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S.1 Additional Simulation Results

In this section, we provide additional simulation results, including simulation results of the log-

Gaussian Cox processes, the impact of M-spline degrees, and a comparison between the infill

asymptotics and the increasing domain asymptotics.

S.1.1 Log-Gaussian Cox Process

The log-Gaussian Cox processes are generated using latent isotropic Gaussian random fields

equipped with the following covariance functions

1. Circular Covariance Model (LGCP-C), with g0(r) = exp [σ2C(r/φ)], where C(r) = 1 −

2
π

[
r arcsin(r) + r

√
1− r2

]
I(0 ≤ r ≤ 1) for some σ2 > 0, φ > 0.

2. Exponential Covariance Model (LGCP-E), with g0(r) = exp [σ2C(r/φ)], where C(r) =

exp(−r) for some σ2 > 0, φ > 0.

3. Gaussian Covariance Model (LGCP-G), with g0(r) = exp [σ2C(r/φ)], where C(r) =

exp(−r2) for some σ2 > 0, φ > 0.

The parameters for the LGCPs are chosen so that the true PCFs of LGCP-G, LGCP-E, and

LGCP-C are matched closely with those of the Thomas, VarGamma, and MatClust processes,

respectively. See Figure S1(b)-(c) for a comparison.
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Figure S1: Panel (a): spatial covariates; Panels (b)-(c) the true PCFs of Cox processes.
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S.1.1.1 Estimation Accuracies of PCFs

The same first-order intensity model is used for generation as in Section 6.1. Summary statistics

based on B = 3, 000 simulation runs are summarized in Figures S2. As illustrated in Figure S1

(b)-(c), the true PCFs between corresponding panels in Figure 3 and Figure S2, e.g., Figure3(a)

v.s. Figure S2(a), are almost the same. We can observe that with the same level of second-

order spatial correlation, estimated PCFs of the log-Gaussian Cox process have much greater

estimation errors than those of the shot-noise Cox process. For log-Gaussian Cox processes, the

proposed shape-constrained PCF estimators appear to have smaller advantages over the kernel

PCF estimators, compared to the cases for shot-noise processes.
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(b) LGCP−E (1.1,0.05)
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(c) LGCP−G (0.7, 0.09)
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(e) LGCP−E (1.6,0.03)
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(f) LGCP−G (1.1, 0.05)
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Figure S2: Estimation accuracy of three types of PCF estimators for log-Gaussian Cox processes.

S.1.1.2 Empirical Sizes of Goodness-of-fit Tests

The same first-order intensity model is used for generation as in Section 6.2. The rejection rates

of H0 at the α = 0.05 and 0.10 levels based on B = 3, 000 simulation runs are summarized in

Table S1, where we can see that the empirical sizes for the log-Gaussian Cox processes are overall
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Table S1: Empirical sizes of proposed goodness-of-fit tests at 0.05 and 0.10 levels
Semi-G test Semi-L test Semi-C test

Process (σ2, φ) n α=0.05 α=0.10 α=0.05 α=0.10 α=0.05 α=0.10
(0.7,0.09) 1 0.063 0.118 0.067 0.122 0.074 0.134

1.5 0.058 0.101 0.065 0.118 0.071 0.121
LGCP-G 2 0.052 0.106 0.055 0.101 0.050 0.096

(1.1,0.05) 1 0.060 0.122 0.062 0.118 0.060 0.114
1.5 0.066 0.119 0.064 0.113 0.065 0.119
2 0.063 0.116 0.053 0.102 0.061 0.114

(1.1,0.05) 1 0.067 0.116 0.066 0.116 0.063 0.120
1.5 0.054 0.110 0.061 0.116 0.055 0.110

LGCP-E 2 0.060 0.114 0.064 0.121 0.065 0.122
(1.6,0.03) 1 0.061 0.115 0.064 0.115 0.064 0.119

1.5 0.048 0.101 0.056 0.109 0.056 0.111
2 0.052 0.102 0.061 0.118 0.064 0.113

(1.6,0.10) 1 0.059 0.116 0.058 0.117 0.064 0.116
1.5 0.043 0.092 0.058 0.107 0.049 0.097

LGCP-C 2 0.059 0.108 0.062 0.116 0.060 0.110
(2.1,0.07) 1 0.054 0.103 0.056 0.104 0.058 0.101

1.5 0.047 0.094 0.056 0.112 0.061 0.105
2 0.054 0.109 0.056 0.106 0.060 0.110

close to the nominal levels as well.

S.1.1.3 Empirical Powers of Goodness-of-fit Tests

The same settings are used as those in Section 6.3, except that data are generated from three types

of log-Gaussian Cox processes, namely, LGCP-G (0.7, 0.09), LGCP-E (1.1, 0.05) and LGCP-C

(1.6, 0.10), which have similar spatial dependences as corresponding shot-noise Cox processes

used in Section 6.3. The empirical rejection rates at the α = 0.05 level based on B = 1, 000

simulation runs are summarized in Figures S3. Similar to simulation results in Section 6.3, we

can see that the Semi-G test has the greatest power against the alternative Ha
1 while practically

no power against Hb
1. On the contrary, the Semi-L test displays the opposite trend. This is

consistent with our discussion in Section 4.4. The Semi-C test using the test function (28) is able

to inherit strengths of both the Semi-G and the Semi-L test, and achieves much greater overall

power than all Monte Carlo tests.
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Figure S3: Empirical powers of goodness-of-fit tests for log-Gaussian Cox processes.

S.1.2 Estimation Accuracies of PCFs when Shape Constraints Are

Violated

In this subsection, we compare performances of the shape-constrained PCF estimator and the

kernel PCF estimator when the shape constraints S1 and S2 are violated. To do so, we simulate

data from the log-Gaussian Cox process with the Bessel family covariance function (LGCP-B),

in which case g0(r) = exp [σ2C(r/φ)] with

C(r) = 2νΓ(ν + 1)r−νJν(r),

where ν ≥ 0, Γ(·) is the Gamma function and Jν(·) is a Bessel function of first kind. We fix

σ2 = 1 and φ = 0.01, and consider multiple ν = 0.5, 0.75, 2. From Figure S4, the true g0(·)’s

are no longer monotone functions as required by the shape constraint S1. Therefore, the shape

constraints on g0(·) are violated. For simulation, the same first-order intensity model is used

as in Section 6.1. Summary statistics based on B = 1, 000 simulation runs are summarized in

Figures S4(b)-(d).
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Figure S4: (a) True PCFs of LGCP-B with various ν’s; (b)-(d) Estimation accuracies of shape-

constrained PCF estimator v.s. Kernel PCF estimator;

From Figure S4(b), we can see that, as expected, the estimation accuracies of the shape-

constrained PCF estimator does not change much when n increases from 1 to 2 for r ≥ 0.03,

indicating large estimation biases. The kernel PCF estimator outperforms the shape-constrained

PCF estimator, especially with n = 2. This is not surprising because the kernel estimator

is universal for isotropic PCFs with various shapes. As ν increases, the true PCFs become

less oscillating and the shape constraint violations become less severe, and consequently, the

advantages of the kernel PCF estimator over the shape constrained PCF estimator gradually

fade away.

