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Table S1. GPS coordinates and elevation of each site within a transect. 
 
Peak Latitude (°) Longitude (°) Elevation (m) 
Avery 38.86548 -106.91236 2711 
Avery 38.86523 -106.91238 2812 
Avery 38.95136 -106.98636 2896 
Avery 38.96224 -106.98546 2982 
Avery 38.96594 -106.98281 3135 
Avery 38.97142 -106.98428 3192 
Avery 38.97529 -106.97827 3347 
Avery 38.92741 -106.97823 3455 
Avery 38.98407 -106.97021 3655 
Cinnamon 38.88163 -106.96172 2749 
Cinnamon 38.89727 -106.97899 2799 
Cinnamon 38.93460 -107.01078 2932 
Cinnamon 38.94540 -107.02822 3025 
Cinnamon 38.96168 -107.03091 3181 
Cinnamon 38.96189 -107.03879 3223 
Cinnamon 38.97018 -107.02955 3366 
Cinnamon 38.99111 -107.06497 3416 
Cinnamon 38.99356 -107.06754 3579 
Cinnamon 38.99463 -107.06913 3665 
Cinnamon 38.99495 -107.07043 3726 
Hunters Hill 38.84759 -106.81964 2824 
Hunters Hill 38.90366 -106.78383 3060 
Hunters Hill 38.92538 -106.77776 3171 
Hunters Hill 38.92596 -106.79232 3249 
Hunters Hill 38.92683 -106.79105 3322 
Hunters Hill 38.92963 -106.78896 3430 
Hunters Hill 38.93297 -106.78699 3531 
Hunters Hill 38.93762 -106.78742 3629 
Hunters Hill 38.94084 -106.78776 3724 
Hunters Hill 38.94595 -106.78773 3827 
Ruby 38.86430 -107.03173 2822 
Ruby 38.85617 -107.06954 2945 
Ruby 38.86447 -107.10579 3055 
Ruby 38.87421 -107.10598 3128 
Ruby 38.88382 -107.11328 3199 
Ruby 38.89454 -107.11722 3333 
Ruby 38.90226 -107.11630 3447 



Ruby 38.90104 -107.12194 3539 
Ruby 38.89997 -107.12580 3633 
Ruby 38.89916 -107.12836 3723 
Ruby 38.89732 -107.12805 3833 
Teocalli 38.89571 -106.89122 2776 
Teocalli 38.90614 -106.88384 2868 
Teocalli 38.92877 -106.87845 2948 
Teocalli 38.94404 -106.88717 3047 
Teocalli 38.94815 -106.89016 3157 
Teocalli 38.94758 -106.88071 3275 
Teocalli 38.94720 -106.87756 3351 
Teocalli 38.95034 -106.87619 3443 
Teocalli 38.95344 -106.87629 3553 
Teocalli 38.95593 -106.87794 3667 
Teocalli 38.95818 -106.87793 3771 
Teocalli 38.95919 -106.88007 3879 
Teocalli 38.96000 -106.88272 3954 
Treasury 38.91862 -107.03628 2747 
Treasury 38.93282 -107.04979 2795 
Treasury 38.97258 -107.06186 2972 
Treasury 38.96515 -107.05943 3038 
Treasury 38.97073 -107.05871 3197 
Treasury 38.97579 -107.05853 3257 
Treasury 38.98617 -107.06182 3371 
Treasury 38.98793 -107.06498 3418 
Treasury 38.99574 -107.07463 3521 
Treasury 39.00000 -107.08065 3598 
Treasury 38.99993 -107.08430 3698 
Treasury 39.00584 -107.09083 3815 
Treasury 39.01131 -107.09565 4023 
 

Table S2. There was significant spatial autocorrelation in five out of the six predictor variables. 
For each predictor, Moran’s I estimates the amount of spatial autocorrelation for a given 
predictor, such that high values indicate high spatial autocorrelation. Each Moran’s I is 
accompanied by a standard deviation estimate (SD) and a p-value.  
Predictor Moran’s I SD p-value 
Forb:grass 0.06548605 0.04408553 0.0674 
Inverse Simpsons’ 0.09267314 0.04680174 0.0212 
Sine aspect 0.1270489 0.04701599 0.0025 
Cosine aspect 0.1463025 0.04624237 0.0005 
Soil depth 0.2016100 0.04644518 <0.0001 
MAT 0.3085896 0.04684599 <.00001 
 
 
 
 



Supplementary Methods S1- Climate interpolation detailed methodology and results 
All code and data associated with this document are available upon request to Joshua Lynn 
(jslynn@unm.edu) or Jennifer Rudgers (jrudgers@unm.edu).  
 
