Supplemental Material for "Model-based joint curve registration and classification"

Lin Tanga, ${ }^{\text {a, }}$, Pengcheng Zeng ${ }^{\text {b, } 1}$, Jian Qing Shi ${ }^{* c}$, and Won-Seok Kim ${ }^{\text {d }}$
${ }^{\text {a }}$ Yunnan Key Laboratory of Statistical Modeling and Data Analysis, Yunnan University, Kunming, Yunnan, China
${ }^{\mathrm{b}}$ Institute of Mathematical Sciences, ShanghaiTech University, Shanghai, China ${ }^{\text {c }}$ Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen, China
${ }^{d}$ Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea

Assumptions for Theorems

Let $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ be the $L^{2}(\mathcal{T})$ inner product and norm, respectively. For notational simplicity, let $\tilde{\boldsymbol{x}}_{a i}(t)=\boldsymbol{x}_{a i}\left(g^{-1}(t)\right)$ and define the covariance of the curve $\tilde{\boldsymbol{x}}_{a i}(t)$ as $K_{x_{a}}(s, t)=\operatorname{Cov}\left[\tilde{\boldsymbol{x}}_{a i}(s), \tilde{\boldsymbol{x}}_{a i}(t)\right]$, where $K_{x_{a}}(s, t)$ is continuous on the interval $[0,1]$. Then by Mercer's Theorem we have

$$
K_{x_{a}}(s, t)=\sum_{l=1}^{\infty} \lambda_{a l} \phi_{a l}(s) \phi_{a l}(t),
$$

where $\lambda_{a 1}>\lambda_{a 2}>\ldots>0$ are eigenvalues and $\phi_{a 1}(t), \phi_{a 2}(t) \ldots$ are eigenfunctions of the covariance operator corresponding to $K_{x_{a}}(s, t)$. Then by the Karhunen-Loève representation, the process $\tilde{\boldsymbol{x}}_{a i}$

[^0]and the functional coefficient $\boldsymbol{\beta}_{a}(t)$ follows the following eigen decompositions
$$
\tilde{\boldsymbol{x}}_{a i}(t)=\sum_{l=1}^{\infty} p_{a i l} \phi_{a l}(t) \quad \boldsymbol{\beta}_{a}(t)=\sum_{l=1}^{\infty} e_{a l} \phi_{a l}(t)
$$
where $p_{a i l}=\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}\right\rangle$ are uncorrelated random variables with zero mean and variance $\lambda_{a l}$ and $e_{a l}=\left\langle\boldsymbol{\beta}_{a}, \phi_{a l}\right\rangle$.

In practice, $K_{x_{a}}(s, t)$ is unknown and we can take the empirical version by

$$
\hat{K}_{x_{a}}(s, t)=\sum_{l=1}^{\infty} \hat{\lambda}_{a l} \hat{\phi}_{a l}(s) \hat{\phi}_{a l}(t)
$$

where $\left(\hat{\lambda}_{a l}, \hat{\phi}_{a l}\right)$ is the estimator of $\left(\lambda_{a l}, \phi_{a l}\right)$ with $\hat{\lambda}_{a 1} \geq \hat{\lambda}_{a 2} \ldots \geq 0$.
Therefore, the systematic component in equation (12) can be rewritten as

$$
\eta_{i}=\boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{b}+\int_{0}^{1} \tilde{\boldsymbol{x}}_{i}(t) \boldsymbol{\beta}(t) d t=\boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{b}+\sum_{a=1}^{2} \sum_{l=1}^{\infty} \tilde{p}_{a i l} e_{a l}=\boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{b}+\sum_{a=1}^{2} \sum_{l=1}^{K_{x}} \tilde{p}_{a i l} e_{a l}+R_{i},
$$

where $\tilde{p}_{a i l}=\left\langle\tilde{\boldsymbol{x}}_{a i}, \hat{\phi}_{a l}\right\rangle, R_{i}=\sum_{a=1}^{2} \sum_{l=K_{x}+1}^{\infty} \tilde{p}_{a i l} e_{a l}$ and K_{x} is the tuning parameter which is set to be sufficiently large.

For notational simplicity, we define $\tilde{\boldsymbol{p}}_{i}=\left(\tilde{\boldsymbol{p}}_{1 i}^{\mathrm{T}}, \tilde{\boldsymbol{p}}_{2 i}^{\mathrm{T}}\right)^{\mathrm{T}}=\left(\tilde{p}_{1 i 1}, \ldots, \tilde{p}_{1 i K_{x}}, \tilde{p}_{2 i 1}, \ldots, \tilde{p}_{2 i K_{x}}\right)^{\mathrm{T}}$, $\boldsymbol{e}=\left(\boldsymbol{e}_{1}^{\mathrm{T}}, \boldsymbol{e}_{2}^{\mathrm{T}}\right)^{\mathrm{T}}=\left(e_{11}, \ldots, e_{1 K_{x}}, e_{21}, \ldots, e_{2 K_{x}}\right)^{\mathrm{T}}, \boldsymbol{Y}=\left(y_{1}, \ldots, y_{N}\right)^{\mathrm{T}}, \boldsymbol{v}=\left(\boldsymbol{v}_{1}^{\mathrm{T}}, \ldots, \boldsymbol{v}_{N}^{\mathrm{T}}\right)^{\mathrm{T}}, \tilde{\boldsymbol{X}}=$ $\left(\tilde{\boldsymbol{x}}_{1}(t), \ldots, \tilde{\boldsymbol{x}}_{N}(t)\right), \boldsymbol{\eta}=\left(\eta_{1}, \ldots, \eta_{N}\right)^{\mathrm{T}}$.

