ProOOF OF THEOREM 3. By Lemma 7, the cross-validation (or prediction error) CV (d, k) is bigger
than the first term (o(d), which is the smallest risk one might be attained by any classifier based

on SPP. Since HOPG method can order the projected directions in order with importance, we

can suppose Y only depends on the first dy directions of Z = (z1,...,2m), i.e. Y|z1,..., 2z, and
Y|z1,...,24, have same distribution. Assuming dj is the smallest true dimension, we first show
that

Co(d()) < Co(d) for 0 < d< do,

Co(dp) = Co(d) for dop < d<m.
By the definition of {y(d), for any d-dimensional classifier Cy,

(S.53)

P{Y #1 (pd 21y y2d) > %)} :IréznP(Y # Cd(zl,...,zd)).
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Hence, it is obvious that {y(d) < {p(d — 1). Since class label is either 0 or 1, we have
Co(d —1) = Co(d)

= E{E[I(Y #+ l(pd,l(zl,...,zd,l) ) — l(Y #1 (pd(zl, ceey 2d) > %)’(21, .. .,zd)]}

M\H

1 1
= E[Pd(zl, .- ~7Zd)1(pd71(217 .- ~7Zd71) < 5) + (1 —Pd(Zb .- ~7Zd))1<Pd—1(217 .. ~72d71) > 5)
1 1
—pa(z1, .-, 2a)1(pa(z1, .- -, 2q) < 5) (1= pa(z1,...,2a))1(palz1, .., 2a) > 5)]

= EH2pd(z1,...7zd) - 1|1{1(pd(zl,...,zd) > %) #+ 1(pd,1(z17...,zd,1) > %)}],

where pg_1(z1,...,24-1) = E[1(Y = 1)|(z1, ...,24-1)]. By assumption (B4), we can get
P(pa(z1,...,24) = 3) = 0 (it can be derived from equation (2.1) in Samworth et al. (2012)).
Therefore, if {o(d — 1) = (o(d), 1(pd(z1, cey24) > %) = 1(pd_1(z1, cey Zd—1) > %) almost surely.
Specifically, if (o(dy) = (o(do — 1), we have almost surely

1 1

1(pd0(z1,...,zd0) > 5) = 1(pd0_1(zl,...,zd0_1) > 5)

This contradicts the definition of dy (smallest true dimension). So (o(do) < Co(do — 1) < (o(d) for
d < dy.
Obviously, because class Y only depends on the first do(< m) features of Z, for d > dy,

pa(z1, -+ 2d) = pd—1(21,---,2d4—1) a.s.

which leads to (o(do) = (o(do + 1) = --- = (o(m). Hence, we can get (S.53).
Then, using the the asymptotic expansion in Lemma 7, Theorem 4 can be shown by the following

two parts,
(a) for 1 <d <do, lim {P(d=d)}=0;

(b) for dy < d <m, lim {P(d=d)} =

n—r oo
According to the proof of Lemma 7, it is obvious that CV(d, k) — (o(d) = 0,(1) as n — oo.
Thus, for every k and 1 < d < dy, as n — o0,

CV(d,k) . Co(d) +0p(1)
CV(do,k)  Co(do) + 0p(1)

> 1, in probability.

Then, for every k,
P{CV(d, k) < CV(d k), 1 <d <m} < P{CV(d k) < CV(dy,k)}

CV(d, k) + op(
-P P L <1 0 )
(Cv(dm ) (CO " +o,, )% as 1 — o
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Therefore, it follows that
lim {P(d=d)} =0 for0<d< do,

n—oo
which proves part (a).
By Theorem 3, the optimal choice of k can be derived as
d/(d+4)
kopt = {(Q (d) X d) n4/(d+4)J.
C(d) 4

It is obvious that k. satisfies the restriction of k in (A5) when d > 7. Then, we have

OV(d k) = @@+{@M(Q“Wd) 0 4 Gy(d (Q””d)mw@}u+%u»

%z (d) 4 G(d) 4
- @@+{ij4+(j) } Dt G@n T 1+ o, 1)
= G(d) +BdnT + 0p(nTFs (5.54)

where (d) is a constant depending on d.

