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Web Appendix A: Detailed Derivation of Full Conditional Distributions

Detailed derivations of the full conditionals for each parameter are provided below.

(1) Obtain draws of λgij ’s from their full condition distributions.

p(λg1j |·) ∝ p(Yg1j |λg1j)p(λg1j |αg, βg)

∝ e−S1jλg1j (S1jλg1j)
Yg1jλ

αg−1
g1j e−(λg1jβg)

∝ λ(Yg1j+αg−1)
g1j e−λg1j(S1j+βg),

p(λg2j |·) ∝ p(Yg2j |λg2j)p(λg2j |αg, βg, ρg1)

∝ e−S2jλg2j (S2jλg2j)
Yg2jλ

αg−1
g2j e−(λg2jβgρg1)

∝ λ(Yg2j+αg−1)
g2j e−λg2j(S2j+βgρg1),

p(λg3j |·) ∝ p(Yg3j |λg3j)p(λg3j |αg, βg, ρg2)

∝ e−S3jλg2j (S3jλg2j)
Yg3jλ

αg−1
g3j e−(λg3jβgρg2)

∝ λ(Yg3j+αg−1)
g3j e−λg3j(S3j+βgρg2).

Thus, λgij ’s are drawn from

λg1j |· ∼ Gamma(Yg1j + αg, S1j + βg),

λg2j |· ∼ Gamma(Yg2j + αg, S2j + βgρg1),

λg3j |· ∼ Gamma(Yg3j + αg, S3j + βgρg2).

CONTACT Peng Liu. Email: pliu@iastate.edu



(2) Generate samples of βg’s from their full conditional distributions.

p(βg|·) ∝ π(βg)

n1∏
j=1

p(λg1j |αg, βg)
n2∏
j=1

p(λg2j |αg, βg, ρg1)

n3∏
j=1

p(λg3j |αg, βg, ρg2)

∝ βa0−1
g e−βgb0 ·

n1∏
j=1

e−λg1jβgβαgg ·
n2∏
j=1

e−λg2jβgρg1(βgρg1)αg ·
n3∏
j=1

e−λg3jβgρg2(βgρg2)αg

∝ β(n1+n2+n3)αg+a0−1
g e−βg(

∑n1
j=1 λg1j+

∑n2
j=1 λg2jρg1+

∑n3
j=1 λg3jρg2+b0).

Thus, βg’s are drawn from

βg|· ∼ Gamma
(
αg(n1 + n2 + n3) + a0,

n1∑
j=1

λg1j +

n2∑
j=1

λg2jρg1 +

n3∑
j=1

λg3jρg2 + b0

)
(3) Draw samples of αg’s.

p(αg|·) ∝ π(αg)

n1∏
j=1

p(λg1j |αg, βg)
n2∏
j=1

p(λg2j |αg, βg, ρg1)

n3∏
j=1

p(λg3j |αg, βg, ρg2)

∝ e−rαg ·
n1∏
j=1

λ
αg−1
g1j β

αg
g

Γ(αg)
·
n2∏
j=1

λ
αg−1
g2j (βgρg1)αg

Γ(αg)
·
n3∏
j=1

λ
αg−1
g3j (βgρg2)αg

Γ(αg)

∝ e−rαg ·
β
αg(n1+n2+n3)
g ρ

αgn2

g1 ρ
αgn3

g2

[Γ(αg)]n1+n2+n3
·

3∏
i=1

ni∏
j=1

λ
αg−1
gij .

The full conditional distribution of each αg has no closed-form. If p(αg|·) is a log-concave function with
respect to αg, then we could apply the adaptive rejection sampling method proposed by Gilks (1992) to
draw samples of αg’s.

log p(αg|·) =− rαg + αg(n1 + n2 + n3)log(βg) + αgn2log(ρg1) + αgn3log(ρg2)

− (n1 + n2 + n3)log Γ(αg) +

3∑
i=1

ni∑
j=1

(αg − 1)log(λgij),

then the first derivative of log p(αg|·) is

∂ log p(α|·)
∂ αg

=− r + (n1 + n2 + n3)log(βg) + n2log(ρg1) + n3log(ρg2)

− (n1 + n2 + n3)
∂ log Γ(αg)

∂ αg
+

3∑
i=1

ni∑
j=1

log(λgij),

the second derivative of log p(αg|·) is

∂2 log p(αg|·)
∂ α2

g

= −(n1 + n2 + n3)
∂2 log Γ(αg)

∂ α2
g

.
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We can derive that

∂2 log Γ(αg)

∂ α2
g

=

∞∑
k=0

1

(αg + k)2
> 0.