5



S.1.3 Impacts of M-spline Degrees

In this section, we investigate the impacts of the degrees of the M-spline on the shape-constrained

PCF estimator. We simulate data in the same way as in Section 6.2 and estimate the PCF with

degrees of the M-spline increasing from m = 0 to m = 5. The averaged MAD(ĝ)=
∫ R
0

MADĝ(r)dr

based on 1, 000 simulation runs are summarized in Figure S5. We can see that the choice of m

has little impact on the estimation accuracy as long as it is not too small (e.g., m = 0). On one

hand, when m = 0, piecewise constant functions are used to approximate the spectral density as

in (6), which may result in significant approximation error, leading to larger MAD(ĝ) values. On

the other hand, although higher order spline basis functions typically lead to more variability of

function estimators in the regression setting, the imposed shape constraints in our work serve as

a strong regularizer for the smoothness of the estimated function and may reduce/offset impacts

of higher degrees of the M-spline.
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Figure S5: MAD(ĝ) of the shape-constrained PCF estimator using M-splines with different
degrees.

S.1.4 Infill Asymptotics v.s. Increasing Domain Asymptotics

Our theoretical results in Section 5 depend on the key assumption that the observation window

Wn is increasing as n grows, which is commonly referred to as the increasing domain asymptotic

framework. In the literature, there exists another type of asymptotic framework where the

observation window is fixed while the number of points increases. In this section, we conduct a
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simulation to illustrate the differences between these two asymptotic frameworks when applied to

the proposed shaped constrained PCF estimator. The data are simulated in the same way as in

Section 6.2. For a given window Wn = [0, n]2, we choose the intercept β0 under H0 appropriately

so that the average number of points per unit square is around ρunit = 200, 400, · · · , 1600 in

increasing order. The averaged MAD(ĝ)=
∫ R
0

MADĝ(r)dr based on 1, 000 simulation runs are

summarized in Figure S6.

Figure S6(a)-(c) reflects the increasing domain asymptotics considered in this paper, for which

ρunit is fixed when Wn expands. There is a clear linear relationship between MAD(ĝ) and log(n),

indicating that the convergence rate of the shape constrained PCF estimator is of the order

O(|Wn|−δ) for some δ > 0, which is as expected. On the contrary, under the infill asymptotic

framework when Wn is fixed, the estimation error first decreases at a fast rate when ρunit is

small and then slower as ρunit gets larger. The nonlinear relationship between MAD(ĝ) and

log(ρunit) suggests that the limiting behavior of the shape constrained PCF estimator under the

infill asymptotic framework is rather different from that under the increasing domain asymptotic

framework considered in this paper, and will be an interesting future research topic.

S.2 Numerical Implementation of Test Statistic

Recall the definition of the test statistic

Tf ĝ
=
[
Qf ĝ

(β̂φĝ
)
]T [

Σf (β̂φĝ
, ĝ)
]− [

Qf ĝ
(β̂φĝ

)
]
,

where

Qf ĝ
(β̂φĝ

) =
1√
|W |

[ ∑
s∈N∩W

f ĝ(s; β̂φĝ
)−

∫
W

ψ(s; β̂φĝ
)f ĝ(s; β̂φĝ

)ds

]
, (S.1)

and based Theorem 2, it can be shown that

Σf (β̂φĝ
, ĝ) = |W |−1

∫∫
W 2

f̃ ĝ(s; β̂φĝ
)f̃

T

ĝ (t; β̂φĝ
) [ĝ(‖s− t‖)− 1]ψ(s; β̂φĝ

)ψ(t; β̂φĝ
)dsdt

+ |W |−1
∫
W

f̃ g̃(s; β̂φĝ
)f̃

T

g̃ (s; β̂φĝ
)ψ(s; β̂φĝ

)ds, (S.2)
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(ĝ

)

log(1) log(1.2) log(1.4) log(1.6) log(1.8) log(2)

ρunit=400
ρunit=800
ρunit=1600

0.
04

0.
06

0.
08

0.
10

0.
12

(d) Thomas (50,0.04)

log(ρunit)

M
A

D
(ĝ
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Figure S6: Increasing domain asymptotics (top panels) v.s. Infill asymptotics (bottom panels).

with f̃ ĝ(s; β̂φĝ
) = f ĝ(s; β̂φĝ

)− [Sf (β̂φĝ
, ĝ)]T [Sφ(β̂φĝ

, ĝ)]−1φĝ(s; β̂φĝ
), where then sensitivity ma-

trix is defined as Sf (β, g) = |W |−1
∫
W
ψ(s;β)η(s;β)fTg (s;β)ds.

Remark 1. The covariance matrix Σf (β̂φĝ
, ĝ) given in (S.2) appears to be different from the one

given in (15). However, it is straightforward to show that if φg(·;β) is the optimal estimating

function obtained by solving the Fredholm integral equation (3), equations (S.2) and (15) give

the same estimated covariance matrices. However, covariance matrix (S.2) is more general in

the sense that it holds even if φg(·;β) is not the optimal estimating function.

Suppose that the spatial domain W can be partitioned into m small sub-domains centered

at quadrature points t1, · · · , tm with associated areas as w1, · · · , wm. Then the integrals in (S.1)
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and (S.2) can be approximated by

Qf ĝ
(β̂φĝ

) =
1√
|W |

[ ∑
s∈N∩W

f ĝ(s; β̂φĝ
)−

m∑
i=1

ψ(ti; β̂φĝ
)f ĝ(ti; β̂φĝ

)wi

]
, (S.3)

Σf (β̂φĝ
, ĝ) = |W |−1

m∑
i=1

m∑
j=1

f̃ ĝ(ti; β̂φĝ
)f̃

T

ĝ (tj; β̂φĝ
) [ĝ(‖ti − tj‖)− 1]ψ(ti; β̂φĝ

)ψ(tj; β̂φĝ
)wiwj

+ |W |−1
m∑
i=1

f̃ g̃(ti; β̂φĝ
)f̃

T

g̃ (ti; β̂φĝ
)ψ(ti; β̂φĝ

)wi, (S.4)

where Sf (β̂φĝ
, ĝ) and Sφ(β̂φĝ

, ĝ) are similarly obtained by quadrature approximation. Now to

approximate Qf ĝ
(β̂φĝ

) and Σf (β̂φĝ
, ĝ), it remains to find the test function values at quadrature

points, i.e., f ĝ(ti; β̂φĝ
), i = 1, · · · ,m and for any s ∈ W , f ĝ(s; β̂φĝ

) takes the same value as the

nearest quadrature point to s.

S.2.1 Global Semi-parametric (Semi-G) Test

The definition of Semi-G test involves the following test function

fG
g (s;β) = Vecsub

[
η(s;β)φTg (s;β)

]
.

Then it immediately follows that

f ĝ(ti; β̂φĝ
) = Vecsub

[
η(ti; β̂φĝ

)φTĝ (ti; β̂φĝ
)
]
, i = 1, · · ·m,

which can then be plugged back in (S.3) and (S.4).

S.2.2 Local Semi-parametric (Semi-L) Test

The definition of Semi-L test involves the following test function

fL
g (s;β) =

∫
W

diag
{[

Sφx
(β, g)

]−1/2
11

, · · · ,
[
Sφx

(β, g)
]−1/2
pp

}
φx,g(s;β)I(s ∈ Bx(d))dx,

where Sφx
(β, g) = |W |−1

∫
W∩Bx(d)

ψ(s;β)η(s;β)φTx,g(s;β)ds and φx,g(s;β) is the solution to the

localized version of equation (3) as follows

φx,g(s;β) +

∫
W∩Bx(d)

φx,g(u;β)ψ(u;β) [g(s, t)− 1] du = η(s;β),

9



for s ∈ W ∩Bx(d).

Using the quadrature approximation for the integral, one has that, for any ti,

fL
g (ti; β̂φĝ

) =
m∑
j=1

diag

{[
Sφtj

(β̂φĝ
, ĝ)
]−1/2
11

, · · · ,
[
Sφtj

(β̂φĝ
, ĝ)
]−1/2
pp

}
φtj ,ĝ

(ti; β̂φĝ
)I(ti ∈ Btj(d))wj.