For part (b), let d > dy, it follows from (S.53) that (o(d) = (o(dp). Since, d is bounded, we
can assume M is its upper bound. When 7 < dy < d < min{m, M}, by equation (S.54) and
Co(d) = Co(do), we have

min CV/(d, k) — min CV (do, k) = {B(d) YT + 0,(n5)} — {B(do)n T+ + 0p(nTo+1)}
= n 5 {B(d) ~ Bdo)n T 40y (ni)
~ nmﬁ(d) + op(nm) as n — oo.
Since 3(d) > 0, for 7 < dy < d < min{m, M },

lim {P(d = d)} = hm P{mm CV(d, k) < mm CV(d,k),1<d <p}

n— oo

n— oo

< lim P{min OV (d, k) < mknCV(do, k)}

= lim P{nd+4 [mln CV(d, k) — mkin CV(do, k)] < 0}

n—oo
= P{B(d) +0,(1) < 0} = 0.
When dy < d < 7, for ever k,

CV(d,F) ., Co(d) +0p(1)
CV(do, k) Co(do) + 0p(1)

—p1l, asn — oo.

This formula means that CV (d, k) = CV (do, k) in probability as n — oc. Since d is the smallest
minimizer of CV (d, k), 1i_>m {P(d = d)} = 0 in this situation. Hence, we complete the proof of part
n—oo

(b).

23



Consequently,

lim {P(d = do)} = lim {1 —P(d # do)}

n—roo

= lim{l1—- > P(d=d) - > P(d=d)}=1.

n—00
1<d<dy do<d<min{m,M}

We complete the proof.

PROOF OF THEOREM 4. First of all, using HOPG estimation, we have by Theorem 2
|ﬁﬁT — DODOT| — 0, in probability.

Then, R R
[E(Y|Dy P'X =DjP'x) —E(Y|D'P'X =D"P"x)|
= |E(Y|DoDy P"X = DyDJ P'x) —~E(Y|DD"P'X = DD" P'x)|
< [E(Y|DoDy PTX = DyDg P'x) — E(Y|DyDg P'X = DD P"x)|
+|E(Y|DoD PTX = DD"P"x) ~E(Y|DD"P"X = DD"P"x)]
— 0.

By definition of Dy and Y € {0, 1},
p(x)=P(Y =1P'X=P'x)=E(Y|P'X=P'x)=E(Y|Dj P'X =D, P"x).
In addition, by the consistency of kNN regression (e.g. Devroye et al. (1994)),
px) »P(Y =1D"PTX=D"P'x)=E(Y|[D'P'X=D"P'x) as.
Combine (S.55), (S.56) and (S.57), we have
nl;rrgo p(x) — p(x) in probability.

We complete the proof.

(S.55)

(S.56)

(S.57)

O

In the multi-categorical cases, Theorem 3 and Theorem 4 hold with assumptions (B1), (B2’),

(B3), (B4’), (B5) and (B6) given in the Appendix. Lemma 7 is still true by replacing constants ¢y
and (o by 1 = Y, g, Cutnt, and & = Y0, 2y, Coty 0, (cf. Samworth et al. (2012)). The definitions

of Ci,¢, 0, and (a4, ¢, are

/ Ja(uo)
Q0 P (o) (1 — " (u0)) 95" (o) |

gl,fl,ez (d) = dVol?=t(up)
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and

pd Ja(uo _
<27£17£2 (d) = / #afl,fz (u0)2dVOld 1(110)7
Qe [[Pg7 (00|
where pfll’&(uo) denotes the common value that pgl and p§2 take at ug € Qy, ¢,, and ag, 4, () can

be obtained by changing p4(-) to p§1’€2(-) in the definition of a(-).
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