Therefore,

∂2 log p(αg|·)
∂ α2

g

< 0,

i.e., p(αg|·) is log-concave.
(4) Let the Markov chain consist of (ξ1, . . . , ξG) and (ρ∗1, . . . , ρ

∗
K). Generate posterior samples for ρg1’s as below:

(i) Update the configuration vector (ξ1, . . . , ξG).
• If ξ = ξl for some l 6= g,

p(ξg = ξ|ξ−g, rest) = cn
(−g)
ξ Πn2

j=1p(λg2j |αg, βg, ρ
∗
ξ)

= cn
(−g)
ξ Πn2

j=1

β
αg
g (ρ∗ξ)

αg

Γ(αg)
λ
αg−1
g2j exp(−βgρ∗ξλg2j).

• Otherwise,

p(ξg 6= ξl for all l 6= g|ξ−g, rest)

= cM

∫
Πn2

j=1p(λg2j |αg, βg, ρ)F0(ρ)dρ

= cM

∫ ∞
0

[
Πn2

j=1

λ
αg−1
g2j exp(−βgρλg2j)(βgρ)αg

Γ(αg)
· (1− p0)

ρα0−1exp(−β0ρ)βα0

0

Γ(α0)

]
dρ

+ cM

∫ ∞
0

[
Πn2

j=1

λ
αg−1
g2j exp(−βgρλg2j)(βgρ)αg

Γ(αg)
· p0δ{1}

]
dρ

= cM(1− p0)
βα0

0

Γ(α0)

β
n2αg
g

[Γ(αg)]n2
Πn2

j=1λ
αg−1
g2j

∫ ∞
0

ρn2αg+α0−1exp
{
−
(
βg

n2∑
j=1

λg2j + β0

)
ρ
}
dρ

+ cMp0Πn2

j=1

{
β
αg
g

Γ(αg)
λ
αg−1
g2j exp(−βgλg2j)

}
= cM(1− p0)

βα0

0

Γ(α0)

β
n2αg
g

[Γ(αg)]n2
Πn2

j=1λ
αg−1
g2j ×

Γ(n2αg + α0)(
β0 + βg

∑n2

j=1 λg2j

)n2αg+α0

+ cMp0Πn2

j=1

{
β
αg
g

Γ(αg)
λ
αg−1
g2j exp(−βgλg2j)

}
.

Here c is an appropriate normalizing constant to ensure that probabilities add up to 1.
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(ii) Update (ρ∗1, . . . , ρ
∗
K).

p(ρ∗k|.) ∝ Π{g:ξg=k}Π
n2

j=1p(λg2j |αg, βg, ρg1) · F0(ρ∗k)

∝ Π{g:ξg=k}Π
n2

j=1p(λg2j |αg, βg, ρ
∗
k) · F0(ρ∗k)

∝ Π{g:ξg=k}Π
n2

j=1

λ
αg−1
g2j exp(βgρ

∗
kλg2j)(βgρ

∗
k)
αg

Γ(αg)

×
{
p0δ{1} + (1− p0)

(ρ∗k)
α0−1exp(−β0ρ

∗
k)β

αg
0

Γ(α0)

}
∝ p0exp

{
−
( ∑
{g:ξg=k}

n2∑
j=1

βgλg2j

)}
·
{

Π{g:ξg=k}Π
n2

j=1

λ
αg−1
g2j β

αg
g

Γ(αg)

}
δ{1}

+ (1− p0)(ρ∗k)
∑

{g:ξg=k}
∑n2
j=1 αg+α0−1 · exp

{
−
( ∑
{g:ξg=k}

n2∑
j=1

βgλg2j + β0

)
ρ∗k

}

·
{

Π{g:ξg=k}Π
n2

j=1

λ
αg−1
g2j β

αg
g

Γ(αg)

}
· βα0

0

Γ(α0)

∝ p0exp
{
−
( ∑
{g:ξg=k}

n2∑
j=1

βgλg2j

)}
δ{1}

+ (1− p0)
βα0

0

Γ(α0)
·

Γ
(
n2
∑
{g:ξg=k} αg + α0

)(∑
{g:ξg=k}

∑n2

j=1 βgλg2j + β0

)n2

∑
{g:ξg=k} αg+α0

·Gamma
(
n2

∑
{g:ξg=k}

αg + α0,
∑

{g:ξg=k}

n2∑
j=1

βgλg2j + β0

)