Let $\boldsymbol{D}=(\boldsymbol{v}, \tilde{\boldsymbol{X}})$ and $\boldsymbol{\theta}=\left(\boldsymbol{b}^{\mathrm{T}}, \boldsymbol{e}^{\mathrm{T}}\right)^{\mathrm{T}}$ be the unknown parameter vector of the models defined in equation (11) and equation (12). Then the estimation $\hat{\boldsymbol{\theta}}=\left(\hat{\boldsymbol{b}}^{\mathrm{T}}, \hat{\boldsymbol{e}}^{\mathrm{T}}\right)^{\mathrm{T}}$ is obtained by maximizing the following log-likelihood function

$$
\ell(\boldsymbol{\theta}) \triangleq \ell(\boldsymbol{Y} ; \boldsymbol{\eta})=\sum_{i=1}^{N} \ell_{i}\left(y_{i} ; \eta_{i}\right)=\sum_{i=1}^{N}\left\{y_{i} \boldsymbol{\zeta}\left(\boldsymbol{v}_{i}, \boldsymbol{x}_{i}\right)+\mathcal{B}\left[\boldsymbol{\zeta}\left(\boldsymbol{v}_{i}, \boldsymbol{x}_{i}\right)\right]+\mathcal{C}\left(y_{i}\right)\right\}
$$

For simplicity, let C be a constant whose value might change according to different circumstances. Denote $\dot{\ell}_{i, d}\left(y_{i} ; d\right)$ and $\ddot{\ell}_{i, d}\left(y_{i} ; d\right)$ as the first- and second-order derivative of $\ell_{i}\left(y_{i} ; d\right)$ with respect to d, respectively. Also, similar to [1], we define

$$
\mathrm{I}(\boldsymbol{D})=-\mathrm{E}\left[\ddot{\ell}_{\eta}(\boldsymbol{Y} ; \eta) \mid \boldsymbol{D}\right]=-\mathrm{E}\left[\sum_{i=1}^{N} \ddot{\ell}_{i, \eta_{i}}\left(y_{i} ; \eta_{i}\right) \mid \boldsymbol{D}\right]
$$

where $\eta_{i}=\boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{b}+\int_{0}^{1} \tilde{\boldsymbol{x}}_{i}(t) \boldsymbol{\beta}(t) d t$.

In model (11), the response variable y_{i} is related to both the scalar variables and the functional variables. So, the main complicated issue comes from the dependence between \boldsymbol{v}_{i} and $\tilde{\boldsymbol{x}}_{i}(t)$. To solve this problem, similar to [2], we define

$$
\boldsymbol{G}(\tilde{\boldsymbol{X}})=\frac{\mathrm{E}\left(\ddot{\boldsymbol{\ell}}_{\eta}(\boldsymbol{Y} ; \eta) \mid \tilde{\boldsymbol{X}}\right)}{\mathrm{E}\left(\ddot{\ell}_{\eta}(\boldsymbol{Y} ; \eta) \mid \tilde{\boldsymbol{X}}\right)}, \text { and } \boldsymbol{v}=\tilde{\boldsymbol{v}}+\boldsymbol{G}(\tilde{\boldsymbol{X}})
$$

where $\tilde{\boldsymbol{v}}=\left(\tilde{v}_{1}, \ldots, \tilde{v}_{p+1}\right)^{p+1}$ is a zero mean $(p+1)$-dimensional random vector and $\boldsymbol{G}(\tilde{\boldsymbol{X}})=$ $\left(G_{1}(\tilde{\boldsymbol{X}}), \ldots, G_{p+1}(\tilde{\boldsymbol{X}})\right)^{\mathrm{T}}$ is a $(p+1)$-dimensional functional vector with $G_{j}(\tilde{\boldsymbol{X}}) \in L^{2}(\mathcal{T})$ for $j=$ $1, \ldots, p+1$.

Suppose that the following assumptions hold
(A1) For each $i \in\{1, \ldots, N\}, \mathrm{E}\left\|\tilde{\boldsymbol{x}}_{i}\right\|^{4}<\infty$.
(A2) For each $a \in[1,2]$ and $l, \mathrm{E}\left(p_{a i l}^{4}\right) \leq C \lambda_{a l}^{2}$ with the eigenvalue $\lambda_{a l}$ satisfies $C^{-1} l^{-\alpha} \leq \lambda_{a l} \leq C l^{-\alpha}$ and $\lambda_{a l}-\lambda_{a(l+1)} \geq C^{-1} l^{-\alpha-1}$ for $l \geq 1$ and some constant $\alpha>1$. In addition, $\left|e_{a l}^{*}\right| \leq C l^{-\gamma}$ for some constant $\gamma>\alpha / 2+1$.
(A3) The tuning parameter K_{x} satisfies

$$
K_{x} \asymp N^{\frac{1}{\alpha+2 \gamma}}
$$

where the notation $a_{N} \asymp b_{N}$ means that there exist constants $0<L<M<\infty$ such that $L \leq a_{N} / b_{N} \leq M$ for all N .
(A4) For each i, the scalar covariates \boldsymbol{v}_{i} satisfies $\mathrm{E}\left\|\boldsymbol{v}_{i}\right\|^{4}<\infty$.
(A5) $\mathrm{E}(\tilde{\boldsymbol{v}})=\mathbf{0}$,

$$
\boldsymbol{\Omega}_{1}=\mathrm{E}\left\{\sum_{i=1}^{N} \ddot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i} \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}}\right\} \text { and } \boldsymbol{\Omega}_{2}=\mathrm{E}\left\{\sum_{i=1}^{N} \dot{\ell}_{i, \eta_{i}^{*}}^{2}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i} \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}}\right\},
$$

where $\boldsymbol{\Omega}_{1}$ and $\boldsymbol{\Omega}_{2}$ are assumed to be positive definite matrices and $\eta_{i}^{*}=\boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{b}^{*}+\int_{0}^{1} \tilde{\boldsymbol{x}}_{i}(t) \boldsymbol{\beta}^{*}(t)$.
(A6) $|I(\boldsymbol{D})|<C$ and $I(\boldsymbol{D})$ satisfies the first-order Lipschitz condition.
(A7) The true value $\boldsymbol{\theta}_{x}^{*}$ of $\boldsymbol{\theta}_{x}$ is unique and $\hat{\boldsymbol{\theta}}_{x} \xrightarrow{p} \boldsymbol{\theta}_{x}^{*}$ where $\hat{\boldsymbol{\theta}}_{x}$ is the MLE of $\boldsymbol{\theta}_{x}$.
(A8) For $i=1, \ldots, N$, the likelihood function $\ell_{i}\left(\boldsymbol{\theta}_{x}\right)$ is thrice continuously differentiable with respect to $\boldsymbol{\theta}_{x}$.
(A9) There exist positive definite matrices $\boldsymbol{A}\left(\boldsymbol{\theta}_{x}^{*}\right)$ and $\boldsymbol{B}\left(\boldsymbol{\theta}_{x}^{*}\right)$ such that

$$
\lim _{N \rightarrow \infty}-\frac{1}{N} \sum_{i=1}^{N} \partial_{\theta_{x}}^{2} \ell_{i}\left(\boldsymbol{\theta}_{x}^{*}\right)=\boldsymbol{A}\left(\boldsymbol{\theta}_{x}^{*}\right), \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \partial_{\theta_{x}} \ell_{i}\left(\boldsymbol{\theta}_{x}^{*}\right) \partial_{\theta_{x}} \ell_{i}\left(\boldsymbol{\theta}_{x}^{*}\right)^{\mathrm{T}}=\boldsymbol{B}\left(\boldsymbol{\theta}_{x}^{*}\right)
$$

