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SM I: Moments of updated ridge regression estimator

The expectation of the nonzero-centered ridge regression estimator is:

E
[

β̂(λ,β0)
]

= (X⊤X+ λIpp)
−1[X⊤

E(Y) + E(λβ0)]

= (X⊤X+ λIpp)
−1[X⊤Xβ + λE(β0)]

= (X⊤X+ λIpp)
−1[X⊤Xβ + λβ − λβ + λE(β0)]

= β + λ(X⊤X+ λIpp)
−1[λE(β0)− β].

Similarly, the variance, denoted by the V(·) operator, of this estimator is:

V
[

β̂(λ,β0)
]

= V[(X⊤X+ λIpp)
−1(X⊤Y + λβ0)]

= V[(X⊤X+ λIpp)
−1X⊤Y] + λ2

V[(X⊤X+ λIpp)
−1β0)]

= σ2(X⊤X+ λIpp)
−1X⊤X(X⊤X+ λIpp)

−1

+λ2(X⊤X+ λIpp)
−1

V[β0)](X
⊤X+ λIpp)

−1,

The expectation of the updated ridge regression estimator is:

E
[

β̂t(λt, β̂t−1)
]

= β − λt(X
⊤
t Xt + λtIpp)

−1β + λt(X
⊤
t Xt + λtIpp)

−1
E[β̂t−1(λt−1, β̂t−2)]

= β + λt(X
⊤
t Xt + λtIpp)

−1β − λt(X
⊤
t Xt + λtIpp)

−1β

−λtλt−1

{

t
∏

τ=t−1

(X⊤
τ Xτ + λτ Ipp)

−1
}

β

+
{

t
∏

τ=t−1

[λτ (X
⊤
τ Xτ + λτ Ipp)

−1]
}

E[β̂t−2(λt−2, β̂t−3)]

= . . .

=

t
∑

th=1

{

t
∏

τ=th+1

[λτ (X
⊤
τ Xτ + λτ Ipp)

−1]I{t≥τ}

}

β

−
t

∑

th=1

{

t
∏

τ=th

[λτ (X
⊤
τ Xτ + λτ Ipp)

−1]
}

β +
{

t
∏

τ=1

[λτ (X
⊤
τ Xτ + λτ Ipp)

−1]
}

β0,

while its variance is:

V
[

β̂t(λt, β̂t−1)
]

= σ2(X⊤
t Xt + λtIpp)

−1X⊤
t Xt(X

⊤
t Xt + λtIpp)

−1

+λ2
t (X

⊤
t Xt + λtIpp)

−1
V[β̂t−1(λt−1, β̂t−2)](X

⊤
t Xt + λtIpp)

−1

= σ2(X⊤
t Xt + λtIpp)

−1X⊤
t Xt(X

⊤
t Xt + λtIpp)

−1

+σ2λ2
t

[

t
∏

τ=t−1

(X⊤
τ Xτ + λτ Ipp)

−1
]

X⊤
t−1Xt−1

[

t
∏

τ=t−1

(X⊤
τ Xτ + λτ Ipp)

−1
]

+
[

t
∏

τ=t−1

(λs,τλℓ,τX
⊤
τ Xτ + λs,τ Ipp)

−1
]

V[β̂t−2(λs,t−2, β̂t−3)]
[

t
∏

τ=t−1

(λτX
⊤
τ Xτ + λτ Ipp)

−1
]

= . . .

=

t
∑

th=1

σ2
[

t
∏

τ=th+1

(λ2
τ )

I{t≥τ}

][

t
∏

τ=th

(X⊤
τ Xτ + λτ Ipp)

−1
]

X⊤
thXth

[

t
∏

τ=th

(X⊤
τ Xτ + λτ Ipp)

−1
]

.
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Assume λt = λ and an orthogonal design matrix, i.e. Xt = Ipp. Then, the moments of iterative
ridge regression estimator simplify to:

E
[

β̂t(λt)
]

=

t
∑

th=1

{

t
∏

τ=th+1

[λ(Ipp + λIpp)
−1]I{t≥τ}

}

β

−
t

∑

th=1

{

t
∏

τ=th

[λ(Ipp + λIpp)
−1]

}

β +
{

t
∏

τ=1

[λ(Ipp + λIpp)
−1]

}

β0

=
t

∑

th=1

{

t
∏

τ=th+1

[λ(1 + λ)−1]I{t≥τ}

}

β −
t

∑

th=1

{

t
∏

τ=th

[λ(1 + λ)−1]
}

β +
{

t
∏

τ=1

[λ(1 + λ)−1]
}

β0

= λ−1(1 + λ)

t
∑

th=1

[λt(1 + λ)−t]β −
t

∑

th=1

[λt(1 + λ)−t]β + λt(1 + λ)−tβ0

= λ−1
t

∑

th=1

[λt(1 + λ)−t]β + λt(1 + λ)−tβ0

= λ−1 λ(1 + λ)−1

1− λ(1 + λ)−1
[1− λt(1 + λ)−t]β + λt(1 + λ)−tβ0

= [1 − λt(1 + λ)−t]β + λt(1 + λ)−tβ0

= β + λt(1 + λ)−t(β0 − β),

and its variance

Var
[

β̂t(λt)
]

= σ2
ε

t
∑

th=1

[

t
∏

τ=th+1

(λ2)I{t≥τ}

][

t
∏

τ=th

(Ipp + λIpp)
−1

]

Ipp

[

t
∏

τ=th

(Ipp + λIpp)
−1

]

= σ2
ε

t
∑

th=1

[

λ−2
t
∏

τ=th

λ2
][

t
∏

τ=th

(1 + λ)−1
]2

Ipp

= σ2
ε

[

λ−2
t

∑

th=1

λ2(t−th+1)(1 + λ)−2(t−th+1)
]