METHODS 
Data compilation 
We compiled climate data from 29 weather stations in Gunnison and Pitkin Counties, Colorado 
(Table S3, Fig. S1). Slope, elevation, and aspect for each station were obtained from USGS 
digital elevation models (DEMs; Dollison 2010), based on the station's reported latitude and 
longitude. Weather stations varied in the period of record, therefore, while the data are useful 
for interpolating climate means, we do not recommend using them to interpolate values for a 
given year, without investigating the level of basin-wide coverage in that time period. More 
recent years will have complete coverage.  
 
Daily data are available in the file: allclimatedata_oct2016.csv 
 
Climate yearly summaries 
We gap-filled missing data only for days that were flanked on both sides by available data, and 
did so by taking the average of the single prior day and single subsequent day. We then 
calculated annual summaries of climate variables over each water year (1 Oct  - 30 Sep). For the 
calculation of average summer temperature, we excluded four outlier observations <0C from 
Porphyry Creek (station 25) during 1989.  The mean cumulative growing degree days (GDD) was 
determined over the period of 1 Jun - 30 Sep using a base temperature of 0°C (Frank and 
Hofmann 1989). GDD is particularly useful because it provides an integrated measure of 
temperature combined with the length of the growing season. Mean annual precipitation 
(MAP) and mean snow depth (MSD) were calculated for each water year over the full period of 
record of each weather station (Table S3). Because snow depth is highly locally variable, we 
urge caution in interpolating snow depth data to new sites.  

Our process excluded data that may be compromised by missing observations due to 
temporary equipment failures. We used GDD and snow depth data from a station × water year 
combination only if <5% of days in a given water year were missing data. We used annual 
precipitation data only if <10% of days in a given water year were missing data, under the 
assumption that this decision could be less conservative than for temperature or snow depth 
because many days have zero precipitation, and MAP is a cumulative, rather than average, 
metric.  

 
R script to create the yearly summaries: GunnisonBasinYearlyMet.R 
Yearly data summary produced by this script: GunnisonBasinYearlyMet.csv 

 
Slope, aspect, elevation from Digital Elevation Models 
For each meteorological station and each site for which we wished to predict climate, we 
determined the median value of slope, aspect, and elevation from “The National Map” DEMs, 
provided by the USGS (Dollison 2010). All GIS analyses were performed in QGIS (QGIS 
Development Team 2017). DEMs were used to create layers containing slope and aspect data 



for the region (r.slope.aspect; GRASS Development Team 2017). Coordinates for the weather 
station were then given a circular buffer area with a radius of 10m (Fixed distance buffer tool; 
GRASS Development Team 2017). Slope, elevation and aspect values for each weather station 
were taken as the median for the buffer area, with aspect converted to radians.  
 
DEM data for each weather station: GunnisonBasinDEM.csv 
 
Fig. S1. Map of weather stations in Gunnison and Pitkin Counties, Colorado, used for climate 
interpolation. 
 

 
 

Climate regression models 
To determine coefficients to interpolate climate for locations of biological observations that 
lacked weather stations, we used model selection procedures based on the second order 
Akaike Information Criterion (AICc), following Anderson (2008) and Burnham and Anderson 
(2002). This method predicts each climate variable from the best combination of elevation, 
slope, and aspect according to the minimum AICc, which discounts for model complexity and 
corrects for bias due to sample size. Aspect was included in models as sine (aspect) + cosine 
(aspect) to account for the circularity in this metric. The sine of aspect represents the east-west 
gradient (1=east), and the cosine of aspect accounts for north-south variation (1=north). We 
initially tested each climate variable for significant nonlinearities against elevation, slope, and 
aspect, and detected none. We therefore used linear equations to interpolate climate for each 
location of biological data collection. We also examined models that included latitude and 



longitude; however, these predictors were weak, and should not have a directional influence at 
the small spatial scale of the Upper Gunnison Valley Basin (I. Rangwala, pers. comm.). 