(S.5)

To find φtj ,ĝ
(ti; β̂φĝ

) for all ti ∈ Btj(d), we approximate the spatial domain Btj(d) by a subset

of the quadrature points, say {tj1 , · · · , tjnj
} ⊂ {t1, t2, · · · , tm}. Then the integral equation can

be approximated by

φtj ,ĝ
(tjk ; β̂φĝ

) +

nj∑
l=1

φtj ,ĝ
(tjl ; β̂φĝ

)ψ(tjl ; β̂φĝ
) [ĝ(tjk , tjl)− 1]wjl = η(tjk ; β̂φĝ

), k = 1, · · · , nj,

which has a closed form solution
φTtj ,ĝ(tj1 ; β̂φĝ

)

φTtj ,ĝ(tj2 ; β̂φĝ
)

...

φTtj ,ĝ(tjnj
; β̂φĝ

)

 =


1 + a11 a12 · · · a1nj

a21 1 + a22 · · · a2nj

...
... · · · ...

anj1 1 + anj2 · · · 1 + anjnj


−1

ηT (tj1 ; β̂φĝ

)

ηT (tj2 ; β̂φĝ
)

...
T

ηT (tjnj
; β̂φĝ

)

 , (S.6)

where akl = ψ(tjl ; β̂φĝ
) [ĝ(tjk , tjl)− 1]wjl for k, l = 1, · · · , nj and j = 1, · · · ,m. Using (S.6),

Sφtj
(β̂φĝ

, ĝ) can be approximated by

Sφtj
(β̂φĝ

, ĝ) = |W |−1
nj∑
l=1

ψ(tjl ; β̂φĝ
)η(tjl ; β̂φĝ

)φTtj ,ĝ(tjl ; β̂φĝ
)wjl , j = 1, · · ·m. (S.7)

By plugging in (S.6) and (S.7) back into (S.5), we can obtain all fL
g (t1; β̂φĝ

), · · · ,fL
g (tm; β̂φĝ

).

S.3 Proof of Proposition 1

It can be readily seen that β†0 = β0 +
∑p

j=1 ajβj and β†1,j = bjβ1,j , j = 1, · · · , p. Then the true

first-order intensity can be written as ψ (s;β) = exp
(
β0 + βT1 Z(s)

)
= exp

(
β†0 + β†T1 Z̃(s)

)
=

ψ
(
s;β†

)
, where β1 = (β1, · · · , βp)T , β†1 = (β†1, · · · , β†p)T , β = (β0,β

T
1 )T and β† = (β†0,β

†T
1 )T .

Some straightforward calculus yields that

η(s;β) =
1

ψ (s;β)

∂ψ (s;β)

∂β
=

1

ψ
(
s;β†

) ( ∂β†
∂βT

)T
∂ψ
(
s;β†

)
∂β†

= Tη†(s;β†),
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where the matrix

T =

(
∂β†

∂βT

)
=


1 0 · · · 0

a1 b1 · · · 0
...

...
. . .

...

ap 0 · · · bp

 . (S.8)

Under the model ψ (s;β), the optimal weight function φg(s;β) solves the integral equation

φg(s;β) +

∫
W

φg(u;β)ψ(u;β) [g(s,u)− 1] du = η(s;β).

Multiple both sides by the matrix T−1 and denote φ†g(s;β†) = T−1φg(s;β), then one has that

φ†g(s;β†) +

∫
W

φ†g(u;β†)ψ(u;β†) [g(s,u)− 1] du = η†(s;β),

suggesting that φ†g(s;β†) = T−1φg(s;β) is the optimal weight function under the re-parameterized

model ψ(u;β†).

When ψ (s;β) = exp
(
β0 + βT1 Z(s)

)
, one has that η(s;β) = (1,ZT (s))T and similarly

η†(s;β) = (1, Z̃T (s))T . Then one has that η0(s;β)φ0,g(s;β) = φ0,g(s;β), which means that

the (1, 1) entry in the matrix is of the form

[
Ŝφ(β0, g0)− Σ̂

∗
φ(β0, g0)

]
(1,1)

=
1

|W |

[ ∑
s∈N∩W

φ0,ĝ(s; β̂φĝ
)−

∫
W

ψ(s; β̂φĝ
)φ0,ĝ(s; β̂φĝ

)ds

]
= 0,

(S.9)

where the last equality follows from the definition of β̂φĝ
and φT0,ĝ(s; β̂φĝ

).

Similarly, one has that under the re-parameterized model ψ(u;β†)

[
Ŝφ†(β

†
0, g0)− Σ̂

∗
φ†(β

†
0, g0)

]
(1,1)

=
1

|W |

[ ∑
s∈N∩W

φ†0,ĝ(s; β̂
†
φ†ĝ

)−
∫
W

ψ(s; β̂
†
φ†ĝ

)φ†0,ĝ(s; β̂
†
φ†ĝ

)ds

]
= 0.

(S.10)

Consequently, by the definition of the Semi-G test, under the model ψ(u;β), the test function

is of the form.

fGg (s;β) = [Z1(s)φ0,g(s;β), · · · , Zp(s)φ0,g(s;β), Z1(s)φ1,g(s;β), · · · , Zp(s)φp,g(s;β)]T .
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Similarly, under the re-parameterized model ψ(u;β†)

fG†g (s;β) =
[
Z̃1(s)φ†0,g(s;β†), · · · , Z̃p(s)φ†0,g(s;β†), Z̃1(s)φ†1,g(s;β†), · · · , Z̃p(s)φ†p,g(s;β)

]T
.

By the definition of matrix T in (S.8), and the relationship η(s;β) = Tη†(s;β†) and φg(s;β) =

Tφ†g(s;β†), we have that φ0,g(s;β) = φ†0,g(s;β†) and that Z(s) = aj + bjZ̃j(s), φj,g(s;β) =

ajφ
†
0,g(s;β†) + bjφ

†
j,g(s;β†), j = 1, · · · , p. Plugging these inequality back to the definition

QG(β̂φĝ
) =

1√
|W |

[ ∑
s∈N∩W

fGg (s; β̂φĝ
)−

∫
W

ψ(s; β̂φĝ
)fGg (s; β̂φĝ

)ds

]
, and

QG(β̂
†
φ†ĝ

) =
1√
|W |

[ ∑
s∈N∩W

fG†g (s; β̂
†
φ†ĝ

)−
∫
W

ψ(s; β̂
†
φ†ĝ

)fG†g (s; β̂
†
φ†ĝ

)ds

]
,

and making use of the equality (S.10) together with the fact ψ(·; β̂φĝ
) = ψ(·; β̂

†
φ†ĝ

), one has the

relationship that

QG(β̂φĝ
) = T1Q

G(β̂
†
φ†ĝ

),

where the matrix

T1 =

(
diag{b1, · · · , bp} 0p×p

diag{a1b1, · · · , apbp} diag{b21, · · · , b2p}

)
Then by the definition of the test statistic, some straightforward but tedious algebra gives

TfG
g ,n
− T̃fG

g ,n
=
[
QG(β̂φĝ

)
]T

Var
[
QG(β̂φĝ

)
]−1

QG(β̂φĝ
)−

[
QG(β̂

†
φ†ĝ

)
]T

Var
[
QG(β̂

†
φ†ĝ

)
]−1

QG(β̂
†
φ†ĝ

) + op(1)

=
[
QG(β̂φĝ

)
]T

Var
[
QG(β̂φĝ

)
]−1

QG(β̂φĝ
)−

[
QG(β̂φĝ

)
]T

TT
1

{
T1Var

[
QG(β̂φĝ

)
]

TT
1

}−1
T1Q

G(β̂φĝ
) + op(1).