Remark 1. Assumptions (A1)-(A3) are quite usual in the settings of functional linear model(see [3] and [4]). Assumption (A1) requires that $\tilde{\boldsymbol{x}}_{i}$ has a finite fourth moment and is necessary to get the L^{2} convergence of the estimated functional coefficients. In particular, the condition $E\left(p_{\text {ail }}^{4}\right) \leq$ $C \lambda_{a l}^{2}$ in Assumption (A2) holds if the random process $\tilde{\boldsymbol{x}}_{i}$ is a Gaussian Process. The requirements of the eigenvalues in Assumption (A2) prevent the spacings between adjacent eigenvalues from being too small and ask that the slope function $\beta(t)$ is smoother than the sample path of $\tilde{\boldsymbol{x}}_{i}$ [2]. They are of great importance in ensuring the rate of convergence in Theorem 2.3. The last part of Assumptions (A2) prevents the coefficients $e_{a l}^{*}$ from decreasing too slowly. To optimize the convergence rate of the functional coefficients, requirement of smoothing parameter in Assumption (A3) is needed. Assumptions (A4)-(A6) are used to deal with the linear part with scalar variables. Assumption (A4) is analogy to Assumption (A1). The condition of the Fisher information I($\boldsymbol{D})$ in Assumption (A6) is analogous to [1]. Assumptions (A7)-(A8) are commonly used conditions in parametric models, and they are applied here to develop the asymptotical consistency of the MLE for the functional nonlinear mixed effects model for curve alignment.

Technical lemmas and proofs.

Let $\tilde{\eta}_{i}=\boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{b}^{*}+\tilde{\boldsymbol{p}}_{i}^{\mathrm{T}} \boldsymbol{e}^{*}$, where \boldsymbol{b}^{*} and \boldsymbol{e}^{*} denote the true values of \boldsymbol{b} and \boldsymbol{e}, respectively.
Lemma 1. Let $R_{i}=\int_{0}^{1} \tilde{\boldsymbol{x}}_{i}(t) \boldsymbol{\beta}^{*}(t) d t-\tilde{\boldsymbol{p}}_{i}^{\mathrm{T}} \boldsymbol{e}^{*}$ for $i=1, \ldots, N$. Then under Assumptions (A1)-(A6), we have

$$
\left\|R_{i}\right\|^{2}=\left\|\eta_{i}^{*}-\tilde{\eta}_{i}\right\|^{2}=O_{p}\left(N^{-(2 \gamma+\alpha-1) /(\alpha+2 \gamma)}\right)
$$

Thus

$$
\eta_{i}^{*}-\tilde{\eta}_{i}=O_{p}\left(N^{-(2 \gamma+\alpha-1) / 2(\alpha+2 \gamma)}\right)
$$

Proof. Note that

$$
\begin{aligned}
R_{i} & =\int_{0}^{1} \tilde{\boldsymbol{x}}_{i}(t) \boldsymbol{\beta}^{*}(t) d t-\tilde{\boldsymbol{p}}_{i}^{\mathrm{T}} \boldsymbol{e}^{*} \\
& =\sum_{a=1}^{2} \sum_{l=1}^{\infty}\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}\right\rangle\left\langle\boldsymbol{\beta}_{a}^{*}, \phi_{a l}\right\rangle-\sum_{a=1}^{2} \sum_{l=1}^{K_{x}}\left\langle\tilde{\boldsymbol{x}}_{a i}, \hat{\phi}_{a l}\right\rangle\left\langle\boldsymbol{\beta}_{a}^{*}, \phi_{a l}\right\rangle \\
& =\sum_{a=1}^{2} \sum_{l=1}^{K_{x}}\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}\right\rangle\left\langle\boldsymbol{\beta}_{a}^{*}, \phi_{a l}\right\rangle-\sum_{a=1}^{2} \sum_{l=1}^{K_{x}}\left\langle\tilde{\boldsymbol{x}}_{a i}, \hat{\phi}_{a j}\right\rangle\left\langle\boldsymbol{\beta}_{a}^{*}, \phi_{a l}\right\rangle \\
& +\sum_{a=1}^{2} \sum_{l=K_{x}+1}^{\infty}\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}\right\rangle\left\langle\boldsymbol{\beta}_{a}^{*}, \phi_{a l}\right\rangle \\
& =\sum_{a=1}^{2} \sum_{l=1}^{K_{x}}\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}-\hat{\phi}_{a l}\right\rangle e_{a l}^{*}+\sum_{a=1}^{2} \sum_{l=K_{x}+1}^{\infty}\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}\right\rangle e_{a l}^{*} \\
& =I_{1}+I_{2}
\end{aligned}
$$

where $I_{1}=\sum_{a=1}^{2} \sum_{l=1}^{K_{x}}\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}-\hat{\phi}_{a l}\right\rangle e_{a l}^{*}$, and $I_{2}=\sum_{a=1}^{2} \sum_{l=K_{x}+1}^{\infty}\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}\right\rangle e_{a l}^{*}=\sum_{a=1}^{2} \sum_{l=K_{x}+1}^{\infty} p_{a i l} e_{a l}^{*}$.