Ipp

= σ2
ε

{

λ−2
t

∑

th=1

[λ2(1 + λ)−2]t−th+1
}

Ipp

= σ2
ε

{

λ−2
t

∑

th=1

[λ2(1 + λ)−2]th
}

Ipp

= σ2
ελ

−2
[ λ2(1 + λ)−2

1− λ2(1 + λ)−2
− λ2t(1 + λ)−2t λ2(1 + λ)−2

1− λ2(1 + λ)−2

]

Ipp

= σ2
ε

(1 + λ)−2

1− λ2(1 + λ)−2

[

1− λ2t(1 + λ)−2t
]

Ipp

= σ2
ε (1 + 2λ)−1

[

1− λ2t(1 + λ)−2t
]

Ipp
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SM II: Proofs

Theorem 1. (Asymptotic unbiasedness)
Assume the existence of an infinite sequence of studies into the linear relationship between a con-
tinuous response and a set of covariates. The data from these studies, {Xt,Yt}∞t=1, are used to fit
the linear regression model by means of the updated ridge linear regression estimator, which yields
the sequence of estimators {β̂t(λt, β̂t−1)}∞t=1 which is initiated by an arbitrary, nonrandom β0.
Furthermore, T ∈ N be sufficiently large and Xnew be the design matrix with covariate information
on novel samples for which a prediction is needed. Then,

� limt→∞ E{Yτ}
t+1
τ=1

[β̂t+1(λt+1, β̂t) | {λτ}
t+1
τ=1] = β + u for some u ∈ ∩∞

t=Tnull(Xt), where

null(Xt) denotes the null space of the linear map induced by Xt. If ∩∞
t=Tnull(Xt) = 0p,

then u = 0p.

� limt→∞ E{Yτ}
t+1
τ=1

[Xnewβ̂t+1(λt+1, β̂t) | {λτ}
t+1
τ=1] = Xnewβ.

Proof.
Stationarity of the estimator

Theorem 8.2.14 of [4] lays out the conditions for the existence of and convergence to a stationary
distribution of a discrete time, time-homogeneous Markov process with a continuous state space.
To show the stationarity of the Markov process of the ridge updated linear regression estimator
these conditions need to be verified. The conditions comprise i) the irreducibility of the process,
i.e. it should satisfy the mixing condition, ii) the geometric drift of the process to the center, and
iii) the uniform integrability of the sequence of the process’ marginal densities. Conditions i) and
ii) are verified next, as third one follows from a general argument laid out in [4] and applicable
here.

The sequence {β̂t+1(λt+1, β̂t)}∞t=1 has a stationary/invariant distribution. The irreducibil-
ity/mixing condition requires to verify that with positive probability any β′ in the state space S,
a compact subset of Rp (compactness is due to the penalization), is reachable (after finite time)
from any β′′ ∈ S. The unpenalized linear regression estimator is unconstrained and may – with
positive probability – assume any value in S. The penalty restricts the estimator to a circular do-
main around its center that is formed by the target, here the previous updated regression estimate.
Hence, it is not the nonzero center but only the value of penalty parameter that limits the state
space of the estimator. But as the penalty parameter is chosen in a data-driven manner, it is itself
random. Put differently, λt+1 > 0 follows some distribution which assigns a positive probability
to any value on R>0. Hence, at any t, the parameter constraint can (with positive probability) be
arbitrarily large, thus allowing any value (of S). However, the ridge regression estimator at time
t+ 1 is of the form:

β̂t+1(λt+1, β̂t) = (X⊤
t+1Xt+1 + λt+1Ipp)

−1[X⊤
t+1Yt+1 + λt+1β̂t(λt, β̂t−1)].

From which it clear that its values are constrained to the (affine) subspace spanned by the rows
of Xt+1. But β′ needs only to be reachable from β′′ in finite time. Two scenario’s are possible:

∩T+T ′

t=T null(Xt) = 0p or ∩T+T ′

t=T null(Xt) 6= 0p for T, T ′ ∈ N and T ′ large enough. The former
scenario warrants that indeed any value in S is reachable after finite time. The latter scenario

implies that the state space is reducible to S \∩T+T ′

t=T null(Xt), which we denote by S ′. In the latter
case sufficient mixing does happen within the reduced state space S ′.
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To assess the geometric drift to the center, we derive the following inequality:

‖β̂t+1(λt+1, β̂t)‖F = ‖(X⊤
t+1Xt+1 + λt+1Ipp)

−1[X⊤
t+1Yt+1 + λt+1β̂t(λt, β̂t−1)]‖F

≤ ‖(X⊤
t+1Xt+1 + λt+1Ipp)

−1X⊤
t+1Yt+1‖F

+ ‖λt+1(X
⊤
t+1Xt+1 + λt+1Ipp)

−1β̂t(λt, β̂t−1)]‖F

≤ ‖(X⊤
t+1Xt+1 + λt+1Ipp)

−1X⊤
t+1Yt+1‖F

+ ‖λt+1(X
⊤
t+1Xt+1 + λt+1Ipp)

−1‖2 ‖β̂t(λt, β̂t−1)]‖F ,

in which the triangular inequality is invoked twice. Now let Xt+1 = Ut+1Dt+1V
⊤
t+1 be the singular

value decomposition of Xt+1 with Ut+1 and Vt+1 the matrices with the left and right (respec-
tively) singular vectors as columns and Dt+1 the diagonal matrix with the singular values on its
diagonal. The eigenvalues of λt+1(X

⊤
t+1Xt+1 +λt+1Ipp)

−1 are then to be found on the diagonal of
λt+1(D

2
t+1+λt+1Ipp)

−1. These diagonal elements equal one when the corresponding singular value
is zero and inside the unit interval otherwise. Consequently, ‖λt+1(X

⊤
t+1Xt+1 + λt+1Ipp)

−1‖2 < 1.