Finally, since ΣfG
g

(β0, g0) is full rank and Var
[
QG(β̂φĝ

)
]

= ΣfG
g

(β0, g0) + o(1), we have that

Var
[
QG(β̂φĝ

)
]

is invertable, which further gives that

TfG
g ,n
− T̃fG

g ,n
= op(1).

The proof of Proposition 1 is completed.
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S.4 Proof of Theorem 1

S.4.1 Notations and Conditions

Let An, bn, gs,n(·;θ) be the corresponding quantities defined in Section 3.2. With slight abuse

of notation, we denote all linear constraints in the quadratic programming problem outline

in (8)-(11) as Cnθ ≥ 0, although we set the first constraint as an equality constraint. For two

sequences {an} and {bn}, we write an = O(bn) or an = o(bn) if an/bn is uniformly bounded for

any n or an/bn → 0 as n → ∞, respectively. Let
p−→ denote convergence in probability and

d−→ denote convergence in distribution. For a sequence of random variables {Xn}, Xn = Op(an)

or Xn = op(an) if Xn/an is bounded in probability or Xn/an
p−→ 0, respectively. Finally, let

‖D‖max = maxi,j(|eij|) be the max norm of a matrix or vector D, ‖e‖1 =
∑

i |ei| be the `1 norm

of the vector e, and λmax(D) and λmin(D) be the largest and the smallest eigenvalues of the

matrix D, respectively.

Define the k’th order joint intensity λ(k)(·) by the identity

E

[ 6=∑
s1··· ,sk∈N

I(s1 ∈ B1, · · · , sk ∈ Bk)

]
=

∫
B1×···×Bk

λ(k)(t1, · · · , tk)dt1 · · · dtk

for bounded subsets Bj ⊂ R2, j = 1, · · · , k, where the sum is over distinct s1 · · · , sk. Then,

g(k)(s1, · · · , sk) = λ(k)(s1, · · · , sk)/ [λ(s1) · · ·λ(sk)] is called the kth-order normalized joint intensi-

ties, which are assumed to be translation invariant, i.e. g(k)(s1, · · · , sk) = g
(k)
0 (s2−s1, · · · , sk−s1)

for some function g
(k)
0 (·), for k = 2, 3, 4. In particular, we write g0(·) for g

(2)
0 (·).

We first establish uniform consistency of the shape constrained PCF estimator gs,n(·; θ̂n)

defined in (12), for which the following conditions are sufficient.

[C1] There exist 0 < cλ < Cλ < ∞ such that cλ ≤ ψ(s;β) ≤ Cλ for any β in a com-

pact set and s ∈ Wn. Furthermore, ψ(s;β) is twice differentiable with respect to β and

‖ψ(1)(s;β)‖max ≤ Cλ, ‖∂2ψ(s;β)/(∂β∂βT )‖max ≤ Cλ for any β and s ∈ Wn.

[C2] Assume that there exist a Cg > 0 such that (a)
∫
R2 |g0(‖s‖) − 1|ds ≤ Cg; (b)∣∣g(k)(s1, s2, · · · , sk)∣∣ ≤ Cg for sj ∈ Wn, j = 1, · · · , k and k = 2, 3; and (c)

∫
R2 |g(4)0 (s, t +
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w,w)− g0(‖s‖)g0(‖t‖)|dw ≤ Cg.

[C3] limn→∞ λmin [Sp
n(β0)] > 0, with the sensitivity matrix of the Poisson likelihood Sp

n(β0) =

1
|Wn|

∫
Wn

[ψ(s;β0)]
−1ψ(1)(s;β0)ψ

(1)T (s;β0)ds.

[C4] Denoting (7) as bn = (b1,n, · · · , bJn,n)T , there exist C0 > 0, t0 > 0 and n0, such that for

any n ≥ n0, it holds that P
(√
|Wn| |bj,n − E (bj,n)| > t

)
≤ exp (−C0t) , for any t > t0,

j = 1, · · · , Jn.

[C5] With θ0,n = arg min
Cnθ≥0

∫ R
0
w(r) [gs,n(r;θ)− g0(r)]2 dr, assume the approximation error

en = supr∈[0,R] |gs,n(r;θ0,n)− g0(r)| → 0 as |Wn| → ∞.

[C6] Define the partition of the constraint matrix Cn =
[
CT
n,A,C

T
n,Ac

]T
such that Cn,Aθ0,n = 0

and Cn,Acθ0,n > 0, and the quantity ηn = min‖δ‖1=1,Cn,Aδ≥0 δ
TAnδ > 0. We assume that

ηn = O(1) and that
(
en + |Wn|−1/2logJn

)
/ηn = o(1) as |Wn| → ∞ (with en defined in C5).

Conditions C1-C3 are standard conditions that ensure the consistency of β̂
p

and have been

widely used in the literature, see, e.g., Schoenberg (2005); Prokešová et al. (2017). Condition C4

requires that each component of bn has a distribution whose tail decays exponentially fast when

Wn is sufficiently large. This is a mild condition due to the definition of bn in (7), each component

of which can be shown to be asymptotically normal as |Wn| → ∞ under some additional mild

conditions such as N1 and N2 in Section S.6.1. The tail of a normal distribution decays even

faster than the exponential rate. Condition C5 asserts that gs,n(·;θ0,n) can approximate the true

g0(·) sufficiently well, which applies to a large class of existing point process models provided

that Jn and Ln are sufficiently large.

Condition C6 is similar to the “self-regularizing property” (Slawski et al., 2013) and the

“minimal positive compatible eigenvalue” (Meinshausen et al., 2013) that are used to introduce

sparsity in the solution θ̂n to the sign constrained optimization problem defined by (8)-(11). In

other words, a large ηn means that more components of the solution θ̂n are 0’s. The magnitude

of ηn depends on three quantities: Jn, Ln and θ0,n. Recall that An is a Jn × Jn matrix, and

thus increasing Jn will potentially decrease ηn. However, the effect of a large Jn will be greatly

14



offset by the number of equality constraints in Cn,A, which is controlled by the value of θ0,n. The

more constraints in Cn,A, the larger ηn is by its definition. This explains the observation that

increasing the number of knots Jn in the M-spline approximation (6) has rather limited impact

on gs,n(·; θ̂n) because most of the components in θ̂n are forced to be 0’s. This is consistent with

the self-regularizing property of the nonnegative least square estimators studied in Slawski et al.

(2013) and Meinshausen et al. (2013). Finally, the impact of Ln on ηn is that increasing Ln tend

to increase the singularity of the matrix An, leading to a smaller ηn. Therefore, condition C6

essentially imposes some implicit restrictions on Jn, Ln and the underlying truth θ0,n.

S.4.2 Proof

Lemma 1. For a sequence of random variables X1, · · · , XJn such that EXj = 0 and P (|Xj| >

t) ≤ exp(−C0t) for some constant C0 > 0 and t > t0 with t0 > 0 being some constant, and

J = 1, · · · , Jn, then we have that

max (|X1|, · · · , |XJn|) = Op (logJn) .

Proof. For any constant C > 0, it is straightforward to show that

P (max (|X1|, · · · , |XJn|) > ClogJn) = P
(
∪Jnj=1{|Xj| > ClogJn}

)
≤

Jn∑
j=1

P (|Xj| > ClogJn)

≤ Jn exp(−C0ClogJn) = J1−CC0
n ,

where the right-hand side can be arbitrarily small when C increases. Therefore, by the definition

of convergence in probability, we have that

max (|X1|, · · · , |XJn|) = Op (logJn) .

