
A Supplementary Material - Proofs

A.1 Proof of Theorem 3

Proof of Theorem 3. From Theorem 1 we immediately get the inequalities

�g(x)  �g�(x) (15)
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L2�

2
, (16)
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Z

exp(�g�(z))dz �

Z
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Similarly, again for f � 0,
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= exp(�L2�/2)E⇡(f).
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In summary, for any non-negative f , we have

exp(�L2�/2)E⇡(f)  E⇡�(f)  exp(L2�/2)E⇡(f). (19)

Subtracting E⇡(f) � 0 from these inequalities lets us derive

�(exp(L2�/2) � 1)E⇡(f) = �max{exp(L2�/2) � 1, 1 � exp(�L2�/2)}E⇡(f)

= min{1 � exp(L2�/2), exp(�L2�/2) � 1}E⇡(f)

 (exp(�L2�/2) � 1)E⇡(f)

(19)

 E⇡�(f) � E⇡(f)

(19)

 (exp(L2�/2) � 1)E⇡(f)

 max{exp(L2�/2) � 1, 1 � exp(�L2�/2)}E⇡(f)

= (exp(L2�/2) � 1)E⇡(f),

(20)

and therefore

|E⇡�(f) � E⇡(f)|  (exp(L2�) � 1)E⇡(f) (21)

holds for any non-negative f .

For general f , we consider the standard decomposition f = f+
� f� with f+

� 0 and

f�
� 0. Then |f | = f+ + f�, and as

|E⇡�(f) � E⇡(f)| = |E⇡�(f+) � E⇡(f
+) � [E⇡�(f�) � E⇡(f

�)]|

 |E⇡�(f+) � E⇡(f
+)| + |E⇡�(f�) � E⇡(f

�)|

(21)

 (exp(L2�) � 1)E⇡(f
+) + (exp(L2�) � 1)E⇡(f

�)

= (exp(L2�) � 1)E⇡(|f |),

we have proved the first bound in the Theorem.
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Since we can exchange the roles of ⇡ and ⇡� in (19), we can follow the same chain of

arguments to also get

|E⇡�(f) � E⇡(f)|  (exp(L2�/2) � 1)E⇡�(|f |).

If g = g1 + g2 with Lipschitz-continuous g1 and differentiable, but not necessarily Lipschitz-

continuous, g2, one takes the MYE of g1 and notes that 15 and 16 hold for g1. Adding g2

on both sides of the inequality shows that these inequalities remain true for g such that the

proof still holds.

A.2 Proof of Lemma 1

Proof. The case �1 = �2 is trivial so assume �1 < �2.

Firstly recall that for convex g any MYE is also convex. Further note that g�2 is a Moreau-

Yosida envelope for g�1 , with g�2 = (g�1)�2��1 [4, Proposition 12.22 (ii)].

We may thus define h = g�1 , � = �2 ��1, such that the statement of the lemma is equivalent

to

Lemma (Equivalent Formulation of Lemma 1). For any convex and differentiable function

h : X !] � 1,1], and for any � > 0, the Moreau-Yosida envelope h� satisfies

krh(x)k � krh�(x)k 8x 2 X .

We define p = prox�

h
(x). By theorem 2, rh�(x) = (x � p)/�; and by convexity (and
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differentiability) of h, we have for any x 2 X :

0  hrh(p) � rh(x), p � xi

= hrh(p) � rh(x),��rh(p)i

= ��krh(p)k2 + hrh(x),rh(p)i

 ��krh(p)k2 +
�

2
krh(x)k2 +

�

2
krh(p)k2

=
�

2
krh(x)k2

�
�

2
krh(p)k2,

where the first inequality is a necessary and sufficient condition for convexity of a differentiable

function, and the last inequality follows from Young’s inequality as hx, yi  kxk
2/2+kyk2/2.

krh(x)k2
� krh(p)k2 (2)

= k
1

�
(x � p)k = krh�(x)k

as required. The last equality is given by Theorem 2.