There thus exits C > 0 and α ∈ (0, 1) such that ‖β̂t+1(λt+1, β̂t)‖F ≤ C+α‖β̂t(λt, β̂t−1)]‖F . From
which we conclude the tightness of the sequence. The defined Markov chain now has, by Theorem
8.2.14 of [4], a stationary distribution, which is reached after some finite T .

Stationarity of the linear predictor

Stationarity of the linear predictor is proven along the same line as that of the estimator. For the
stationarity we now only show the mixing condition and the geometric drift to the center (as the
rest is similar) of the process. It is then left to identify the limit. Note that the irreducibility of
the process of updated linear predictors follows from that of the ridge updated linear regression
estimators, as the multiplication of these estimators by Xnew maps this process onto R, which is a
surjective function.

To assess the geometric drift to the center, we derive the following inequality:

‖Xnewβ̂t+1(λt+1, β̂t)‖F

= ‖Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1[X⊤
t+1Yt+1 + λt+1β̂t(λt, β̂t−1)]‖F

≤ ‖Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1X⊤
t+1Yt+1‖F

+ ‖λt+1Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1β̂t(λt, β̂t−1)]‖F

= ‖Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1X⊤
t+1Yt+1‖F

+
(

tr{XnewMt+1β̂t(λt, β̂t−1)[β̂t(λt, β̂t−1)]
⊤Mt+1X

⊤
new}

)1/2

≤ ‖Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1X⊤
t+1Yt+1‖F

+
(

‖Mt+1‖∞tr{β̂t(λt, β̂t−1)[β̂t(λt, β̂t−1)]
⊤Mt+1X

⊤
new

Xnew}
)1/2

≤ ‖Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1X⊤
t+1Yt+1‖F

+
(

‖Mt+1‖
2
∞tr{X⊤

new
Xnewβ̂t(λt, β̂t−1)[β̂t(λt, β̂t−1)]

⊤}
)1/2

≤ ‖Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1X⊤
t+1Yt+1‖F + ‖Mt+1‖∞‖Xnewβ̂t(λt, β̂t−1)‖F ,

where Mt+1 = [λt+1(X
⊤
t+1Xt+1 + λt+1Ipp)

−1] and we have used the triangular inequality, the
Hölder inequality for the p-Schatten norm, the cyclic property of the trace, and the fact that
Mt+1 has eigenvalues only in the unit interval. There thus exits C > 0 and α ∈ (0, 1) such that

‖Xnewβ̂t+1(λt+1, β̂t)‖F ≤ C + α‖Xnewβ̂t(λt, β̂t−1)]‖F . The sequence of updated linear predictors
is thus tight. From Theorem 8.2.14 of [4] we now conclude that the defined Markov chain has a
stationary distribution, which is reached after some finite T .
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Asymptotic expectation of the estimator

The defined Markov chain now has, by Theorem 8.2.14 of [4], a stationary distribution, which is

reached after some finite T . Once stationarity has been reached: E{Yτ}
t+1
τ=1

[β̂t+1(λt+1, β̂t) | {λτ}
t+1
τ=1] =

E{Yτ}
t+1
τ=1

[β̂t(λt, β̂t−1) | {λτ}
t+1
τ=1]. Use this is

E{Yτ}
t+1
τ=1

[β̂t+1(λt+1, β̂t) | {λτ}
t+1
τ=1]

= E{Yτ}
t+1
τ=1

{(X⊤
t+1Xt+1 + λt+1Ipp)

−1[X⊤
t+1Yt+1 + λt+1β̂t(λt, β̂t−1)] | {λτ}

t+1
τ=1}

= (X⊤
t+1Xt+1 + λt+1Ipp)

−1{X⊤
t+1Xt+1β + λt+1E{Yτ}

t+1
τ=1

[β̂t(λt, β̂t−1)] | {λτ}
t+1
τ=1}.

Moreover,

E{Yτ}
t+1
τ=1

[β̂t(λt, β̂t−1) | {λτ}
t+1
τ=1]

= (X⊤
t+1Xt+1 + λt+1Ipp)

−1(X⊤
t+1Xt+1 + λt+1Ipp)E{Yτ}

t+1
τ=1

[β̂t(λt, β̂t−1) | {λτ}
t+1
τ=1].

To arrive at:

(X⊤
t+1Xt+1 + λt+1Ipp)

−1X⊤
t+1Xt+1[E{Yτ}

t+1
τ=1

[β̂t(λt, β̂t−1)− β | {λτ}
t+1
τ=1] = 0p. (1)

WhenXt+1 is of full column rank, this is implies E{Yτ}
t+1
τ=1

[β̂t(λt, β̂t−1)] = β. If not, E{Yτ}
t+1
τ=1

[β̂t(λt, β̂t−1) | {λτ}
t+1
τ=1] =

β+u with u ∈ null(Xt+1). But as E{Yτ}
t+1
τ=1

[β̂t(λt, β̂t−1) | {λτ}
t+1
τ=1] = β∞ for all t larger than some

T for which stationary has been reached, Equation (1) then implies that X⊤
t+1Xt+1(β∞ −β) = 0p

for all t ≥ T . Hence, if ∩∞
t=T null(Xt) = 0p, we conclude that updated ridge regression estimator is

asymptotically unbiased: E{Yτ}
t+1
τ=1

[β̂t(λt, β̂t−1) | {λτ}
t+1
τ=1] = β as t → ∞.

Asymptotic expectation of the linear predictor

The result is proven below for a single sample. Due to the usual assumption of independence of
samples, it applies to larger sample sizes.