Since $\left\|\hat{\phi}_{a l}-\phi_{a l}\right\|^{2}=O_{p}\left(N^{-1} l^{2}\right)$, then it follows from Assumptions (A1)-(A3) that

$$
\begin{aligned}
\left\|I_{1}\right\|^{2} & =\left\|\sum_{a=1}^{2} \sum_{l=1}^{K_{x}}\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}-\hat{\phi}_{a l}\right\rangle e_{a l}^{*}\right\|^{2} \\
& \leq 2 K_{x} \sum_{l=1}^{K_{x}}\left\|\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}-\hat{\phi}_{a l}\right\rangle e_{a l}^{*}\right\|^{2} \\
& \leq 2 K_{x} \sum_{l=1}^{K_{x}}\left\|\phi_{a l}-\hat{\phi}_{a l}\right\|^{2}\left|e_{a l}^{*}\right|^{2} \\
& \leq O_{P}\left(K_{x}\right) \sum_{l=1}^{K_{x}} N^{-1} l^{2} l^{-2 \gamma} \\
& \leq O_{P}\left(N^{-1} K_{x}\right) \sum_{l=1}^{K_{x}} l^{-2 \gamma+2} \\
& \leq O_{P}\left(N^{-1} K_{x}\right)=O_{P}\left(N^{-\frac{2 \gamma+\alpha+1}{\alpha+2 \gamma}}\right)
\end{aligned}
$$

For I_{2}, note that $p_{\text {ail }}$ are uncorrelated random variables with zero mean and variance $\lambda_{a l}$, then
we have

$$
\begin{aligned}
\mathrm{E}\left(\left\|I_{2}\right\|^{2}\right) & =\mathrm{E}\left(\sum_{a=1}^{2} \sum_{l=K_{x}+1}^{\infty} p_{a i l} e_{a l}^{*}\right)^{2} \\
& =\sum_{a=1}^{2} \sum_{l=K_{x}+1}^{\infty} e_{a l}^{* 2} \lambda_{a l} \\
& \leq 2 C \sum_{l=K_{x}+1}^{\infty} l^{-(2 \gamma+\alpha)} \\
& =O_{p}\left(K_{x}^{-(2 \gamma+\alpha-1)}\right)=O_{p}\left(N^{-\frac{2 \gamma+\alpha-1}{\alpha+2 \gamma}}\right)
\end{aligned}
$$

Then $R_{i}=I_{1}+I_{2}=O_{p}\left(N^{-\frac{2 \gamma+\alpha-1}{2(\alpha+2 \gamma)}}\right)+O_{p}\left(N^{-\frac{2 \gamma+\alpha-1}{2(\alpha+2 \gamma)}}\right)=O_{p}\left(N^{\left.-\frac{2 \gamma+\alpha-1}{2(\alpha+2 \gamma)}\right)}\right.$ holds, which indicates that $\left\|R_{i}\right\|^{2}=\left\|\eta_{i}^{*}-\tilde{\eta}_{i}\right\|^{2}=O_{p}\left(N^{-(2 \gamma+\alpha-1) /(\alpha+2 \gamma)}\right)$, thus Lemma 1 holds.

Let $\tilde{\boldsymbol{v}}_{i}=\boldsymbol{v}_{i}-\boldsymbol{G}\left(\tilde{\boldsymbol{x}}_{i}\right)$ and

$$
\breve{\boldsymbol{b}}=\underset{\boldsymbol{b}}{\arg \max } \sum_{i=1}^{N} \ell_{i}\left(y_{i} ; \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}} \boldsymbol{b}+\tilde{\boldsymbol{p}}_{i}^{\mathrm{T}} \boldsymbol{e}^{*}+\boldsymbol{G}\left(\tilde{\boldsymbol{x}}_{i}\right) \boldsymbol{b}^{*}\right) .
$$

Then the following Lemma says that the estimation $\breve{\boldsymbol{b}}$ is asymptotically distributed as normal distribution.

Lemma 2. Under Assumptions (A1)-(A9), we have

$$
\sqrt{N}\left(\breve{\boldsymbol{b}}-\boldsymbol{b}^{*}\right) \rightarrow N\left(\mathbf{0}, \boldsymbol{\Omega}_{1}^{-1} \boldsymbol{\Omega}_{2} \boldsymbol{\Omega}_{1}^{-1}\right),
$$

where $\boldsymbol{\Omega}_{1}=E\left\{\sum_{i=1}^{N} \ddot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i} \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}}\right\}, \boldsymbol{\Omega}_{2}=E\left\{\sum_{i=1}^{N} \dot{\ell}_{i, \eta_{i}^{*}}^{2}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i} \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}}\right\}$ and $\tilde{\boldsymbol{v}}_{i}=\boldsymbol{v}_{i}-\boldsymbol{G}\left(\tilde{\boldsymbol{x}}_{i}\right)$.
Proof. Let $\boldsymbol{\omega}=\sqrt{N}\left(\boldsymbol{b}-\boldsymbol{b}^{*}\right)$ and $\breve{\boldsymbol{\omega}}=\sqrt{N}\left(\breve{\boldsymbol{b}}-\boldsymbol{b}^{*}\right)$, which according to the definition of $\breve{\boldsymbol{b}}$, is obtained by maximizing the following function

$$
M(\boldsymbol{\omega})=\sum_{i=1}^{N} \ell_{i}\left(y_{i} ; \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}} \boldsymbol{b}^{*}+\tilde{\boldsymbol{p}}_{i}^{\mathrm{T}} \boldsymbol{e}^{*}+\boldsymbol{G}\left(\tilde{\boldsymbol{x}}_{i}\right) \boldsymbol{b}^{*}+\tilde{\boldsymbol{v}}_{i}^{\mathrm{T}} \boldsymbol{\omega} / \sqrt{N}\right)-\sum_{i=1}^{N} \ell_{i}\left(y_{i} ; \boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{b}^{*}+\tilde{\boldsymbol{p}}_{i}^{\mathrm{T}} \boldsymbol{e}^{*}\right) .
$$