A.3 Proof of Lemma 2

Proof. Invariance follows if
Z

LZZf(x, v)⇡(dx)p(dv) =

Z

A0

LZZf(x, v)⇡(dx)p(dv) +

Z

A
c
0

LZZf(x, v)⇡(dx)p(dv) = 0

for any f 2 D(LZZ), the domain of LZZ [28]. If the prior is differentiable such that ⇡ has a

differentiable density, A0 is empty and the proof is directly as in [7, Theorem 2.2]. If the

prior is non-differentiable, A0 is non-empty but a null-set under n-dimensional Lebesgue

measure. Since ⇡ and p(dv) are absolutely continuous with respect to Lebesgue measure, it

follows that the first integral is zero. Invariance then again follows directly from [7, Theorem

2.2].
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A.4 Proof of Lemma 3

Proof. As in Lemma 2, invariance with respect to the joint distribution of (x, v) follows if
Z

LBPSf(x, v)⇡(dx)p(dv) =

Z

A0

LBPSf(x, v)⇡(dx)p(dv) +

Z

A
c
0

LBPSf(x, v)⇡(dx)p(dv) = 0

for any f 2 D(LBPS). Similarly to the proof of Lemma 2, the proof of [9, Proposition

1] applies directly under absolute continuity of ⇡ and p(v) with respect to Lebesgue

measure.

A.5 Discretizing the Underdamped Langevin Dynamics

We implement the discretization used in [40]. If the current position and velocity are (xt, vt),

the next iteration is given by
8
><

>:
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1
�
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where ⌫ = tn+1 � tn is the step size, � = exp(��⇠⌫), and (Wx,Wv) ⇠ N (0,⌃) is Gaussian

noise with covariance

⌃ =

0
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1

A .

All the experiments in this paper were run with � = 2, L = 1�, and ⌫ = 2�, where � is the

tightness parameter of the respective MYE.

A.6 Hamiltonian Bouncy Particle Sampler

An alternative specification for the dynamics of the BPS was introduced in [56], which

we will now detail. Consider the Hamiltonian of both the target variable and the velocity

40



H(x, v)

H(x, v) = U(x) + log p(v) = �`(x) � log ⇡0(x) �
1

2
vtv + c,

where c is some constant we will suppress from now on. For some spherical potential

V (x) = 1
2(x � µ)t⌃�1(x � µ), consider now the augmented Hamiltonian

H(x, v) = �`(x) � log ⇡0 � V (x)| {z }
Û(x)

+V (x) �
1

2
vt

| {z }
Ĥ(x,v)

,

which naturally can be broken into two parts. For the new system consisting of the latter

two terms, the dynamics of the Hamiltonian Ĥ are available in closed form since the system

of ODEs

@vt

@t
= �rxtĤ(xt, vt) = �⌃�1(xt � µ)

@xt

@t
= rvtĤ(xt, vt) = vt

can be solved explicitly for any µ and ⌃. For the first three terms, we note that if the

model under consideration has a Gaussian component in x then the spherical potential

can be chosen to equal this energy function. For example, if ⇡0 is Gaussian, setting

V (x) = � log ⇡0(x) reduces the Hamiltonian to only depend on the likelihood. As shown in

[56], the resulting Hamiltonian BPS with rates and reflection operator given by

⇢̂(t) = max{0, hvt,rÛ(xt)i}

R̂xv = v � 2
hv,rÛ(x)i

krÛ(x)k2
rÛ(x),

and flow determined by Ĥ(x, v), has ⇡(x)v(x) as invariant distribution. It is clear that this

is valid under any choice of µ and ⌃, in particular, the Hamiltonian BPS can be localized if

a factor decomposition is explicitly available.
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B Supplementary Material - Further Experiments

B.1 Anisotropic Gaussian

To assess how the different algorithms compare on a strongly log-concave example, we

repeated Example 4.1 with a centered Gaussian distribution, as in [9, Example 4.4]. The

100-dimensional distribution has a diagonal covariance matrix with ⌃i,i = 1/i2. Following

the guidance in [27], we picked � = 1/104, as this is the Lipschitz constant of the log-gradient,

and chose a step size �/2 = � for MY-ULA, and � = 0.005 for SK-ROCK. For pMALA,

we set � = 2�, and then chose � = 3 ⇥ 10�5, giving an acceptance probability of around

60%. The results are summarised in Figure 5. The BPS is again run in its global form, a

localized version thereof would improve performance. Estimates of the effective sample size

per second are summarised in Table 3.