The set of eight candidate models included all predictors (1 model: elevation + slope + 
sin(aspect)+cos(aspect)), all sets of two predictors (3 models), single predictors alone (3 
models), and the null model, which included only random effects. All linear mixed effect models 
included the random effects of station identity and water year to account for the lack of 
independence of observations from the same location or same time period (lmer function in 
lme4 package, R Core Team 2016). We tested all models for assumptions of normality of 
residuals and homogeneity of variances, and used outlier exclusions (<9 observations per 
variable) to meet model assumptions rather than imposing transformations on the data that 
would alter interpretability.  

When the best model included multiple predictors, we examined correlations among 
the predictors and tested for possible multicollinearity using the vif function in car; we 
found no violation of multicollinearity. When models were similar in AICc (delta < 2) we 
selected the model with more predictors and higher R2 to increase resolution of the prediction. 
We obtained marginal and conditional likelihood R2 for the best candidate models using the 
sem.model.fits function in the piecewiseSEM package implemented in R (Lefcheck 
2015; Nakagawa and Schielzeth 2013, R Core Team 2016). Marginal R2 describes the proportion 
of variance explained by the fixed factors alone, whereas conditional R2 describes the 
proportion of variance explained by both the fixed and random factors. We used likelihood 
ratio C 2 tests to evaluate the statistical significance of individual predictors within the best 
model. 
 
R script to build regression models: GunnisonBasinInterpolation.R 
 
Climate interpolation 
To predict average yearly climate variables for a new set of sites, we used the predict 
function in R stats package. For each climate variable, we generated two prediction models. The 
first included the random effects of site and year to account for non-independence of 
observations at those scales and generate year-specific predictions (p1). The second returns the 
average predicted value, without random effects in the model (p2). Standard errors of 
predictions are not easily computed because of the difficulty in incorporating uncertainty in the 
variance parameters, and we have not tackled the uncertainty issue. 
 
R script for prediction is at the end of: GunnisonBasinInterpolation.R  
 
RESULTS 
 
Coefficients from the best model for each climate variable appear in Table S4. Datasets differed 
in coverage over the range of elevation, slope, and aspect (Table S3). Even though predictions 
were linear, we caution predicting outside of this range, especially at the highest elevations, 
where weather station data were most limited.  
 Temperature variables strongly declined with elevation, with a marginally positive 
influence of slope. Mean yearly minimum temperature was not explained by any predictors; the 



null model had the lowest AICc. Thus, minimum temperatures should not be interpolated using 
this dataset. Minimum temperatures in Gunnison, CO (2420 m) are often lower than those at 
higher elevation, which may explain the lack of influence of elevation for this variable.  
 Precipitation variables consistently increased with elevation, but some also had 
relationships with slope and aspect. Mean annual precipitation was primarily influenced by 
elevation, with equivalently weak influences of both north-south and east-west axes of aspect.  
This pattern was likely driven by the higher snow depths in west-facing sites and the higher 
summer precipitation in south-facing sites.  
 Mean snow depth increased with elevation, and west-facing slopes had deeper snow, 
with no significant influence of the north-south gradient of aspect. Slope had no meaningful 
influence on mean snow depth, but because of the location of weather station sites, coverage 
did not include slopes > 30.  Given the local-scale variability of snow depth, we suggest using 
caution when interpolating that variable, despite the relatively high marginal R2.  
 Mean summer precipitation increased with elevation, slope, and in south-facing sites 
[cosine (aspect)]. However, the low marginal R2 (Table S4) and high variability suggests using 
caution when interpolating this variable to other sites using our models.  
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Table S3. Locality information of weather stations from which climate data were aggregated, 
along with data collection period of record and data source (RMBL = Rocky Mountain Biological 
Laboratory, NRCS = USDA Natural Resources Conservation Service, SCENIC = Southwest Climate 
and Environmental Information Collaborative). Elevation is given in m. Slope and aspect data 
were not available for Bison Lake; it was excluded from analyses. 
 