Taking a second-order Taylor's expansion of $M(\boldsymbol{\omega})$ yields

$$
M(\boldsymbol{\omega})=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \dot{\ell}_{i, \tilde{\eta}_{i}}\left(y_{i} ; \tilde{\eta}_{i}\right) \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}} \boldsymbol{\omega}+\frac{1}{2} \boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{\Sigma} \boldsymbol{\omega}
$$

where

$$
\boldsymbol{\Sigma}=\frac{1}{N} \sum_{i=1}^{N} \ddot{\ell}_{i, \tilde{\eta}_{i}}\left(y_{i} ; \tilde{\eta}_{i}+\nu_{i}\right) \tilde{\boldsymbol{v}}_{i} \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}}
$$

with ν_{i} lies between 0 and $\tilde{\boldsymbol{v}}_{i} \boldsymbol{\omega} / \sqrt{N}$. It follows from [5] that $\boldsymbol{\Sigma}=-\boldsymbol{\Omega}_{1}+o_{p}(1)$.
On the other hand,

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N} \dot{\ell}_{i, \tilde{\eta}_{i}}\left(y_{i} ; \tilde{\eta}_{i}\right) \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}} & =\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \dot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}}+\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \ddot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}}\left(\tilde{\eta}_{i}-\eta_{i}^{*}\right) \\
& +o_{p}(1) \\
& =I_{3}+I_{4}+o_{p}(1)
\end{aligned}
$$

where

$$
I_{3}=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \dot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}} \text { and } I_{4}=\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \ddot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}}\left(\tilde{\eta}_{i}-\eta_{i}^{*}\right) .
$$

It is easy to find that $I_{4}=o_{p}(1)$. By the Lindeberg-Feller central limit theory, we have $I_{3} \rightarrow \mathrm{~N}\left(\mathbf{0}, \boldsymbol{\Omega}_{2}\right)$. Then,

$$
M(\boldsymbol{\omega})=I_{3}^{\mathrm{T}} \boldsymbol{\omega}-\frac{1}{2} \boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{\Omega}_{1} \boldsymbol{\omega}+o_{p}(1) .
$$

The results of [6] and [7] show that

$$
\breve{\boldsymbol{\omega}}=\Omega_{1}^{-1} I_{3}+o_{p}(1),
$$

then Lemma 2 holds from the Slutsky Theorem.

Lemma 3. Under Assumptions (A1)-(A9), we have

$$
\|\hat{\boldsymbol{\theta}}-\breve{\boldsymbol{\theta}}\|^{2}=O_{p}\left(N^{-\frac{2 \gamma-1}{\alpha+2 \gamma}}\right),
$$

where $\hat{\boldsymbol{\theta}}=\left(\hat{\boldsymbol{b}}^{\mathrm{T}}, \hat{\boldsymbol{e}}^{\mathrm{T}}\right)^{\mathrm{T}}$ and $\breve{\boldsymbol{\theta}}=\left(\breve{\boldsymbol{b}}^{\mathrm{T}}, \boldsymbol{e}^{* \mathrm{~T}}\right)^{\mathrm{T}}$.
Proof. Taking a first-order Taylor's expansion of $\dot{\ell}(\hat{\boldsymbol{\theta}})=\left.\frac{\partial \ell(\theta)}{\partial \theta}\right|_{\theta=\hat{\theta}}$ at $\breve{\boldsymbol{\theta}}$ yields

$$
0=\dot{\ell}(\hat{\boldsymbol{\theta}})=\dot{\ell}(\breve{\boldsymbol{\theta}})+\ddot{\ell}(\overline{\boldsymbol{\theta}})(\hat{\boldsymbol{\theta}}-\breve{\boldsymbol{\theta}})+o_{p}(1),
$$

where $\overline{\boldsymbol{\theta}}$ lies between $\hat{\boldsymbol{\theta}}$ and $\breve{\boldsymbol{\theta}}, \dot{\ell}(\breve{\boldsymbol{\theta}})=\left.\frac{\partial \ell(\theta)}{\partial \theta}\right|_{\theta=\breve{\theta}}$ and $\dot{\ell}(\overline{\boldsymbol{\theta}})=\left.\frac{\partial \ell(\theta)}{\partial \theta}\right|_{\theta=\bar{\theta}}$.

Then we have

Denote

$$
\dot{\ell}(\breve{\boldsymbol{\theta}})=\left\{\left(\frac{\partial \ell(\breve{\boldsymbol{\theta}})}{\partial \boldsymbol{b}}\right)^{\mathrm{T}},\left(\frac{\partial \ell(\breve{\boldsymbol{\theta}})}{\partial \boldsymbol{e}}\right)^{\mathrm{T}}\right\}^{\mathrm{T}}=\sum_{i=1}^{N} \dot{\ell}_{i, \breve{\eta}_{i}}\left(y_{i} ; \breve{\eta}_{i}\right)\left(\boldsymbol{v}_{i}^{\mathrm{T}}, \tilde{\boldsymbol{p}}_{i}^{\mathrm{T}}\right)^{\mathrm{T}},
$$

where $\breve{\eta}_{i}=\boldsymbol{v}_{i}^{\mathrm{T}} \breve{\boldsymbol{b}}+\tilde{\boldsymbol{p}}_{i}^{\mathrm{T}} \boldsymbol{e}^{*}$.
Note that

$$
\frac{\partial \ell(\breve{\boldsymbol{\theta}})}{\partial \boldsymbol{b}}=\sum_{i=1}^{N} \dot{\ell}_{i, \breve{\breve{i}}_{i}}\left(y_{i} ; \breve{\eta}_{i}\right) \boldsymbol{v}_{i}=\sum_{i=1}^{N} \dot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \boldsymbol{v}_{i}+\sum_{i=1}^{N} \ddot{\ell}_{i, \bar{\eta}_{i}}\left(y_{i} ; \bar{\eta}_{i}\right)\left(\boldsymbol{v}_{i}^{\mathrm{T}}\left(\breve{\boldsymbol{b}}-\boldsymbol{b}^{*}\right)+R_{i}\right) \boldsymbol{v}_{i},
$$

and

$$
\frac{\partial \ell(\breve{\boldsymbol{\theta}})}{\partial \boldsymbol{e}}=\sum_{i=1}^{N} \dot{\ell}_{i, \breve{\eta}_{i}}\left(y_{i} ; \breve{\eta}_{i}\right) \tilde{\boldsymbol{p}}_{i}=\sum_{i=1}^{N} \dot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{p}}_{i}+\sum_{i=1}^{N} \ddot{\ell}_{i, \bar{\eta}_{i}}\left(y_{i} ; \bar{\eta}_{i}\right)\left(\tilde{\boldsymbol{p}}_{i}^{\mathrm{T}}\left(\breve{\boldsymbol{e}}-\boldsymbol{e}^{*}\right)+R_{i}\right) \tilde{\boldsymbol{p}}_{i},
$$

where $\bar{\eta}_{i}$ lies between η_{i}^{*} and $\breve{\eta}_{i}$.
Similar to [8], we have

$$
\begin{equation*}
\mathrm{E}\left(\left\|\sum_{i=1}^{N} \dot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \boldsymbol{v}_{i}\right\|\right)=O\left(N^{1 / 2}\right) \tag{S1}
\end{equation*}
$$