Algorithm MY-ULA MY-UULA SK-ROCK pMALA BPS ZZS

� = 1 2.00 1.39 2.28 1.27 1.17 2.48

� = 100 1774.74 1257.58 195.86 551.61 809.93 312.29

Table 3: Effective sample size per second for the different algorithm when targeting an

anisotropic Gaussian distribution. Recall that the first three algorithms are asymptotically

biased, while the last three are asymptotically exact.

B.2 Nuclear-norm models for low-rank matrix estimation

As a final illustration of our methods performance in exact sampling, we consider a nuclear-

norm model example taken from [45]. Let x 2 Rn⇥n be an unknown low-rank matrix, and
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Figure 5: All algorithms are targeting a 100-dimensional anisotropic Gaussian distribution.

The first three rows correspond to the approximate algorithms, and none of them manage

to fully capture the narrowest component. The ZZS perfectly captures the last component,

and shows good results in the first component. The BPS (in its global form) mixes slowly in

the first component, but well in the last. All algorithms were given the same computational

budget for a fair comparison.
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let observations be noisy measurements thereof: y = x + ⇠, where the entries of ⇠ are

i.i.d. N(0, �2). We assume that x is a low-rank matrix, and our aim is to sample from the

posterior distribution of x given by

⇡(x) / exp

✓
�

1

2�2
kx � ykF � ↵kxk⇤

◆
, (22)

where k·kF denotes the Frobenius norm and k·k⇤ denotes the nuclear norm which favors

low-rank matrices and penalizes high-rank ones. Conveniently, the proximal operator of the

nuclear norm is available in closed form: Let x = Q⌃V T be the singular value decomposition

of x, with ⌃ = diag(�1, . . . , �n). Then the proximal operator is given by

prox�

↵k·k⇤(x) = Qdiag (sgn(�1)max(|�1| � ↵�, 0), . . . , sgn(�n)max(|�n| � ↵�, 0))V T ,

i.e., one applies the soft thresholding operator to the singular values of x. We can thus

efficiently compute the gradient to use in the Langevin-based samplers,

rU�(x) =
1

�2
(x � y) +

1

�

⇣
x � prox�

↵k·k⇤(x)
⌘
. (23)

We generated y by adding Gaussian noise to a matrix xtrue with entries xtrue
i,j

2 {0, 0.7, 1}.

The matrix xtrue is visually a checkerboard with white, grey, or black checks.

We set � = �2. The step size for MY-ULA is set to � = 2�. A particular issue for the BPS in

this model is the lack of factor decomposition due both to non-linearity of the nuclear norm

and the proximal operator, which prevents us from using a localized, and therefore faster,

version of the BPS. In an attempt to mitigate the resulting debilitated dynamics, we note

that the likelihood in this case is equivalent to a isotropic Gaussian distribution in x as well.

Defining an auxiliary potential by V (x|y) = kx � yk2/2, we propose to generate dynamics

according to the Hamiltonian flow (see A.6) corresponding to (ẋ, v̇) = (vt,�(xt � y)/�2),
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which has the explicit solution
0

@xt

vt

1

A =

0

@v0 sin
�

t

�

�
� + (x0 � y) cos

�
t

�

�
+ y

�(x0 � y) sin
�

t

�

�
+ v0 cos

�
t

�

�

1

A .

By this choice of V it follows that the gradient employed in the rate and reflection operator

subsequently is

rÛ�(x) =
1

�

⇣
x � prox�

↵k·k⇤(x)
⌘
. (24)

Figure 6 shows the mean squared error between the posterior mean estimate of the respective

algorithms, as calculated every second, and the ‘true’ posterior mean, as estimated by a

very long run using an asymptotically unbiased algorithm. All algorithms are started at the

same point, not too far away from the region of high probability. One can see that while