∝ p0exp
{
−
( ∑
{g:ξg=k}

n2∑
j=1

βgλg2j

)}
δ{1}

+ c0Gamma
(
n2

∑
{g:ξg=k}

αg + α0,
∑

{g:ξg=k}

n2∑
j=1

βgλg2j + β0

)
,

where c0 = (1− p0) β
α0
0

Γ(α0) ·
Γ(n2

∑
{g:ξg=k} αg+α0)(

β0+
∑

{g:ξg=k}
∑n2
j=1 βgλg2j

)n2
∑

{g:ξg=k} αg+α0
.

(5) The procedure for obtaining posterior samples for ρg2’s is similar to ρg1’s.
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Web Appendix B: Table Results for Simulations A and B

Web Table 1.: Results for LPH in Simulation A.

Nominal Level Method Actual Number of Declared Number of Declared Truly Total Number of
of FDR FDR Heterosis Genes Heterosis Genes Heterosis Genes

0.01

SBA 0.0006 402 401

613
SBA div 0.0005 400 400
eBayes Laplace 0.2891 723 513
eBayes Normal 0.2882 738 524

0.05

SBA 0.0035 452 451

613
SBA div 0.0031 452 450
eBayes Laplace 0.4979 1139 571
eBayes Normal 0.4947 1153 581

0.1

SBA 0.0099 490 485

613
SBA div 0.0110 489 484
eBayes Laplace 0.5928 1471 598
eBayes Normal 0.5916 1477 602

0.2

SBA 0.0401 561 539

613
SBA div 0.0435 561 536
eBayes Laplace 0.6840 1941 612
eBayes Normal 0.6814 1925 613

Web Table 2.: Results for HPH in Simulation B.

Nominal Level Method Actual Number of Declared Number of Declared Truly Total Number of
of FDR FDR Heterosis Genes Heterosis Genes Heterosis Genes

0.01

SBA 0.0018 261 261

538
SBA div 0.0014 255 255
eBayes Laplace 0.0728 422 391
eBayes Normal 0.0802 432 397

0.05

SBA 0.0096 330 327

538
SBA div 0.0093 323 320
eBayes Laplace 0.2214 568 442
eBayes Normal 0.2386 590 449

0.1

SBA 0.0267 373 363

538
SBA div 0.0261 363 354
eBayes Laplace 0.3391 705 465
eBayes Normal 0.3564 736 473

0.2

SBA 0.0811 447 410

538
SBA div 0.0718 431 400
eBayes Laplace 0.4906 971 494
eBayes Normal 0.5080 1016 499
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Web Table 3.: Results for LPH in Simulation B.

Nominal Level Method Actual Number of Declared Number of Declared Truly Total Number of
of FDR FDR Heterosis Genes Heterosis Genes Heterosis Genes

0.01

SBA 0.0005 194 194

536
SBA div 0.0002 191 191
eBayes Laplace 0.0738 377 349
eBayes Normal 0.0847 390 357

0.05

SBA 0.0040 246 245

536
SBA div 0.0040 241 240
eBayes Laplace 0.2356 543 415
eBayes Normal 0.2567 572 425

0.1

SBA 0.0135 280 277

536
SBA div 0.0109 273 270
eBayes Laplace 0.3576 701 449
eBayes Normal 0.3786 745 462

0.2

SBA 0.0440 339 324

536
SBA div 0.0343 326 315
eBayes Laplace 0.5125 1010 491
eBayes Normal 0.5308 1072 502
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Web Appendix C: Venn Diagrams for Real Data Analysis

Web Figure 1.: Real data analysis results for HPH. The left Venn diagram provides the number of overlapping
identified HPH genes from SBA, eBayes Laplace and eBayes Normal methods while controlling FDR at 0.1; the
right Venn diagram gives corresponding results while controlling FDR at 0.05.