Proof of Theorem 1. Under conditions C1-C3, Theorem 1 of Waagepetersen and Guan (2009)

asserts that
√
|Wn|

(
β̂

p
− β0

)
= Op(1). Therefore, to simplify the presentation, we assume that
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β̂
p

can be replaced safely with β0 without altering the asymptotic results.

Define the constant cmax = ‖CT
nθ0,n‖max, then for any 0 < αn ≤ cmax and a vector δ such that

‖δ‖1 ≤ 1 and Cn,Aδ ≥ 0, it is straightforward to see that θ̃n = θ0,n + αnδ is a feasible solution

for the optimization problem in equation (9), that is,

minimize Qn(θ) =
1

2
θTAnθ + θTbn s.t. Cnθ ≥ 0. (S.11)

Let αn = Cη−1n (en + |Wn|−1/2logJn) for some large constant C and it suffices to show that for

any given ε > 0, for large enough Wn, we have

P

[
inf

‖δ‖1=1,Cn,Aδ≥0
Qn(θ0,n + αnδ) > Qn(θ0,n)

]
≥ 1− ε. (S.12)

Note that any feasible solution to (S.11) that is close to θ0,n, denoted as θ̃n such that

‖θ̃n − θ0,n‖1 ≤ αn, must satisfy Cn,A(θ̃n − θ0,n) ≥ 0 by the definition of Cn,A. Therefore,

combining the fact that Qn(θ) is a convex function of θ, the inequality (S.12) implies that,

with a probability tending to 1, there exists a local minimizer θ̂n in the feasible solution region

{θ0,n + αnδ : ‖δ‖1 ≤ 1,Cn,Aδ ≥ 0} such that ‖θ̂n − θ0,n‖1 = Op(αn).

It is straightforward to show that

Qn(θ0,n + αnδ)−Qn(θ0,n) =
α2
n

2
δTAnδ + αnδ

T (bn + Anθ0,n).

Define the random variable Zn = sup‖δ‖1=1 |δT (bn + Anθ0,n) |, and it is easy to see that

inf
‖δ‖=1,Cn,Aδ≥0

Qn(θ0,n+αnδ)−Qn(θ0,n) ≥ α2
n

2
ηn−αnZn =

α2
n

2
ηn−

1

C

α2
nηnZn

en + |Wn|−1/2logJn
, (S.13)

which implies that to show (S.12), it suffices to show that Zn = Op(en + |Wn|−1/2logJn) with a

sufficiently large constant C.

Note that δT (bn + Anθ0,n) =
∫ R
0
w(r)

[
θT0,nxg(r) + 1− g0(r)

] [
δTxg,n(r)

]
dr+δT (bn−Ebn),
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then using the triangle inequality, we have that

Zn ≤ sup
‖δ‖1=1

∣∣∣∣∫ R

0

w(r)
[
θT0,nxg(r) + 1− g0(r)

] [
δTxg,n(r)

]
dr

∣∣∣∣+ sup
‖δ‖1=1

∣∣δT (bn − Ebn)
∣∣

≤ sup
r∈[0,R]

∣∣θT0,nxg(r) + 1− g0(r)
∣∣× ∫ R

0

w(r)‖xg,n(r)‖maxdr + ‖bn − Ebn‖max

= O(1)en + ‖bn − Ebn‖max,

where the last equality follows from condition C5 and the fact that ‖xg,n(r)‖max is uniformly

bounded by its definition for any r ∈ [0, R]. Using condition C4 and Lemma 1, it readily follows

that ‖bn − Ebn‖max = Op(|Wn|−1/2logJn) and as a result Zn = Op(en + |Wn|−1/2logJn), which

completes the proof for inequality (S.12). Therefore, we have that

‖θ̂n − θ0,n‖1 = Op

(
en + |Wn|−1/2logJn

ηn

)
.

Furthermore, using the triangular inequality, we have that

sup
0≤r≤R

|gs,n(r; θ̂n)− g0(r)| ≤ sup
0≤r≤R

|gs,n(r; θ̂n)− gs,n(r;θ0,n)|+ sup
0≤r≤R

|gs,n(r;θ0,n)− g0(r)|

≤ sup
0≤r≤R

∣∣∣xTg,n(r)
(
θ̂n − θ0,n

)∣∣∣+ sup
0≤r≤R

|gs,n(r;θ0,n)− g0(r)|

≤
[

sup
0≤r≤R

‖xTg,n(r)‖max

]
‖θ̂n − θ0,n‖1 + sup

0≤r≤R
|gs,n(r;θ0,n)− g0(r)|

= Op

(
en + |Wn|−1/2logJn

ηn

)
+Op(en)

= Op

(
en + |Wn|−1/2logJn

ηn

)
,

which completes the proof of Theorem 1.

S.5 Proof of Theorem 2

S.5.1 Conditions and Lemmas

[L1] Assume that φn,θ(s;β) is differentiable with respect to θ and β, and that there ex-

ists some constant K1 > 0 such that sups∈Wn
‖φn,θ(s;β)‖max, sups∈Wn

‖∂φn,θ(s;β)

∂β
‖max,

sups∈Wn
‖∂φn,θ(s;β)

∂θ
‖max are uniformly bounded for (β,θ) satisfying ‖β − β0‖1 ≤ K1, ‖θ −

θ0,n‖1 ≤ K1.
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[L2] Denote matrix Hφ,n(θ) = 1√
|Wn|

[ ∑
s∈N∩Wn

∂φn,θ(s;β0)

∂θ
−
∫
Wn

ψ(s;β0)
∂φn,θ(s;β0)

∂θ
ds

]
and its

ijth element as hij,φ,n(θ). Assume that there exists a constant K2 > 0 and n0 such that

for any n ≥ n0, it holds that for any θ satisfying ‖θ − θ0,n‖1 ≤ K1, P (|hij,φ,n(θ)| > t) ≤

exp (−K2t) , for any t > t0 with t0 > 0 being some constant and i = 1, · · · , p, j = 1, · · · , Jn.

[L3] Let Sφ,n(β0,θ0,n) = 1
|Wn|

∫
Wn
ψ(1)(s;β0)φ

T
n,θ0,n

(s;β0)ds, where ψ(1)(s;β) = ∂ψ(s;β)
∂β

. We

assume that lim infn→∞ λmin [Sn(β0,θ0,n)] > 0.

Conditions L1 and L3 are taken from Guan et al. (2015) and are rather mild conditions. Condition

L2 is the same as the condition C4 and can be justified by the fact that under some mild

conditions, each component in Hφ,n(θ) is asymptotically normal as |Wn| → ∞, whose tail decays

even faster than the exponential rate.

Lemma 2. For any bounded function h : R2 → R, under conditions C1-C2, we have that

Var

[ ∑
s∈N∩Wn

h(s)

]
= O(|Wn|).

Proof. Using the Campbell’s formula, it is straightforward to show that, under conditions C1-C2,

Var

[ ∑
s∈N∩Wn

h(s)

]
=

∫
Wn

ψ(s;β0)h
2(s) +

∫
Wn

∫
Wn

ψ(s;β0)ψ(t;β0) [g0(‖s− t‖)− 1]h(s)h(t)dsdt

≤ Cλ|Wn| sup
s∈Wn

h2(s) + C2
λ|Wn|Cg

[
sup
s∈Wn

h(s)

]2
= O(|Wn|).