Station Name Number Elevation  Latitude Longitude Record Source 
Billy Barr 1 2917 38.9631 -106.9933 2011-2015 RMBL 
Bison Lake 11 3316 39.7649 -107.3568 1987-2015 NRCS 
Brumley 12 3231 39.0877 -106.5417 1981-2015 NRCS 
Butte 13 3097 38.8943 -106.9530 1982-2015 NRCS 
Chapman Tunnel 14 3082 39.2622 -106.6293 2008-2015 NRCS 
Cochetopa Pass 15 3054 38.1628 -106.5988 2005-2015 NRCS 
Crested Butte 6 2702 38.8739 -106.9769 1981-2015 SCENIC 
Crested Butte 6.2N 7 2928 38.9603 -106.9908 2006-2015 SCENIC 
Gunnison 6.6N 8 2420 38.6391 -106.9408 2010-2015 SCENIC 
Independence Pass 16 3231 39.0754 -106.6117 1982-2015 NRCS 
Ivanhoe 17 3170 39.2920 -106.5492 1993-2015 NRCS 
Judd Falls 2 3004 38.9636 -106.9836 2010-2015 RMBL 
Kettle Ponds 3 2860 38.9417 -106.9731 2010-2015 RMBL 
Kiln 18 2926 39.3172 -106.6145 1981-2015 NRCS 
Marble 0.5NNW 9 2565 39.0791 -107.1906 2011-2015 SCENIC 
McClure Pass 19 2896 39.1290 -107.2881 1981-2015 NRCS 
Mexican Cut 4 3412 39.0283 -107.0636 2010-2015 RMBL 
Nast Lake 20 2652 39.2972 -106.6069 1987-2015 NRCS 
North Lost Trail 21 2804 39.0781 -107.1439 1986-2015 NRCS 
Overland Reservoir 22 2999 39.0906 -107.6347 1990-2015 NRCS 
Park Cone 23 2926 38.8200 -106.5897 1981-2015 NRCS 
Park Reservoir 24 3036 39.0464 -107.8741 1981-2015 NRCS 
Porphyry Creek 25 3280 38.4888 -106.3397 1981-2015 NRCS 
Saint Elmo 26 3213 38.6998 -106.3680 2008-2015 NRCS 
Sargents Mesa 27 3514 38.2856 -106.3707 2010-2015 NRCS 
Schofield Pass 28 3261 39.0152 -107.0488 1986-2015 NRCS 
Snodgrass 5 3396 38.9331 -106.9861 2010-2015 RMBL 
Taylor Park Colorado 10 3173 38.9078 -106.6017 1989-2015 SCENIC 
Upper Taylor 29 3243 38.9908 -106.7542 2010-2015 NRCS 

 
 



Table S4. Coefficients for regressions of climate variables on elevation, slope, and aspect. 
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Visualizations  
 
Fig. S2. Growing degree days (GDD) decrease with elevation. Partial regression plot of the full 
model described above. 
 

 
Fig. S3. GDD decreases with the slope and elevation of the weather station interactively. 

 
  



Fig. S4. Mean annual temperature decreases with elevation of the weather station. 
 

 
 
Fig. S5. MAT decrease with slope and elevation of the weather stations, interactively. 

 
 
 
  



 

Fig. S6. Mean summer temperature (MSuT) decreases with elevation of the weather station. 

 

Fig. S7. Mean summer temperature decreases the slope and elevation of the weather station, 
interactively. 
 

 
 
 
  
  



Fig. S8. Mean annual precipitation increases with elevation the weather station.  
 

 
 
Fig. S9. Summer precipitation increases with weather station elevation.  Stations with a 
slope>25  were excluded. 

 
 
 
 
 
 
 



Fig. S10. Summer precipitation increased with slope and sin of the aspect (eastern facing 
slopes) of the weather stations, but decreased with the cosine of aspect (northern facing 
slopes).  

 
 
Fig. S11. Summer precipitation increased with the slope and elevation of the weather stations, 
interactively.  

 



Fig. S12. Summer precipitation increased with elevation and southern facing slopes (negative 
cosine of aspect), interactively.  

 

Fig. S12. Snow depth increases with elevation of the weather station and decreases towards 
eastern facing slope (positive sine of aspect).  

 
  



Fig. S13. Snow depth at a weather station decreases with elevation and towards eastern facing 
slopes, interactively.  

 
 