For the asymptotic unbiasedness, recall from above that, for t > T we have that E{Yτ}
t+1
τ=1

[β̂t(λt, β̂t−1) | {λτ}tτ=1] =

β + u with u ∈ ∩∞
t=Tnull(Xt). Hence, E{Yτ}

t+1
τ=1

[Xnewβ̂t+1(λt+1, β̂t) | {λτ}
t+1
τ=1] = Xnewβ + Xnewu

with u ∈ ∩∞
t=T null(Xt). It thus rests to show that Xnewu = 0. This requires stationarity of the

sequence of predictors {Xnewβ̂t+1(λt+1, β̂t)}∞t=1, which we have shown above.
We are now ready to show that Xnewu = 0. Note that, once stationarity has been reached:

E{Yτ}
t+1
τ=1

[Xnewβ̂t+1(λt+1, β̂t) | {λτ}
t+1
τ=1] = E{Yτ}t

τ=1
[Xnewβ̂t(λt, β̂t−1) | {λτ}tτ=1]. Use this in the

following:

E{Yτ}
t+1
τ=1

[Xnewβ̂t+1(λt+1,βt) | {λτ}
t+1
τ=1]

= E{Yτ}
t+1
τ=1

{Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1[X⊤
t+1Yt+1 + λt+1β̂t(λt, β̂t−1)] | {λτ}

t+1
τ=1}

= Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1X⊤
t+1Xt+1β

+λt+1Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1
E{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]

= Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1(X⊤
t+1Xt+1 + λt+1Ipp − λt+1Ipp)β

+λt+1Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1
E{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]

= Xnewβ + λt+1Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1{E{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]− β}.
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Reformulated and using stationarity:

Xnew{E{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]− β}

= λt+1Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1{E{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]− β}.

Now use the ‘trace trick’ and the Hölder inequality for the matrix Schatten norm to obtain the
following inequality:

|tr
(

Xnew{E{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]− β}

)

|

= |tr
(

λt+1Xnew(X
⊤
t+1Xt+1 + λt+1Ipp)

−1{E{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]− β})|

≤ ‖λt+1(X
⊤
t+1Xt+1 + λt+1Ipp)

−1‖∞|tr
(

{E{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]− β}Xnew

)

|

= ‖λt+1(X
⊤
t+1Xt+1 + λt+1Ipp)

−1‖∞|tr
(

Xnew{E{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]− β}

)

|.

But ‖λt+1(X
⊤
t+1Xt+1 + λt+1Ipp)

−1‖∞ ∈ (0, 1) for positive λt+1 and we must thus have that

tr
(

Xnew{E{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}tτ=1]− β} = 0. Or, equivalently, that

tr
(

Xnew{E{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]− β}

)

= tr(Xnewu) = Xnewu = 0.

The updated ridge linear regression predictor is thus asymptotically unbiased.

Theorem 2. (Consistency of the updated ridge linear regression estimator and predictor)
Assume an infinite sequence of studies into the linear relationship between a continuous response
and a set of covariates. The data from these studies, {Xt,Yt}∞t=1, are used to fit the linear
regression model by means of the updated ridge linear regression estimator, which yields the sequence
of estimators {β̂t(λt, β̂t−1)}∞t=1 which is initiated by an arbitrary, nonrandom β0. Let T ∈ N be
sufficiently large and ∩∞

t=Tnull(Xt) = 0p. Assume that the penalty parameter sequence {λt}
∞
t=1 is

chosen such that limt→∞ σ2
ε p d

2
1(Xt)λ

−2
t = 0 with d1(Xt) the largest singular value of Xt. Then,

for every c > 0:

lim
t→∞

P [‖β̂t(λt, β̂t−1)− β‖ ≥ c | {λτ}
t
τ=1] → 0,

lim
t→∞

P [‖Xnewβ̂t(λt, β̂t−1)−Xnewβ‖ ≥ c | {λτ}
t
τ=1] → 0.

Proof. To prove convergence in probability for the updated ridge regression estimator, we assume,
without loss of generality that, that the sequence {β̂t+1(λt+1, β̂t)}∞k=1 is initiated by the stationary
density (if not, it will become stationary after finite time, cf. the proof of Theorem 1). By the
condition on the intersection of the null spaces of the design matrices and Theorem 1 the updated
ridge regression estimator is then unbiased. This leaves to prove that its variance vanishes as t
tends to infinity. Theorem 8.2 of [2], by Chebyshev’s inequality then, warrants the convergence in
probability of the estimator.

To prove that the variance of β̂t(λt, β̂t−1) vanishes as t → ∞, note that

tr{Var{Yτ}
t+1
τ=1

[β̂t+1(λt+1, β̂t) | {λτ}
t
τ=1]}

= tr{σ2
ε(X

⊤
t+1Xt+1 + λt+1Ipp)

−1X⊤
t+1Xt+1(X

⊤
t+1Xt+1 + λt+1Ipp)

−1}

+tr{λ2
t+1(X

⊤
t+1Xt+1 + λt+1Ipp)

−1Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1](X

⊤
t+1Xt+1 + λt+1Ipp)

−1}

= σ2
ε

∑p

j=1
(d2t+1,j + λt+1)

−2d2j (Xt+1)

+tr{λ2
t+1(X

⊤
t+1Xt+1 + λt+1Ipp)

−2Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]}

≤ σ2
εpλ

−2
t+1d

2
1(Xt+1) + tr{λ2

t+1(X
⊤
t+1Xt+1 + λt+1Ipp)

−2Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]}.
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Furthermore, as all eigenvalues of λ2
t+1(X

⊤
t+1Xt+1 + λt+1Ipp)

−2 are in the interval (0, 1] with at
least one smaller than one, we have:

tr{λ2
t+1(X

⊤
t+1Xt+1 + λt+1Ipp)

−2Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]}

< tr{Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]},

in which we have used von Neumann’s trace inequality. In particular, there exists a αt+1 ∈ (0, 1)
such that

tr{λ2
t+1(X

⊤
t+1Xt+1 + λt+1Ipp)

−2Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]}

= αt+1tr{Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]}.

Put together,

tr{Var{Yτ}
t+1
τ=1

[β̂t+1(λt+1, β̂t) | {λτ}
t
τ=1]}

< σ2
εpd

2
1(Xt+1)λ

−2
t+1 + αt+1tr{Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]}.