Lemma 3. Under conditions C1, C2 and L1, if ‖β − β0‖1 → 0 and ‖θ − θ0,n‖1 → 0, then

sup
s∈Wn

∥∥∥φn,θ(s;β)− φn,θ0,n(s;β0)
∥∥∥
max

= O(‖β − β0‖1 + ‖θ − θ0,n‖1).

Proof. For any given β,θ, recall the Fredholm integral equation of the second kind using the

shape constrained PCF estimator gr(r;θ) that gives the optimal weight function φθ(s;β)

φn,θ(s;β) +

∫
Wn

φn,θ(u;β)ψ(u;β) [gs,n(‖s− u‖;θ)− 1] du = ψ(1)(s;β)/ψ(s;β). (S.14)
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Define function hn(s) = φn,θ(s;β)− φn,θ0,n(s;β0), which must satisfy the integral equation

hn(s) +

∫
Wn

hn(u)ψ(u;β0) [gs,n(‖s− u‖;θ0,n)− 1] du = ∆n(s), (S.15)

where

∆n(s) =
ψ(1)(s;β)

ψ(s;β)
− ψ

(1)(s;β0)

ψ(s;β0)
−
∫
Wn

φn,θ(u;β)ψ(u;β) [gs,n(‖s− u‖;θ)− 1] du

+

∫
Wn

φn,θ(u;β)ψ(u;β0) [gs,n(‖s− u‖;θ0,n)− 1] du

=
ψ(1)(s;β)

ψ(s;β)
− ψ

(1)(s;β0)

ψ(s;β0)
−
∫
Wn

φn,θ(u;β) [ψ(u;β)− ψ(u;β0)] [gs,n(‖s− u‖;θ)− 1] du

+

∫
Wn

φn,θ(u;β)ψ(u;β0) [gs,n(‖s− u‖;θ0,n)− gs,n(‖s− u‖;θ)] du.

Under conditions C1-C2 and L1, and the fact that gs,n(r;θ) is bounded and gs,n(r;θ) = 1 for

any r > R by design, a straightforward application of Taylor expansion yields that

sup
s∈Wn

‖∆n(s)‖max = O(1)‖β − β0‖1 +O(1)‖θ − θ0,n‖1. (S.16)

Define the identity functional operator I(f) = f(s) for s ∈ Wn and

Kn(f) =

∫
Wn

f(u)ψ(u;β0) [gs,n(‖s− u‖;θ0,n)− 1] du.

Denote by (I +Kn)−1 the inverse operator of the linear operator I +Kn. Since the solution to

the integral equation (S.15) must satisfy hn(s) = (I +Kn)−1∆n(s), we have that

sup
s∈Wn

‖hn(s)‖max = sup
s∈Wn

‖(I +Kn)−1∆(s)‖max ≤ ‖(I +Kn)−1‖op sup
s∈Wn

‖∆(s)‖max, (S.17)

where ‖(I+Kn)−1‖op is the operator norm of the linear operator (I+Kn)−1. Since under the con-

straint S2, gs,n(‖s−t‖;θ0,n)−1 is a positive semi-definite function of (s, t) ∈ W 2
n , hence the linear

operator (I+Kn) does not have an eigen-value 0, and hence ‖(I+Kn)−1‖op <∞. Therefore, mak-

ing use of equation (S.16) and (S.17), we conclude that sups∈Wn

∥∥∥φn,θ(s;β)− φn,θ0,n(s;β0)
∥∥∥
max

=

O(‖β − β0‖1 + ‖θ − θ0,n‖1).

19



S.5.2 Proof of Theorem 2

Some straightforward calculus yields that the negative partial derivatives of the optimal estimat-

ing function Qφg
(β) defined in equation (3) is of the form

Jφ,n(β,θ) = − 1√
|Wn|

∂Qφ,n(β,θ)

∂β

= − 1

|Wn|

[ ∑
s∈N∩Wn

∂φn,θ(s;β)

∂β
−
∫
Wn

ψ(s;β)
∂φn,θ(s;β)

∂β
ds

]
+ Sφ,n(β,θ),

(S.18)

where Sφ,n(β,θ) is as defined in conditions L3. And the variance of the optimal estimating

function is of the form

Σ†φ,n(β,θ) = Var [Qφ(β,θ)] =
1

|Wn|

∫
Wn

ψ(s;β0)φn,θ(s;β)φTn,θ(s;β)

+
1

|Wn|

∫
Wn

∫
Wn

ψ(s;β0)ψ(t;β0) [g0(‖s− t‖)− 1]φn,θ(s;β)φTn,θ(s;β)dsdt.

(S.19)

By the design of the optimal weight function φ(·) in equation (4), it is straightforward to

show that

Σ†φ,n(β0,θ0,n)− Sφ,n(β0,θ0,n) =
1

|Wn|

∫
Wn

∫
Wn

ψ(s;β0)ψ(t;β0) [g0(‖s− t‖)− gs,n(‖s− t‖;θ0,n)]

× φn,θ(s;β)φTn,θ(s;β)dsdt

≤ sup
r∈[0,R]

|g0(r)− gs,n(r;θ0,n)|×

1

|Wn|

∫
Wn

∫
Wn

ψ(s;β0)ψ(t;β0)I(‖s− t‖ ≤ R)φn,θ(s;β)φTn,θ(s;β)dsdt

Under the conditions C1, C5 and L1, we have that

∥∥∥Σ†φ,n(β0,θ0,n)− Sφ,n(β0,θ0,n)
∥∥∥
max

= O(en) = o(1). (S.20)

We first show that
√
|Wn|(β̂φ̂,n − β0) = Op(1) following the approach in Guan et al. (2015),

which amounts to show

R1 ‖|Wn|−1Σ†−1φ,n (β0,θ0,n)‖max = o(1).
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R2 Let αn = η−1n (en + |Wn|−1/2logJn), show that for some constant d > 0,

sup
‖β−β0‖1≤ d√

|Wn|
,‖θ−θ0,n‖1≤dαn

‖Jφ,n(β,θ)− Jφ,n(β0,θ0,n)‖max = op(1).

R3
∥∥∥Jφ,n(β0, θ̂n)− Sφ,n(β0,θ0,n)

∥∥∥
max

= op(1).

R4
∥∥∥Qφ,n(β0, θ̂n)−Qφ,n(β0,θ0,n)

∥∥∥
max

= op(1).

R5 limn→∞ λmin

[
Σ†−1φ,n (β0,θ0,n)Sφ,n(β0,θ0,n)Σ†−1φ,n (β0,θ0,n)

]
> 0.

Proof of R1: As |Wn| → ∞, R1 follows directly from condition L3 and equation (S.20).