The Assumption (A2) and Lemma 1 indicate that

$$
\begin{align*}
\left\|\sum_{i=1}^{N} \ddot{\ell}_{i, \bar{\eta}_{i}}\left(y_{i} ; \bar{\eta}_{i}\right)\left(\boldsymbol{v}_{i}^{\mathrm{T}}\left(\breve{\boldsymbol{b}}-\boldsymbol{b}^{*}\right)+R_{i}\right) \boldsymbol{v}_{i}\right\| & =O_{p}\left(N^{1 / 2}\right)+O_{p}\left(N \cdot N^{-(2 \gamma+\alpha-1) / 2(\alpha+2 \gamma)}\right) \tag{S2}\\
& =O_{p}\left(\sqrt{N K_{x}}\right)
\end{align*}
$$

Equation (S1) and (S2) show that $\partial \ell(\breve{\boldsymbol{\theta}}) / \partial \boldsymbol{b}=O_{p}\left(\sqrt{N K_{x}}\right)$. Similarly, we have $\partial \ell(\check{\boldsymbol{\theta}}) / \partial \boldsymbol{e}=$ $O_{p}\left(\sqrt{N K_{x}}\right)$. Therefore, $\dot{\ell}(\breve{\boldsymbol{\theta}})=O_{p}\left(\sqrt{N K_{x}}\right)$.

Similar to Lemma A. 3 of [9], we have $\left\|\left(\frac{1}{N} \ddot{\ell}(\overline{\boldsymbol{\theta}})\right)^{-1}\right\|=O_{p}\left(\lambda_{K_{x}}^{-1 / 2}\right)=O_{p}\left(K_{x}^{\alpha / 2}\right)$, which yields

$$
\begin{aligned}
\|\hat{\boldsymbol{\theta}}-\breve{\boldsymbol{\theta}}\| & \leq\left\|\left(\frac{1}{N} \ddot{\ell}(\overline{\boldsymbol{\theta}})\right)^{-1}\right\|\left\|\frac{1}{N} \dot{\ell}(\breve{\boldsymbol{\theta}})\right\| \\
& =O_{p}\left(K_{x}^{\alpha / 2}\right) O_{p}\left(N^{-(2 \gamma+\alpha-1) / 2(\alpha+2 \gamma)}\right) \\
& =O_{p}\left(N^{-(2 \gamma-1) / 2(\alpha+2 \gamma)}\right)
\end{aligned}
$$

Thus, the result $\|\hat{\boldsymbol{\theta}}-\breve{\boldsymbol{\theta}}\|^{2}=O_{p}\left(N^{-(2 \gamma-1) /(\alpha+2 \gamma)}\right)$ holds.
Proof of Theorem 2.1. The identifiability proof goes as follows. By assumptions in model (1), the random effects and the random error can be integrated into a new Gaussian process error
denoted as $\epsilon_{i}^{*}(t)$ with $E\left\{\epsilon_{i}^{*}(t)\right\}=0$. Then we have that $\epsilon_{i}^{*}(t)=x_{i}(t)-\tau\left(g_{i}(t)\right)$, thus there is no ambiguity about the error term. Suppose that $E\left\{x_{i}(t)\right\}=\tau_{1}\left(g_{1 i}(t)\right)=\tau_{2}\left(g_{2 i}(t)\right)$ for all $i=1, \ldots, N$, then we have $\tau_{1}(t)=\tau_{2}\left(g_{2 i}\left(g_{1 i}^{-1}(t)\right)\right)$. Since the left-hand side of this equation doesn't depend on i, we have that $g_{2 i}\left(g_{1 i}^{-1}(t)\right)=l(t)$ for all i some function $l(\cdot)$. Then $g_{1 i}^{-1}(t)=g_{2 i}^{-1}(l(t))$ for all i. The assumption in Theorem 1 shows that $E\left(g_{1 i}\right)=E\left(g_{2 i}\right)$, then we have $l(t)=t$. Therefore, $g_{1 i}(t)=g_{2 i}(t)$ for all i and the warping functions are identifiable.

Proof of Theorem 2.2. Let $\hat{\eta}_{i}=\boldsymbol{v}_{i}^{\mathrm{T}} \hat{\boldsymbol{b}}+\tilde{\boldsymbol{p}}_{i}^{\mathrm{T}} \hat{\boldsymbol{e}}$ and for any $\boldsymbol{z} \in \mathbb{R}^{p+1}$, define $\hat{\eta}_{i}(\boldsymbol{z})=\boldsymbol{v}_{i}^{\mathrm{T}} \hat{\boldsymbol{b}}+\tilde{\boldsymbol{p}}_{i}^{\mathrm{T}} \hat{\boldsymbol{e}}+\tilde{\boldsymbol{v}}_{i}^{\mathrm{T}} \boldsymbol{z}$, where $\tilde{\boldsymbol{v}}_{i}=\boldsymbol{v}_{i}-\boldsymbol{G}\left(\tilde{\boldsymbol{x}}_{i}\right)$. Obviously, when $\boldsymbol{z}=\mathbf{0}$,

$$
\hat{\eta}(\boldsymbol{z})=\underset{\eta(\boldsymbol{z})}{\arg \max } \ell(\boldsymbol{Y} ; \eta(\boldsymbol{z})) .
$$

