SUPPORTING MATERIAL

Carnitine is a Pharmacological Allosteric Chaperone of the Human

Lysosomal α -Glucosidase

Roberta Iacono^{1, 2¶}, Nadia Minopoli^{3, ¶}, Maria Carmina Ferrara², Antonietta Tarallo³, Carla Damiano³, Caterina Porto³, Sandra Strollo³, Véronique Roig-Zamboni⁴, Gianfranco Peluso⁶, Gerlind Sulzenbacher⁴, Beatrice Cobucci-Ponzano², Giancarlo Parenti^{3,5}, Marco Moracci^{1, 2, *}

¹Department of Biology, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126 Naples, Italy
²Institute of Biosciences and Bioresources – CNR, Via P. Castellino 111, 80131, Naples, Italy
³Telethon Institute of Genetics & Medicine, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
⁴Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Univ, AFMB, 163 Avenue de Luminy, 13288 Marseille, France
⁵Department of Translational Medical Sciences, Federico II University, Via S. Pansini 5, 80131, Naples, Italy
⁶Research Institute on Terrestrial Ecosystems, UOS Naples-CNR, Via P. Castellino 111, 80131, Naples, Italy

[¶]These authors contributed equally to the work

*Author to whom correspondence should be addressed: Dr. Marco Moracci. Tel +39-081-679046; Fax +39-081-679233; e-mail: marco.moracci@unina.it

Figure captions

Figure S1. Effect of L-CAR and D-CAR on rhGAA

a) Time course of the stabilizing effect of L- and D-CAR on the activity of rhGAA. The stability of rhGAA activity was measured in the absence and in the presence of L-CAR (10 or 20 mM) and D-CAR for 48 h. *b) Effect of L-CAR on rhGAA activity*. The specific activity of rhGAA was measured in the absence and in the presence of L-CAR at various concentrations.

Figure S2. Comparison of the effect of D-CAR and A-D-CAR on the stability of rhGAA (a) Effect on the rhGAA stability. The specific activity of rhGAA was measured in the absence and in the presence of D- and A-D-CAR at various concentrations (0.1-10 mM). (b) Effect on the rhGAA activity: D- and A-D-CAR at various concentrations (0.1-10 mM) were incubated with rhGAA and the enzymatic activity was measured after 5 h of incubation at pH 7.4. (c) Effect of D-CAR on the stability of the rhGAA activity. rhGAA was incubated alone or with D-CAR (2-10 mM) in sodium phosphate buffer pH 7.4 at 37 °C. After 5h, the residual α -glucosidase activity was measured with the standard assay. (d) Effect of D-CAR on the structural stability of rhGAA: D-CAR was incubated with rhGAA at 5 concentrations (from 2 to 10 mM). Changes in the fluorescence of SYPRO Orange were monitored by DSF as a function of temperature at pH 7.4. (e) Summary of the T_{mS} measured by DSF: T_m values were calculated according to Niesen et al., 2007 ¹. The standard deviations for each melting temperature were calculated from three replicates.

Figure S3. Effect of L-CAR on rhGAA stability in the medium

PD fibroblasts were incubated in Dulbecco's modified Eagle's medium (DMEM) in the presence or in the absence of L-CAR 10 mM (black and grey lines, respectively). GAA activity decreased over time, with significant differences between rhGAA in combination with L-CAR and rhGAA alone already detectable after 2 hrs.

1. Niesen, F. H.; Berglund, H.; Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. *Nature Protocols* **2007**, *2*, 2212-2221.