Hence, if the penalty parameter sequence {λt}∞t=1 is chosen such that limt→∞ σ2
ε p d

2
1(Xt+1)λ

−2
t+1 =

0, the variance of the estimator vanishes as t increases.
The consistency of the updated ridge linear predictor is, by the Continuous Mapping Theo-

rem (Theorem 2.3, [5]), a direct consequence of the consistency of the updated ridge regression
estimator.

Theorem 3. (Asymptotics of the updated ridge logistic regression estimator)
Assume an infinite sequence of studies into the generalized linear relationship between a binary
response and a set of covariates. The data from these studies, {Xt,Yt}∞t=1, are used to fit the
logistic regression model by means of the updated ridge logistic regression estimator, which yields
the sequence of estimators {β̂t(λt, β̂t−1)}∞t=1 which is initiated by an arbitrary, nonrandom β0. Let
T ∈ N be sufficiently large. Then:

� limt→∞ E[β̂t+1(λt+1, β̂t)] = β + u for some u ∈ ∩∞
t=Tnull(Xt). If ∩∞

t=Tnull(Xt) = 0p, then
u = 0p.

� if ∩∞
t=Tnull(Xt) = 0p and {λt}∞t=1 such that limt→∞ 2p1/2 |d1(Xt)|λt = 0 with d1(Xt) the

largest singular value of Xt, for every c > 0:

lim
t→∞

P [‖β̂t(λt, β̂t−1)− β‖ ≥ c | {λτ}
t
τ=1] → 0,

lim
t→∞

P [‖Xnewβ̂t(λt, β̂t−1)−Xnewβ‖ ≥ c | {λτ}
t
τ=1] → 0.

Proof. Asymptotic unbiasedness

The proof requires the existence of a stationary density of the updating process of ridge estimators,
from which the unbiasedness follows by use of the estimating equation of the ridge regression
estimator.

The argument for the existence of a stationary distribution can be borrowed from the proof of
Theorem 1. Hereto now that the updated ridge logistic regression estimator can, after rescaling,

X̃t+1 = Xt+1W
1/2
t+1 and Z̃t+1 = W

1/2
t+1Zt+1, be written as:

β̂t+1[λt+1, β̂t] = [X̃⊤
t+1X̃t+1 + λt+1Ipp]

−1[X̃⊤
t+1Z̃t+1 + λt+1β̂t(λt, β̂t−1)], (2)

in which one recognizes the form of the updated ridge linear regression estimator. Hence, the
arguments employed in the proof of Theorem 1 apply here. Similarly, the arguments in Theorem
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1 can also be used to show the stationarity of the sequence of updated ridge logistic regression
predictors.

The defined Markov chain now has, by Theorem 8.2.14 of [4], a stationary distribution, which

is reached after some finite T . Once stationarity has been reached all estimators β̂t(λt, β̂t−1) share
the same distribution (marginally). Hence,

E{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1] = E{Yτ}

t+1
τ=1

[β̂t+1(λt+1, β̂t) | {λτ}
t+1
τ=1] = . . .

= E
{Yτ}

t+t0
τ=1

β̂t+t0(λt+t0 , β̂t+t0−1) | {λτ}
t+t0
τ=1 ],

but also

E{Yτ}t

τ=1
[~g−1(Xt1 ; β̂t) | {λτ}

t
τ=1] = E{Yτ}

t+1
τ=1

[~g−1(Xt1 ; β̂t+1) | {λτ}
t+1
τ=1] = . . .

= E
{Yτ}

t+t0
τ=1

[~g−1(Xt1 ; β̂t+t0) | {λτ}
t+t0
τ=1 ]

for all t0, t1 ∈ N. Applied to the estimating equation and aggregated over the t0:








Xt+1

Xt+2

. . .
Xt+τ









⊤ 







E
{Yτ}

t+t0
τ=1









Yt+1

Yt+2

. . .
Yt+t0

∣

∣

∣

∣

∣

{λτ}
t+t0
τ=1 }









− E
{Yτ}

t+t0
τ=1









~g−1(Xt+1; β̂t+t0)

~g−1(Xt+2; β̂t+t0)
. . .

~g−1(Xt+t0 ; β̂t+t0)

∣

∣

∣

∣

∣

{λτ}
t+t0
τ=1 }

















= 0.

As the elements of the Yt’s are binomially distributed, their (conditionally) probabilities are con-

sistently estimated by limτ→∞ ~g(Xtβ̂t+τ ). The Continuous Mapping theorem (Theorem 2.3 of [5])

then warrants that Xtβ̂t+τ is a consistent estimator of Xtβ. In particular, Xt may be replaced by
any Xnew. Hence, the updated ridge logistic regression predictor is asymptotically unbiased.

Consistency

To prove convergence in probability for the updated ridge regression estimator, we assume, with-
out loss of generality that, that the sequence {β̂t+1(λt+1, β̂t)}

∞
k=1 is initiated by the stationary

density (if not, it will become stationary after finite time, see above). By the condition on the
intersection of the null spaces of the design matrices and the first part of the theorem, the updated
ridge logistic regression estimator is unbiased. This leaves to prove that its variance vanishes as t
tends to infinity. Theorem 8.2 of [2], by Chebyshev’s inequality then, warrants the convergence in
probability of the estimator.

To show that the variance of the updated ridge regresssion estimator vanishes, we study the
sum of the variances of the last two updated ridge regression estimators. This sum can be expressed
as:

Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1) | {λτ}

t
τ=1]}+Var{Yτ}t

τ=1
[β̂t−1(λt−1, β̂t−2) | {λτ}

t
τ=1]

= 1
2Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1)− β̂t−1(λt−1, β̂t−2) | {λτ}

t
τ=1]

+ 1
2Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1) + β̂t−1(λt−1, β̂t−2) | {λτ}

t
τ=1]

For the first summand on the right-hand side of the equality sign, the estimating equation gives:

β̂t+1(λt+1, β̂t)− β̂t(λt, β̂t−1) = λ−1
t+1X

⊤
t+1{Yt+1 − ~g−1[Xt+1; β̂t+1(λt+1, β̂t)]}.