Proof of R2: Using equation (S.18) and Lemma 2, it readily follows that under condition

L1, for any ‖β − β0‖1 ≤ d√
|Wn|

, ‖θ − θ0,n‖1 ≤ dαn,

Var [Jij,φ,n(β,θ)− Sij,φ,n(β,θ)] = O(|Wn|−1), i, j = 1, · · · , p,

and

‖E [Jφ,n(β,θ)− Sφ,n(β,θ)] ‖max =
1

|Wn|

∥∥∥∥∫
Wn

[ψ(s;β)− ψ(s;β0)]
∂φn,θ(s;β)

∂β
ds

∥∥∥∥
max

≤ 1

|Wn|

∫
Wn

|ψ(s;β)− ψ(s;β0)|
∥∥∥∥∂φn,θ(s;β)

∂β

∥∥∥∥
max

ds

=
1

|Wn|

∫
Wn

∣∣∣(β − β0)Tψ(1)(s;β∗)
∣∣∣ ∥∥∥∥∂φn,θ(s;β)

∂β

∥∥∥∥
max

ds

=
‖β − β0‖1
|Wn|

∫
Wn

∥∥∥ψ(1)(s;β∗)
∥∥∥
max

∥∥∥∥∂φn,θ(s;β)

∂β

∥∥∥∥
max

ds

= O(1)‖β − β0‖1,

where the last equality follows from conditions C1 and L1. Therefore, we have that for any

‖β − β0‖1 ≤ d√
|Wn|

, ‖θ − θ0,n‖1 ≤ dαn,

Jφ,n(β,θ) = Sφ,n(β,θ) +Op(|Wn|−1/2). (S.21)

Based on (S.21), we have that

Jφ,n(β,θ)− Jφ,n(β0,θ0,n) = Sφ,n(β,θ)− Sφ,n(β0,θ0,n) +Op(|Wn|−1/2),
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which implies that to show R2, it suffices to show that

sup
‖β−β0‖1≤ d√

|Wn|
,‖θ−θ0,n‖1≤dαn

‖Sφ,n(β,θ)− Sφ,n(β0,θ0,n)‖max = o(1). (S.22)

To show (S.22), using the Taylor expansion, we have that

‖Sφ,n(β,θ)− Sφ,n(β0,θ0,n)‖max ≤
1

|Wn|

∫
Wn

∥∥∥[ψ(1)(s;β)−ψ(1)(s;β0)
]
φTn,θ(s;β)

∥∥∥
max

ds

+
1

|Wn|

∫
Wn

∥∥∥ψ(1)(s;β0)
[
φn,θ(s;β)− φn,θ0,n(s;β0)

]∥∥∥
max

ds

≤ ‖β − β0‖1
|Wn|

∫
Wn

∥∥∥ψ(2)(s;β∗)
∥∥∥
max

∥∥φn,θ(s;β)
∥∥
max

ds

+
1

|Wn|

∫
Wn

∥∥∥ψ(1)(s;β0)
∥∥∥
max

∥∥∥φn,θ(s;β)− φn,θ0,n(s;β0)
∥∥∥
max

ds.

Therefore, under conditions C1, L1 and Lemma 3 (recall that under condition C6, αn → 0 and

thus conditions of Lemma 3 are satisfied), we have that

‖Sφ,n(β,θ)− Sφ,n(β0,θ0,n)‖max = O(‖β − β0‖1 + ‖θ − θ0,n‖1), (S.23)

which completes the proof of equation (S.22) and thus the proof of R2.

Proof of R3: Using the triangular inequality, we have that∥∥∥Jφ,n(β0, θ̂n)− Sφ,n(β0,θ0,n)
∥∥∥
max

≤
∥∥∥Jφ,n(β0, θ̂n)− Jφ,n(β0,θ0,n)

∥∥∥
max

+ ‖Jφ,n(β0,θ0,n)− Sφ,n(β0,θ0,n)‖max

= op(1) +Op(|Wn|−1/2) = op(1),

where the second last equality follows from R2 (by Theorem 1, ‖θ̂n − θ0,n‖1 = Op(αn)) and

equation (S.21).

Proof of R4: To prove R4, it suffices to show that

sup
‖θ−θ0,n‖1≤dαn

‖Qφ,n(β0,θ)−Qφ,n(β0,θ0,n)‖max = op(1). (S.24)

To show (S.24), using the first order Taylor expansion of Qφ,n(β0,θ) around θ = θ0,n, we have

that

‖Qφ,n(β0,θ)−Qφ,n(β0,θ0,n)‖max = ‖Hφ,n(θ∗)(θ − θ0,n)‖max ≤ ‖Hφ,n(θ∗)‖max ‖θ − θ0,n‖1,
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where Hφ,n(θ) is as defined in condition L2 and ‖θ∗− θ0,n‖1 ≤ ‖θ− θ0,n‖1. Under condition L2

and using Lemma 1, we have that ‖Hφ,n(θ∗)‖max = Op(logJn), which further improves that

sup
‖θ−θ0,n‖1≤dαn

‖Qφ,n(β0,θ)−Qφ,n(β0,θ0,n)‖max = Op(αnlogJn) = op(1),

which completes the proof of (S.24).

Proof of R5: As |Wn| → ∞, R5 follows directly from condition L3 and equation (S.20).

Therefore, we have shown that
√
|Wn|(β̂φ̂,n−β0) = Op(1). Then using the Taylor expansion,

we have that

Qφ̂,n

(
β̂φ̂,n, θ̂n

)
−Qφ,n

(
β0, θ̂n

)
= −Jφ,n

(
β∗, θ̂n

)√
|Wn|

(
β̂φ̂,n − β0

)
,

where ‖β∗ − β0‖1 ≤ ‖β̂φ̂,n − β0‖1, and Jφ,n(·, ·) is as defined in (S.18). Consequently, we have

that

√
|Wn|

(
β̂φ̂,n − β0

)
= J−1φ,n

(
β∗, θ̂n

)
Qφ,n

(
β0, θ̂n

)
= [Sφ,n(β0,θ0,n)]−1 Qφ,n (β0,θ0,n) + op(1),

where the last equality follows from R2, R3 and R4. The proof of Theorem 2 is complete.

S.6 Proof of Theorem 3

S.6.1 Notations and Conditions

For the asymptotic distribution of the test statistic, we introduce the definition of α-mixing

coefficients for point processes to quantify the strength of spatial dependence. For two σ-

algebras F and G define α [F ,G] = sup {|P (F ∩G)− P (F )P (G)| : F ∈ F , G ∈ G}. For any

s, c1, c2 ≥ 0, the α-mixing coefficients of a point process N are defined as αN(s; c1, c2) =

sup{α [σ(N ∩ E1), σ(N ∩ E2)] : Bk ⊂ R2, |Bk| ≤ ck, k = 1, 2, d(B1, B2) ≥ s}, where d(B1, B2) =

inf{max
1≤i≤2

|si − ti| : s = (s1, s2)
T ∈ B1, t = (t1, t2)

T ∈ B2}.

The following additional conditions are needed for asymptotic distributions.

[N1] The mixing coefficient of N , αN(r; 2,∞) = O(r−2−ε) for some ε > 0.
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[N2] There exist constants Cg and δ > 4/ε such that
∣∣g(k)(s1, s2, · · · , sk)∣∣ ≤ Cg for any sj ∈ Wn,

j = 1, · · · , k and k = 2, · · · , 2(2 + dδe), with dδe being the smallest integer greater than δ.

These two conditions are standard conditions, see, e.g., Prokešová and Jensen (2013);

Prokešová et al. (2017), and impose no rigid restrictions. We also need the following techni-

cal conditions.

[L4] Assume that fn,θ(s;β) is differentiable with respect to θ and β, and that there ex-

ists some constant K1 > 0 such that (a) sups∈Wn
‖fn,θ(s;β)‖max, sups∈Wn

‖∂fn,θ(s;β)

∂β
‖max,

sups∈Wn
‖∂fn,θ(s;β)

∂θ
‖max are uniformly bounded for (β,θ) satisfying ‖β − β0‖1 ≤ K1, ‖θ −

θ0,n‖1 ≤ K1; (b) sups∈Wn

∥∥∥fn,θ(s;β)− fn,θ0,n(s;β0)
∥∥∥
max

= O(‖β − β0‖1 + ‖θ − θ0,n‖1) if

‖β − β0‖1 → 0 and ‖θ − θ0,n‖1 → 0 as |Wn| → ∞.