Web Figure 2.: Real data analysis results for LPH. The left Venn diagram provides the number of overlapping
identified LPH genes from SBA, eBayes Laplace and eBayes Normal methods while controlling FDR at 0.1; the
right Venn diagram gives corresponding results while controlling FDR at 0.05.
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Web Appendix D: Robustness of Prior p0 = 0.5 and Data Division under Different Simulation
Scenarios

In our proposed method SBA, we specify p0 = 0.5 so that no prior preference is given to either differential
expression or equivalent expression between hybrid offspring and either parental line. Our simulation results in
Section 4 are also based on the setting that half of the 3000 genes have fold change 1 between hybrid offspring
and each parent. To investigate the robustness of setting p0 = 0.5 under different simulation scenarios, we vary
the true proportion of genes having fold change 1 between hybrid offspring and each parental line to be 0.2, 0.5
and 0.8, and perform similar method comparison as in the manuscript in terms of ranking heterosis genes and
FDR control.

More specifically, 3000 genes were drawn from NB(µg, φg), where pairs of µg and φg were sampled from
the estimates from the same maize data as in the manuscript. 20% (or 50%, or 80%) of the 3000 genes were
randomly selected to have fold changes ρg1 = 1 between hybrid and parental line 1. The remaining 80% (or
50%, or 20%) of the 3000 genes were simulated to have fold change parameters ρg1 equal to fixed values or from
certain distribution, same as in Section 4 of the manuscript. Then RNA-seq count data for parental lines 1 and
2 were drawn in the same way as in Section 4 of the manuscript.

In addition to our proposed semi-parametric approaches, SBA (without data division) and SBA div (with
data division), we also evaluate two more strategies similar to SBA div but with different data division method
(SBA divrho and SBA divcount), and compare them with the empirical Bayes method in Niemi et al. (2015)
(eBayes Laplace and eBayes Normal, depending on the parametric prior assumption). Notice that SBA div,
SBA divrho and SBA divcount differentiate only by the way they divide the total of G genes. SBA div randomly
divides genes into several groups, where genes can only borrow information from those within the same group.
Intuitively, when similar genes are grouped together, the information they borrow could be more reliable.
SBA divcount provides the possibility to group similar genes together, according to estimated heterosis status
based on point estimation from count data. SBA divrho divides genes into groups based on the true heterosis
status, which can only be used in simulation studies to investigate how the division based on count data
performs (SBA divcount).

In particular, methods under comparison include:

• SBA - Our proposed semi-parametric approach without data division.
• SBA div - Our proposed semi-parametric approach with data division, where G genes are randomly divided

into 5 groups.
• SBA divrho - Semi-parametric approach with data division, where G genes are divided into 5 groups based

on true heterosis status (true ρg1 and ρg2): genes exhibit HPH (ρg1 > 1 and ρg2 > 1) in one group, genes
exhibit LPH (ρg1 < 1 and ρg2 < 1) in one group, genes with ρg1 = ρg2 = 1 in two groups, others in one
group.
• SBA divcount - Semi-parametric approach with data division, where G genes are divided into 5 groups

based on estimated heterosis status (estimated ρ̂g1 and ρ̂g2, calculated by the ratio of mean normalized
count of hybrid offspring over mean normalized count of each parental line): genes estimated to be HPH
(ρ̂g1 > 1.5 and ρ̂g2 > 1.5) in one group, genes estimated to be LPH (ρ̂g1 < 1/1.5 and ρ̂g2 < 1/1.5) in one
group, genes with both ρ̂g1 and ρ̂g2 lie in [1/1.5, 1.5] in two groups, others in one group.
• eBayes Laplace and eBayes Normal - Empirical Bayes methods proposed by Niemi et al. (2015).

As indicated in Web Figures 3, 5 and 7, our proposed methods (SBA and SBA div) robustly generated higher
ROC curves and greater AUC values than the empirical Bayes method proposed in Niemi et al. (2015), under
various proportions of genes with fold changes 1 for both simulation settings A and B. When evaluating FDR
control, Web Figures 4, 6 and 8 demonstrated that our proposed methods (SBA and SBA div) controlled FDR
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close to the nominal levels, while FDR was not controlled for the empirical Bayes method in Niemi et al. (2015)
under almost all scenarios.

It is easy noticing that SBA divrho generated the highest ROC curves and nearly 100% AUC values,
as well as FDR control that is close to the nominal level. This verifies our thought that grouping sim-
ilar genes would improve our method performance. SBA divcount performed quite unstable in terms of
ranking heterosis genes, and it generated more false positives than desired. This is due to limited (only 3)
biological replicates in each group, thus point estimation of fold changes based on count data may not be reliable.

Therefore, SBA div that randomly divides genes into groups would be the simplest and best data division
strategy for now. It performs close to SBA and better than the empirical Bayes methods in general.