Then the following equation follows from a Taylor's expansion

$$
\begin{aligned}
0=\left.\frac{\partial \ell(\hat{\eta}(\boldsymbol{z}))}{\partial \boldsymbol{z}}\right|_{\boldsymbol{z}=\mathbf{0}} & =\sum_{i=1}^{N} \dot{\ell}_{i, \hat{\eta}_{i}}\left(y_{i} ; \hat{\eta}_{i}\right) \tilde{\boldsymbol{v}}_{i} \\
& =\sum_{i=1}^{N} \dot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i}+\sum_{i=1}^{N} \ddot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i}\left(\hat{\eta}_{i}-\eta_{i}^{*}\right)+o_{p}(1),
\end{aligned}
$$

Applying Lemma 2 and Lemma 3, the second term on the right hand side of the above equation can be rewritten as

$$
\frac{1}{N} \sum_{i=1}^{N} \ddot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i}\left(\hat{\eta}_{i}-\eta_{i}^{*}\right)=\frac{1}{N} \sum_{i=1}^{N} \ddot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i} \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}}\left(\hat{\boldsymbol{b}}-\boldsymbol{b}^{*}\right)+o_{p}\left(N^{1 / 2}\right)
$$

Then we have

$$
\left(\hat{\boldsymbol{b}}-\boldsymbol{b}^{*}\right)=-\left[\frac{1}{N} \sum_{i=1}^{N} \ddot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i} \tilde{\boldsymbol{v}}_{i}^{\mathrm{T}}\right]^{-1}\left[\frac{1}{N} \sum_{i=1}^{N} \dot{\ell}_{i, \eta_{i}^{*}}\left(y_{i} ; \eta_{i}^{*}\right) \tilde{\boldsymbol{v}}_{i}\right]+o_{p}\left(N^{-1 / 2}\right) .
$$

Therefore, by Central Limit Theory and Slutsky's Theorem, we have

$$
\sqrt{N}\left(\hat{\boldsymbol{b}}-\boldsymbol{b}^{*}\right) \rightarrow \mathrm{N}\left(\mathbf{0}, \boldsymbol{\Omega}_{1}^{-1} \boldsymbol{\Omega}_{2} \boldsymbol{\Omega}_{1}^{-1}\right)
$$

where $\boldsymbol{\Omega}_{1}$ and $\boldsymbol{\Omega}_{2}$ are defined in Lemma 2.

Proof of Theorem 2.3. Similar to [2], for any $a \in[1,2]$, we have

$$
\begin{aligned}
\left\|\hat{\boldsymbol{\beta}}_{a}(t)-\boldsymbol{\beta}_{a}^{*}\right\| & =\left\|\sum_{l=1}^{K_{x}} \hat{e}_{a l} \hat{\phi}_{a l}-\sum_{l=1}^{\infty} e_{a l}^{*} \phi_{a l}\right\|^{2} \\
& \leq 2\left\|\sum_{l=1}^{K_{x}} \hat{e}_{a l} \hat{\phi}_{a l}-\sum_{l=1}^{K_{x}} e_{a l}^{*} \phi_{a l}\right\|^{2}+2\left\|\sum_{l=K_{x}+1}^{\infty} e_{a l}^{*} \phi_{a l}\right\|^{2} \\
& \leq 4\left\|\sum_{l=1}^{K_{x}}\left(\hat{e}_{a l}-e_{a l}^{*}\right) \hat{\phi}_{a l}\right\|^{2}+4\left\|\sum_{l=1}^{K_{x}} e_{a l}^{*}\left(\hat{\phi}_{a l}-\phi_{a l}\right)\right\|^{2}+2 \sum_{l=K_{x}+1}^{\infty} e_{a l}^{* 2} \\
& \leq 4\left\|\hat{\boldsymbol{e}}_{a}-\boldsymbol{e}_{a}^{*}\right\|^{2}+8 K_{x} \sum_{l=1}^{K_{x}} e_{a l}^{* 2}\left\|\hat{\phi}_{a l}-\phi_{a l}\right\|^{2}+2 \sum_{l=K_{x}+1}^{\infty} e_{a l}^{* 2} .
\end{aligned}
$$

Note that

$$
\begin{equation*}
\sum_{l=K_{x}+1}^{\infty} e_{a l}^{* 2} \leq C \sum_{l=K_{x}+1}^{\infty} l^{-2 \gamma}=O\left(K_{x}^{-(2 \gamma-1)}\right)=O\left(N^{-(2 \gamma-1) /(\alpha+2 \gamma)}\right), \tag{S3}
\end{equation*}
$$

and by $\left\|\hat{\phi}_{a l}-\phi_{a l}\right\|^{2}=O_{p}\left(N^{-1} l^{2}\right)$, we have

$$
\begin{equation*}
8 K_{x} \sum_{l=1}^{K_{x}} e_{a l}^{* 2}\left\|\hat{\phi}_{a j}-\phi_{a j}\right\|^{2} \leq O_{p}\left(N^{-1} K_{x}\right)=o_{p}\left(N^{-(2 \gamma-1) /(\alpha+2 \gamma)}\right) . \tag{S4}
\end{equation*}
$$

In addition, from Lemma 3 we have $\left\|\hat{\boldsymbol{e}}-\boldsymbol{e}^{*}\right\|^{2}=O_{p}\left(N^{-(2 \gamma-1) /(\alpha+2 \gamma)}\right)$, then Theorem 2.3 holds by combining this with equations (S3) and (S4).

Proof of Corollary 2.4. Let $\hat{\eta}_{i}=\boldsymbol{v}_{i}^{\mathrm{T}} \hat{\boldsymbol{b}}+\int_{0}^{1} \tilde{\boldsymbol{x}}_{i}(t) \hat{\boldsymbol{\beta}}(t) d t$, where $\hat{\boldsymbol{b}}$ and $\hat{\boldsymbol{\beta}}(t)$ are obtained from our proposed estimation procedure. Then, we have