[L5] Denote matrix Hf ,n(θ) = 1√
|Wn|

[ ∑
s∈N∩Wn

∂fn,θ(s;β0)

∂θ
−
∫
Wn

ψ(s;β0)
∂fn,θ(s;β0)

∂θ
ds

]
and its

ijth element as hij,f ,n(θ). Assume that there exists a constant K2 > 0 and n0 such that

for any n ≥ n0, it holds that for any θ satisfying ‖θ − θ0,n‖1 ≤ K1, P (|hij,f ,n(θ)| > t) ≤

exp (−K2t) , for any t > t0 with t0 > 0 being some constant and i = 1, · · · , p, j = 1, · · · , Jn.

[L6] Let df = rank [Σf ,n(β0, g0)] and there exists a df × q matrix B(β0, g0) such that

‖B(β0, g0)‖max <∞ and B(β0, g0)Σf ,n(β0, g0)B
T (β0, g0) = Idf .

Conditions L4(a) and L5 are identical to conditions L1-L2, with φn,θ(·;β) replaced by fn,θ(·;β).

Condition L4(b) is similar to the Lemma 3, and is rather mild based on the definition of fL
n,θ(·;β)

and fG
n,θ(·;β).

S.6.2 Proof of Theorem 3

Using the first-order stochastic Taylor expansion, one has that

Qf ,n(β̂φ̂,n, θ̂n)−Qf ,n(β0, θ̂n) = −Jf ,n(β∗, θ̂n)
√
|Wn|

(
β̂φ̂,n − β0

)
,
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where Jf ,n(β, θ̂) is as defined in (S.18). Using the same arguments in the proof of R2 and R3 of

Theorem 2, one can show that under the condition L4,

sup
‖β−β0‖1≤ d√

|Wn|
,‖θ−θ0,n‖1≤dαn

‖Jf ,n(β,θ)− Sf ,n(β0,θ0,n)‖max = op(1),

where αn = η−1n (en + |Wn|−1/2logJn) and some constant d > 0. Using Theorem 1 and the above

equality, it immediately follows that

Qf ,n(β̂φ̂,n, θ̂n) = Qf ,n(β0, θ̂n)− Sf ,n(β0,θ0,n)
√
|Wn|

(
β̂φ̂,n − β0

)
+ op(1).

Then using the same arguments in the proof of R4 of Theorem 2, under conditions L4-L5, one

has that
∥∥∥Qf ,n(β0, θ̂n)−Qf ,n(β0,θ0,n)

∥∥∥
max

= op(1), which further implies that

Qf ,n(β̂φ̂,n, θ̂n) = Qf ,n(β0,θ0,n)− Sf ,n(β0,θ0,n)
√
|Wn|

(
β̂φ̂,n − β0

)
+ op(1).

Then using Theorem 2, it immediately follows that

Qf ,n(β̂φ̂,n, θ̂n) = Qf ,n(β0,θ0,n)− STf ,n(β0,θ0,n) [Sφ,n(β0,θ0,n)]−1 Qφ,n (β0,θ0,n) + op(1). (S.25)

Using (S.25), some straightforward algebra yields that

Var
[
Qf ,n(β̂φ̂,n, θ̂n)

]
= Var [Qf ,n(β0,θ0,n)]− STf ,n(β0,θ0,n) [Sφ,n(β0,θ0,n)]−1 Cov [Qφ,n(β0,θ0,n),Qf ,n(β0,θ0,n)]

− Cov [Qf ,n(β0,θ0,n),Qφ,n(β0,θ0,n)] [Sφ,n(β0,θ0,n)]−1 Sf ,n(β0,θ0,n)

+ STf ,n(β0,θ0,n) [Sφ,n(β0,θ0,n)]−1 Var [Qφ,n (β0,θ0,n)] [Sφ,n(β0,θ0,n)]−1 Sf ,n(β0,θ0,n).

Cov [Qφ,n(β0,θ0,n),Qf ,n(β0,θ0,n)] =
1

|Wn|

∫
Wn

ψ(s;β0)φn,θ0,n(s;β0)f
T
n,θ0,n

(s;β0)

+
1

|Wn|

∫
Wn

∫
Wn

ψ(s;β0)ψ(t;β0) [g0(‖s− t‖)− 1]φn,θ0,n(s;β0)f
T
n,θ0,n

(s;β0)dsdt

=
1

|Wn|

∫
Wn

ψ(s;β0)φn,θ0,n(s;β0)f
T
n,θ0,n

(s;β0)

+
1

|Wn|

∫
Wn

∫
Wn

ψ(s;β0)ψ(t;β0) [gs,n(‖s− t‖;θ0,n)− 1]φn,θ0,n(s;β0)f
T
n,θ0,n

(s;β0)dsdt + o(1)

= Sf ,n(β0,θ0,n) + o(1),

(S.26)
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where the last equality follows from the definition of φn,θ0,n(s;β0) in the integral equation (3).

Note that (S.26) also indicates that Var [Qφ,n (β0,θ0,n)] = Sφ,n(β0,θ0,n) + o(1). Consequently,

using (S.26), the Var
[
Qf ,n(β̂φ̂,n, θ̂n)

]
can be simplified as

Var
[
Qf ,n(β̂φ̂,n, θ̂n)

]
= Var [Qf ,n(β0,θ0,n)]− STf ,n(β0,θ0,n) [Sφ,n(β0,θ0,n)]−1 Sf ,n(β0,θ0,n) + o(1).

Similarly, since supr∈[0,R] |g0(r) − gs,n(r;θ0,n)|=o(1) by Theorem 2, under condition L4 and

Lemma 3, it is straightforward to show that,

Var [Qf ,n(β0,θ0,n)] = Var
[
Qfg0

(β0)
]

+ o(1), Sf ,n(β0,θ0,n) = Sf ,n(β0, g0) + o(1),

and Sφ,n(β0,θ0,n) = Sφ,n(β0, g0) + o(1), y

which immediately suggests that

Var
[
Qf ,n(β̂φ̂,n, θ̂n)

]
= Σf ,n(β0, g0) + o(1), (S.27)

where Σf ,n(β0, g0) = Var
[
Qfg0

(β0)
]
− STf ,n(β0, g0)Sφ,n(β0, g0)Sf ,n(β0, g0).

To prove Theorem 3, it suffices to show that

B(β0, g0)Qf ,n(β̂φ̂,n, θ̂n)
d−→ N(0, Idf ), as |Wn| → ∞, (S.28)

where B(β0, g0) is defined in condition L6.

Using approximation (S.25), it is straightforward to show that

B(β0, g0)Qf ,n(β̂φ̂,n, θ̂n) = Qf∗,n(β0,θ0,n) + op(1),

where f ∗n,θ0,n(s;β0) = B(β0, g0)fn,θ0,n(s;β0)−B(β0, g0)S
T
f ,n(β0,θ0,n) [Sφ,n(β0,θ0,n)]−1φn,θ0,n(s;β0).

By the definition of B(β0, g0) in condition L6, we have that Var [Qf∗,n(β0,θ0,n)] = Idf .

Combining this fact with conditions N1-N2, (S.28) follows from Theorem 1 of Biscio and

Waagepetersen (2019). Consequently, one has that

QT
f ,n(β̂φ̂,n, θ̂n)BT (β0, g0)B(β0, g0)Qf ,n(β̂φ̂,n, θ̂n)→ χ2(df).
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Note that BT (β0, g0)B(β0, g0) is a version of generalized inverse of Σ(β0, g0) and consequently

Theorem 3 follows from the Slutsky’s Theorem.
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Prokešová, M., Dvořák, J., and Jensen, E. B. V. (2017), “Two-step estimation procedures for

inhomogeneous shot-noise Cox processes,” Annals of the Institute of Statistical Mathematics,

69, 513–542.
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