We then obtain the bound:

tr{Var{Yτ}t

τ=1
[β̂t+1(λt+1, β̂t)− β̂t(λt, β̂t−1) | {λτ}

t
τ=1]}

= λ−2
t+1tr

(

Xt+1X
⊤
t+1Var{Yτ}t

τ=1
{Yt+1 − ~g−1[Xt+1; β̂t+1(λt+1, β̂t)] | {λτ}

t
τ=1}

)

≤ λ−2
t+1 p d

2
1(Xt+1)
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For the other term, the estimating equation also gives:

β̂t(λt, β̂t−1) + β̂t−1(λt−1, β̂t−2) = 2β̂t−1(λt−1, β̂t−2) + λ−1
t X⊤

t {Yt − ~g−1[Xt; β̂t(λt, β̂t−1)]}

= 2λ−1
t−1X

⊤
t−1{Yt−1 − ~g−1[Xt−1; β̂t−1(λt−1, β̂t−2)]}

+λ−1
t X⊤

t {Yt − ~g−1[Xt; β̂t(λt, β̂t−1)]}

Insert this identity in the variance of t-th updated ridge logistic regression estimator and obtain:

Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1) + β̂t−1(λt−1, β̂t−2) | {λτ}

t
τ=1]

= Var{Yτ}t

τ=1

(

2λ−1
t−1X

⊤
t−1{Yt−1 − ~g−1[Xt−1; β̂t−1(λt−1, β̂t−2)]}

+λ−1
t X⊤

t {Yt − ~g−1[Xt; β̂t(λt, β̂t−1)]} | {λτ}
t
τ=1

)

= Var{Yτ}t

τ=1

(

2λ−1
t−1X

⊤
t−1{Yt−1 − ~g−1[Xt−1; β̂t−1(λt−1, β̂t−2)]} | {λτ}

t
τ=1

)

+Var{Yτ}t

τ=1

(

λ−1
t X⊤

t {Yt − ~g−1[Xt; β̂t(λt, β̂t−1)]} | {λτ}
t
τ=1

)

+2Cov{Yτ}t

τ=1

(

2λ−1
t−1X

⊤
t−1{Yt−1 − ~g−1[Xt−1; β̂t−1(λt−1, β̂t−2)]},

λ−1
t X⊤

t {Yt − ~g−1[Xt; β̂t(λt, β̂t−1)]} | {λτ}
t
τ=1

)

.

Using the same argumentation as above, we obtain:

tr
[

Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1) + β̂t−1(λt−1, β̂t−2) | {λτ}

t
τ=1]

]

≤ λ−2
t p d21(Xt) + 4λ−2

t−1 p d
2
1(Xt−1)

+4λ−1
t−1λ

−1
t tr

[

Cov{Yτ}t

τ=1

(

X⊤
t−1{Yt−1 − ~g−1[Xt−1; β̂t−1(λt−1, β̂t−2)]},

X⊤
t {Yt − ~g−1[Xt; β̂t(λt, β̂t−1)]} | {λτ}

t
τ=1

)]

.

It rests to bound the covariance terms in the expression above. That can be done as follows:

tr
{

Cov{Yτ}t

τ=1

(

X⊤
t {Yt − ~g−1[Xt; β̂t(λt, β̂t−1)]},

X⊤
t−1{Yt−1 − ~g−1[Xt−1; β̂t−1(λt−1, β̂t−2)]}

∣

∣ {λτ}
t
τ=1

)}

≤

p
∑

j=1

{[

Var{Yτ}t

τ=1

(

X⊤
t {Yt − ~g−1[Xt; β̂t(λt, β̂t−1)]}

∣

∣ {λτ}
t
τ=1

)]

jj

×
[

Var{Yτ}t

τ=1

(

X⊤
t−1{Yt−1 − ~g−1[Xt−1; β̂t−1(λt−1, β̂t−2)]}

∣

∣ {λτ}
t
τ=1

)]

jj

}1/2

≤
{

tr
[

Var{Yτ}t

τ=1

(

X⊤
t {Yt − ~g−1[Xt; β̂t(λt, β̂t−1)]}

∣

∣ {λτ}
t
τ=1

)]}1/2

{

tr
[

Var{Yτ}t

τ=1

(

X⊤
t−1{Yt−1 − ~g−1[Xt−1; β̂t−1(λt−1, β̂t−2)]}

∣

∣ {λτ ′}tτ ′=1

)]}1/2

=
{

tr
[

XτX
⊤
t Var{Yt}t

τ=1

(

Yt − ~g−1[Xt; β̂t(λt, β̂t−1)]
∣

∣ {λτ}
t
τ=1

)]}1/2

{

tr
[

Xt−1X
⊤
t−1Var{Yτ}t

τ=1

(

Yt−1 − ~g−1[Xt−1; β̂t−1(λt−1, β̂t−2)]
∣

∣ {λτ ′}tτ ′=1

)]}1/2

≤ |d1(Xτ )| |d1(Xτ ′)|
{

tr
[

Var{Yτ}t

τ=1

(

Yt − ~g−1[Xt; β̂t(λt, β̂t−1)]
∣

∣ {λτ}
t
τ=1

)]}1/2

{

tr
[

Var{Yτ}t

τ=1

(

Yt−1 − ~g−1[Xt−1; β̂t−1(λt−1, β̂t−2)]
∣

∣ {λτ ′}tτ ′=1

)]}1/2

≤ |d1(Xt)| |d1(Xt−1)| p
1/2 p1/2,
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where have used the Cauch-Schwarz inequality and well-known trace inequalities for the product
of two nonnegative definite matrices. Put together we then have:

tr
[

Var{Yτ}t

τ=1
[β̂t(λt, β̂t−1) + β̂t−1(λt−1, β̂t−2) | {λτ}

t
τ=1]

]

≤ λ−2
t p d21(Xt) + λ−2

t−1 p d
2
1(Xt−1) + 4λ−1

t−1λ
−1
t |d1(Xt)| |d1(Xt−1)|p.