Simulation Results Ran Bi Page 2 of 7

Figure 1: ROC curves resulting from Simulations A and B when p0 = 0.2. For each level of
FPR, the TPRs were averaged across the 32 simulated datasets. The percentage annotated
for each method is the average AUC, represented as the percentage of the total area 0.1 in
the range of FPR < 0.1, and the percentage in each set of parentheses is the standard error
of the estimated AUC.

2

Web Figure 3.: ROC curves for Simulations A and B when 20% of genes have fold changes 1. Given each FPR
level, the TPRs were averaged over 32 simulated datasets. The partial AUC values were calculated by averaging
the percentages of the total area in the plotted region where FPR is below 0.1, and reported in the legends, with
the standard deviations in parentheses.
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Simulation Results Ran Bi Page 3 of 7

Figure 2: Plot of the actual FDR versus the nominal level of FDR when p0 = 0.2. Using
our proposed method, the proportion of false discoveries among the declared DE genes was
calculated for each dataset when we controlled FDR at nominal levels, and the actual FDR
was calculated by averaging such proportions over 32 simulated datasets at each nominal
FDR level. The dashed lines correspond to the Y = X line.

3

Web Figure 4.: FDR plots for Simulations A and B when 20% of genes have fold changes 1. Given each nominal
level of FDR, the actual observed FDRs were estimated by averaging the proportion of false discoveries among
declared heterosis genes across 32 simulated datasets. The gray solid lines represent the Y = X line.
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Simulation Results Ran Bi Page 4 of 7

Figure 3: ROC curves resulting from Simulations A and B when p0 = 0.5. For each level of
FPR, the TPRs were averaged across the 32 simulated datasets. The percentage annotated
for each method is the average AUC, represented as the percentage of the total area 0.1 in
the range of FPR < 0.1, and the percentage in each set of parentheses is the standard error
of the estimated AUC.

4

Web Figure 5.: ROC curves for Simulations A and B when 50% of genes have fold changes 1. Given each FPR
level, the TPRs were averaged over 32 simulated datasets. The partial AUC values were calculated by averaging
the percentages of the total area in the plotted region where FPR is below 0.1, and reported in the legends, with
the standard deviations in parentheses.
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Simulation Results Ran Bi Page 5 of 7

Figure 4: Plot of the actual FDR versus the nominal level of FDR when p0 = 0.5. Using
our proposed method, the proportion of false discoveries among the declared DE genes was
calculated for each dataset when we controlled FDR at nominal levels, and the actual FDR
was calculated by averaging such proportions over 32 simulated datasets at each nominal
FDR level. The dashed lines correspond to the Y = X line.

5

Web Figure 6.: FDR plots for Simulations A and B when 50% of genes have fold changes 1. Given each nominal
level of FDR, the actual observed FDRs were estimated by averaging the proportion of false discoveries among
declared heterosis genes across 32 simulated datasets. The gray solid lines represent the Y = X line.
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Simulation Results Ran Bi Page 6 of 7

Figure 5: ROC curves resulting from Simulations A and B when p0 = 0.8. For each level of
FPR, the TPRs were averaged across the 32 simulated datasets. The percentage annotated
for each method is the average AUC, represented as the percentage of the total area 0.1 in
the range of FPR < 0.1, and the percentage in each set of parentheses is the standard error
of the estimated AUC.

6

Web Figure 7.: ROC curves for Simulations A and B when 80% of genes have fold changes 1. Given each FPR
level, the TPRs were averaged over 32 simulated datasets. The partial AUC values were calculated by averaging
the percentages of the total area in the plotted region where FPR is below 0.1, and reported in the legends, with
the standard deviations in parentheses.
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Simulation Results Ran Bi Page 7 of 7

Figure 6: Plot of the actual FDR versus the nominal level of FDR when p0 = 0.8. Using
our proposed method, the proportion of false discoveries among the declared DE genes was
calculated for each dataset when we controlled FDR at nominal levels, and the actual FDR
was calculated by averaging such proportions over 32 simulated datasets at each nominal
FDR level. The dashed lines correspond to the Y = X line.

7

Web Figure 8.: FDR plots for Simulations A and B when 80% of genes have fold changes 1. Given each nominal
level of FDR, the actual observed FDRs were estimated by averaging the proportion of false discoveries among
declared heterosis genes across 32 simulated datasets. The gray solid lines represent the Y = X line.
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