MY-ULA quickly gives good estimates, the second-order scheme MY-UULA quickly yields

better estimates. Interestingly, SK-ROCK performs worse here. The BPS does not yield

any useful estimates in reasonable time, but after a while the HBPS gives the second best

results. For completeness, we note that the Zig-Zag Sampler is not able to computationally

compete with any of the other methods, as a single reflection requires the evaluation of the

full gradient, which is prohibitively expensive. We also estimated the slowest and fastest

mixing components of the checkerboard by estimating the sample covariance matrix during

a long run of an exact sampler, and taking the first and last eigenvector thereof as the

direction where the chain mixes slowest, and fastest, respectively. The autocorrelation plots

for these components are shown in the second and third panel of Figure 6.
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Figure 6: Results from the nuclear norm example. Left: MSE over time, for the different

algorithms, run for half an hour each, on a log-log-scale. Middle: Autocorrelation for the

slowest component, sample number adjusted for a fair comparison. Right: Autocorrelation

for the fastest component, sample number adjusted for a fair comparison.

B.3 Image Deblurring

Uncertainty quantification in images is generally a challenging computational problem, with

samples from the posterior used to estimate credible intervals or provide model comparisons.

We focus on a purely illustrative example involving the total variation prior similar to [27,

Example 4.1.2]. Let x 2 Rn1⇥n2 be an image which we observe through y = Hx+ ⇠, where

H is a blurring operator that blurs a pixel xi,j uniformly with its closest neighbours (5 ⇥ 5

patch), and ⇠ ⇠ N(0, �2In1⇥n2). The log-prior is proportional to �TV (x) = �↵krDxk1,

where rD is the two-dimensional discrete gradient operator as defined in [16], and ↵ is a

fixed parameter. The application of the TV prior is common in a wide array of imaging

applications, as it emphasizes smooth surfaces bounded by distinct edges. As the authors

of [27] we chose the 256 ⇥ 256 "boat" test image, and set ↵ = 0.03, � = 0.47. The posterior

is given by

⇡(x) / exp

✓
�

1

2�2
kHx � yk2

2 � ↵TV (x)

◆
. (25)
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Figure 7: Left: The original 256 ⇥ 256 image. Center: The image after the application of

the uniform blur operator. Right: A representative sample from the posterior distribution

given in equation (25), obtained using the LBPS.

The TV-prior decomposes into a sum where each entry only depends on neighboring points;

the uniform blur operator is similarly local. This implies in combination that the posterior

can be factorized at granularities defined by the user, and we can therefore apply the local

BPS. We stress that the global BPS struggles in high dimensions [24], and thus localization

is necessary for it to be a competitive algorithm in these settings. The proximal operator is

not available in closed form for the TV-prior, and hence requires evaluation via numerical

schemes such as the Douglas-Rachford algorithm introduced in [25] or the Chambolle-Pock

algorithm [17]. While these algorithms in general are efficient, they slow down significantly

as the precision of the envelope is increased.

We compare the performances of the LBPS, the ZZS, pMALA, MY-ULA, MY-UULA,

and SK-ROCK. For both the LBPS and the ZZS we estimated bounds on the prior- and

likelihood-gradients, and used these constant bounds to generate computationally cheap

events, avoiding any global evaluations of the gradient. For pMALA, we set � = 2� = 0.006,
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giving us an acceptance ratio of 67%. For the last three samplers, we chose � = 0.45 following

the guidance in [27]. The goal is to sample from the posterior distribution when observing

a blurred image, see Figure 7. Figure 8 shows the mean squared error (MSE) and the

structural similarity index (SSIM) between the mean estimates of the various algorithms and

the ‘true’ mean, as estimated by a long run of an asymptotically exact algorithm. Notably,

unlike MY-(U)ULA, pMALA, and SK-ROCK, which require the evaluation of the proximal

operator (which is not localizable), the LBPS and ZZS can be sped up using parallelization

techniques: the implementation we used applied global rates to avoid recalculating the full

posterior gradient after every event, but one may calculate the factor gradients at hardly

any extra computational cost if one calculates them in parallel.
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Figure 8: Results from the Image Deblurring example. Left: The MSE of the mean estimates,

estimated every 10 seconds. Right: The SSIM of the mean estimates, estimated every 10

seconds.
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