The right-hand side vanishes if limt→∞ 2p |d1(Xt)|λt = 0.

Theorem 4. (Mean squared error of mixed vs. updated estimator)
Let Xt be orthonormal and λt > σε(σ

2
ε + σ2

γ)
−1/22t/2T 1/2 for 1 ≤ t ≤ T . Then, when initiated

by β̂1(λ1) = β̂
(me)

1 , the updated ridge regression estimator outperforms (in the mean squared error

sense), the maximum likelihood estimator of the mixed model’s fixed effects parameter: MSE[β̂T (λT )] <

MSE[β̂(me)

T ].

Proof. The proof derives the mean squared error of both estimators under the orthonormality as-
sumption. Subsequently, using the particulars of penalty parameter scheme, the claimed inequality
is shown.

First the mean squared error of the maximum likelihood estimator of the mixed model’s fixed
effects parameter β is obtained. Hereto rewrite the estimator using the Woodbury identity (The-
orem 18.2.8, [1]) to:

(ξZZ⊤ + ITñT ,T ñT
)−1 = ITñT ,T ñT

− ξZ(ITp,Tp + ξZ⊤
Z)−1

Z
⊤,

which, when using the othonormality assumption, simplifies to: IñT ,ñT
− ξ(1+ ξ)−1

ZZ
⊤. Further-

more, note that X⊤
Z = I

⊤
T where IT = 1T ⊗ Ipp and Z

⊤
X = IT . Substitute this in the estimator

to arrive at:

β̂
(me)

T = {X⊤[IñT ,ñT
− ξ(1 + ξ)−1

ZZ
⊤]X}−1

X
⊤[IñT ,̃nT

− ξ(1 + ξ)−1
ZZ

⊤]Y

= [T Ipp − ξ(1 + ξ)−1
I
⊤
T IT ]

−1[X⊤
Y− ξ(1 + ξ)−1

I
⊤
T Z

⊤
Y]

= T−1(1 + ξ)[X⊤
Y− ξ(1 + ξ)−1

X
⊤
Y]

= T−1
X

⊤
Y = T−1(X⊤

1 Y1 + . . .+X⊤
T YT ).

Clearly, E(β̂(me)

T ) and Var(β̂(me)

T ) = T−1(σ2
ε+σ2

γ)Ipp. Hence, MSE(β̂(me)

T ) = [E(β̂(me)

T )−β]⊤[E(β̂(me)

T )−

β] + tr[Var(β̂(me)

T )] = pT−1(σ2
ε + σ2

γ).
For the mean squared error of the updated ridge regression estimator, note that, when using

the orthonormality assumption:

E[β̂t+1(λt+1, β̂t)] = E{(X⊤
t+1Xt+1 + λt+1Ipp)

−1[X⊤
t+1Yt+1 + λt+1β̂t(λt)]}

= (1 + λt+1)
−1{E(X⊤

t+1Yt+1) + λt+1E[β̂t(λt)]}

= (1 + λt+1)
−1{β + λt+1E[β̂t(λt)]}.

When the sequence of updated ridge regression estimators {β̂t+1(λt+1, β̂t)}Tt=1 is initiated with an
unbiased estimator, all subsequent estimators are unbiased. Hence,

MSE{[β̂T (λT )]} = tr{Var[β̂T (λT )]} = pσ2
ε

T
∑

th=1

λ−2
th

T
∏

τ=th

λ2
τ (1 + λτ )

−2,

where the expression of the variance is derived from that presented in the main body of the article
with a general design matrix.
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Now use the analytic expressions of the mean squared error of the two estimators and that
λt > T 1/2[σ−2

ε (σ2
ε + σ2

γ)]
1/22t/2 for t such that 1 ≤ t ≤ T :

MSE[β̂T (λT )] = pσ2
ε

T
∑

th=1

λ−2
th

T
∏

τ=t

λ2
τ (1 + λτ )

−2

< pσ2
ε

T
∑

t=1

λ−2
t < pT−1(σ2

ε + σ2
γ)

T
∑

t=1

2−T

< pT−1(σ2
ε + σ2

γ) = MSE(β̂(me)

T ),

as is claimed.
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SM III: Multi-target simulation

Here we investigate the use of the multiple targets. In particular, we assess whether the multi-
targeted ridge regression estimator shrinks most towards the preferred target. Hereto we sample
from the linear regression model Y = Xβ + ε with the elements of the design matrix X drawn
from the standard normal distribution, the elements of regression parameter as {βj}101j=1 = {(j −

51)/20}101j=1, and ε ∼ N (0n, Inn) with n = 25. We equip the estimator with the following three

targets: β0 = 1
4 , β0 such that β0,j = −1 if j is odd and β0,j = 1 if j is even, and β0 = 0p.

Of these targets, the first is most informative. We employ 10-fold cross-validation to select the
penalty parameters, one for each target. This is done 10.000 times, resulting in an equal number
of triples (λ̂1, λ̂2, λ̂3). To assess to which target the estimator is shrunken most we plot the points

(λ̂1, λ̂2, λ̂3)(λ̂1 + λ̂2 + λ̂3)
−1 ∈ [0, 1]3 in a triangular plot. In addition, we provide a histogram of

λ̂1 + λ̂2 + λ̂3 for an impression of the overall shrinkage. Both are provided in the top panels of
Figure 1.