$$
\begin{aligned}
\hat{\eta}_{i}-\eta_{i}^{*} & =\boldsymbol{v}_{i}^{\mathrm{T}} \hat{\boldsymbol{b}}+\int_{0}^{1} \tilde{\boldsymbol{x}}_{i}(t) \hat{\boldsymbol{\beta}}(t) d t-\left[\boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{b}^{*}+\int_{0}^{1} \tilde{\boldsymbol{x}}_{i}(t) \boldsymbol{\beta}^{*}(t) d t\right] \\
& =\boldsymbol{v}_{i}^{\mathrm{T}}\left(\hat{\boldsymbol{b}}-\boldsymbol{b}^{*}\right)+\sum_{a=1}^{2} \sum_{l=1}^{\infty}\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}\right\rangle\left\langle\hat{\boldsymbol{\beta}}_{a}, \hat{\phi}_{a l}\right\rangle-\sum_{a=1}^{2} \sum_{l=1}^{\infty}\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}\right\rangle\left\langle\boldsymbol{\beta}_{a}^{*}, \phi_{a l}\right\rangle \\
& =\boldsymbol{v}_{i}^{\mathrm{T}}\left(\hat{\boldsymbol{b}}-\boldsymbol{b}^{*}\right)+\sum_{a=1}^{2} \sum_{l=1}^{\infty}\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}\right\rangle\left(\hat{e}_{a l}-e_{a l}^{*}\right) \\
& =I_{5}+I_{6}
\end{aligned}
$$

where $\hat{e}_{a l}=\left\langle\hat{\boldsymbol{\beta}}_{a}, \hat{\phi}_{a l}\right\rangle, e_{a l}^{*}=\left\langle\boldsymbol{\beta}_{a}^{*}, \phi_{a l}\right\rangle, I_{5}=\boldsymbol{v}_{i}^{\mathrm{T}}\left(\hat{\boldsymbol{b}}-\boldsymbol{b}^{*}\right)$ and $I_{6}=\sum_{a=1}^{2} \sum_{l=1}^{\infty}\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}\right\rangle\left(\hat{e}_{a l}-e_{a l}^{*}\right)=\sum_{a=1}^{2} \sum_{l=1}^{\infty} p_{a i l}\left(\hat{e}_{a l}-e_{a l}^{*}\right)$.

Given Theorem 2.2, the fact that $\left\|\hat{\boldsymbol{b}}-\boldsymbol{b}^{*}\right\|=O_{p}\left(N^{-1 / 2}\right)$ holds. Then under Assumption (A4) we have $\mathrm{E}\left\|I_{5}\right\|^{2}=\left\|\hat{\boldsymbol{b}}-\boldsymbol{b}^{*}\right\|^{2} \mathrm{E} \boldsymbol{v}_{i}^{2}=O_{p}\left(N^{-1}\right)$.

Since $\left\langle\tilde{\boldsymbol{x}}_{a i}, \phi_{a l}\right\rangle$ are uncorrelated random variables with zero mean and variance $\lambda_{a l}$, and by Lemma 3 we have $\left\|\hat{\boldsymbol{e}}-\boldsymbol{e}^{*}\right\|^{2}=O_{p}\left(N^{-(2 \gamma-1) /(\alpha+2 \gamma)}\right)$. Then under Assumption (A2), we have

$$
\mathrm{E}\left(\left\|I_{6}\right\|^{2}\right)=\sum_{a=1}^{2} \sum_{l=1}^{\infty} \lambda_{a l}\left\|\hat{e}_{a l}-e_{a l}^{*}\right\|^{2} \leq 2 O_{p}\left(N^{\frac{2 \gamma-1}{\alpha+2 \gamma}}\right) C \sum_{l=1}^{\infty} l^{-\alpha}=O_{p}\left(N^{\frac{2 \gamma-1}{\alpha+2 \gamma}}\right) .
$$

Thus

$$
\hat{\eta}_{i}-\eta^{*}=I_{5}+I_{6}=O_{p}\left(N^{-1 / 2}\right)+O_{p}\left(N^{-(2 \gamma-1) /(\alpha+2 \gamma)}\right)=O_{p}\left(N^{-1 / 2}\right)
$$

Note that the functional logistic regression model is a special case of model (11) and (12) with a logistic link function, i.e. $\eta_{i}=\operatorname{logit}\left(\pi_{\mathrm{i}}\right)$. Since the inverse link function $h^{-1}\left(\eta_{i}\right)$ is continuous and differentiable in η_{i}, then $h^{-1}\left(\hat{\eta}_{i}\right)-h^{-1}\left(\eta_{i}^{*}\right)=O_{p}\left(N^{-1 / 2}\right)$ holds, which indicate that $\hat{\pi}_{i}-\pi_{i}^{*}=$ $O_{p}\left(N^{-1 / 2}\right)$.

Proof of Theorem 2.5. $\hat{\boldsymbol{\theta}}_{x}$ is the MLE of the second level model obtained through conditional models described in Section 2.2, then under Assumptions (A7)-(A9), the theorem follows from [10] immediately, to save space, we omit the proof here.

References

[1] L. Ting and Z. Zhu, Inference for generalized partial functional linear regression, Statist. Sinica. 30(2020), pp. 1379-1397.
[2] H. Shin, Partial functional linear regression, J. Statist. Plann. Inference 139(2009), pp. 34053418.
[3] T. T. Cai, P. Hall and others, Prediction in functional linear regression, Ann. Statist. 34(2006), pp. 2159-2179.
[4] P. Hall, J. L. Horowitz and others, Methodology and convergence rates for functional linear regression, Ann. Statist. 35(2007), pp. 70-91.
[5] A. W. Van der Vaart, Asymptotic Statistics, Cambridge university press, Cambridge, 2000.
[6] C. J. Geyer, On the convergence of Monte Carlo maximum likelihood calculations, J. R. Stat. Soc. Ser. B. Stat. Methodol. 56 (1994), pp. 261-274.
[7] D. Pollard, Asymptotics for least absolute deviation regression estimators, Econometric Theory 7 (1991), pp. 186-199.
[8] R. Cao, J. Du, J. Zhou and T. Xie, FPCA-based estimation for generalized functional partially linear models, Statist. Papers 61 (2020), pp. 2715-2735.
[9] L. Wang, X. Liu, H. Liang and R.J. Carroll, Estimation and variable selection for generalized additive partial linear models, Ann. Statist. 39 (2011), pp. 1827-1851.
[10] H. White, Estimation, inference and specification analysis, Cambridge university press, Cambridge, 1996.

[^0]: ${ }^{1}$ Both authors contributed equally to this work.
 *Corresponding author, email: shijq@sustech.edu.cn