The whole exercise above has been repeated using a design matrix X with elements that are
correlated and non-zero centered. In particular, the rows of X are sampled from the multivariate
normal distribution N (0p,Σ). The covariance matrix Σ is banded: (Σ)jj = 1 for all j, (Σ)j,j+1 =
0.5 = (Σ)j+1,j for j = 1, p−1, (Σ)j,j+2 = 0.25 = (Σ)j+2,j for j = 1, p−2, (Σ)j,j+3 = 0.1 = (Σ)j+3,j

for j = 1, p− 3, and zero otherwise. Then, to all elements of each column an offset sampled from
U [−10, 10] is added. All other aspects of the set-up are left unaltered. The resulting plots are
shown in the lower panels of Figure 1.

The right panels of Figure 1 shows that virtuall all points fall close to the axis (λ̂1, λ̂2, λ̂3)(λ̂1+

λ̂2 + λ̂3)
−1 = (1 − α, α, 0) with α ∈ [0, 1], and that the fast majority of these points concentrated

either at or close to the point (λ̂1, λ̂2, λ̂3)(λ̂1+ λ̂2+ λ̂3)
−1 = (1, 0, 0). This indicates that the largest

weight are assigned to the most informative target, β0 = 1
4β. Hence, even in high-dimensional

settings the method is able to assess the usefulness of a target from a set of targets for the problem
at hand.
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Figure 1: Computating times in log(ms) of the IRLS algorithm for various target choices, dimension
p, and value of the penalty parameter. Computing times are obtained from 100 evaluations of the
same data set using the microbenchmark-package [3]. This exercises has been repeated 100 times,
each time with a different draw of the data. Each element of the random target is drawn from the
standard normal distribution.
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SM IV: IRLS algorithm computing times

We assess the effect of the target choice on the computation time of the IRLS algorithm for
the evaluation of targeted ridge logistic regression estimator. Hereto we sample data from the
logistic regression model with the elements of the design matrix all drawn from the standard
normal distribution. Moreover, we set the elements of the regression parameter to {βj}101j=1 =

{(j − 51)/20}101j=1 or {βj}1001j=1 = {(j − 501)/2000}1001j=1 . The response of the i-th individual, Yi with
i = 1, . . . , 25, is then drawn for the Bernoulli distribution with success probability exp(Xi,∗β)/[1+
exp(Xi,∗β)]. With these data, we evaluate the targeted ridge logistic regression estimator for
three choices of the penalty parameter λ = {1, 10, 100} and six choices of the target: β0 = 0p,
β0 = 1

2β, β0 = β, β0 = 2β, , β0 = −β, and a random β0 with all its elements drawn from
the standard normal distribution. The computation times of these evaluations are recorded by
the microbenchmark-package [3]. The package does so a hundred times, shuffling the order of the
evaluation the estimator with the different targets. As computing times may depend on the data,
this whole exercise was repeated a hundred times. In total, for each (p, λ,β0)-combination a 10.000
computing times are available. This are displayed in Figure 2.

The boxplots in Figure 2 show that computing time of the IRLS algorithm for a zero-targeted
ridge logistic regression estimator is overall smallest. For other targets, β0 = 1

2β, one or two
extra iterations are needed for the IRLS algorithm to converge. Relatively, these extra iterations
required for the evaluation with a zero target or β0 = 1

2β do not lead to a dramatic increase in
computing time.
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SM V: Constrained cross-validation

We compare constrained cross-validation to its unconstrained counterpart. Hereto ‘historic’ data
are sampled from the linear regression model with parameter {βj}101j=1 = {(j−51)/20}101j=1, a design
matrix with elements drawn from the standard normal distribution, and a unit error variance. The
sample size of the historical data ranges from npast = 0 to npast = 250. The ‘novel’ or ‘current’
data, from which the parameter is estimated, are sampled with n ∈ {25, 50} from either the same
model or an empty one, i.e. with a zero regression parameter. Furthermore, the target is either
informative or off, that is, β0 = 1

2β and β0 = − 1
2β, respectively. The penalty parameter is

chosen by means of 10-fold cross-validation with various sample sizes of the historic data. The
case npast = 0 corresponds to the regular or unconstrained 10-fold cross-validation. With the cross-

validated penalty parameter at hand, the loss of the estimate, ‖β̂(λ,β0)− β‖22, is evaluated. This
exercise is repeated a hundred times, and the results are displayed in Figure 4.

The left panels of Figure 3 show that constrained cross-validation has a desirable effect (a
reduction) on the loss if the current data come from a different model than the historic data. It
safeguards against being swayed by the issues of the current data. If, however, the current data
stem from the same model as the historic data, constrained cross-validation has no noticeable ef-
fect on the loss. The choice of the target, however, matters. The aforementioned desirable effect
requires the target to be informative of the model from which the historic data stem. An off target
renders no such effect of constrained cross-validation. In conclusion, constrained cross-validation
in combination with an informative target safeguards against ‘outlying’ current data sets.

In an other comparison, the historical data are from the correct model but the novel data are
from an empty model while the target is informative. The parameters and set-up are as above,
except for β = 0p in the generation of the novel data and either β0 = β or β0 = β̂past =
(X⊤

past
Xpast)

+X⊤
past

Ypast, where A+ denotes the Moore-Penrose generalized inverse. Again the
penalty parameter is chosen by means of 10-fold constrained and unconstrained cross-validation
with various samples sizes of the historical data. The ridge targeted regression estimator is evalu-
ated with these cross-validated penalty parameters and the (logarithm of the) loss of the estimates
calculated. This is repeated a hundred times, and the results are displayed in Figure 4.

The left panels of Figure 4, corresponding to a perfect target, shows that even with little
historical data, constrained cross-validation is beneficial, but even more if the sample size of the
historical data grows. For the estimated target, for small sample sizes of the historical data, there
is little to no difference between the loss of the estimator with either an un- or constrained cross-
validated penalty parameter. This is due to fact that even this target poor and does not perform
well on historical data. For large sample sizes of the historical data (i.e npast > p), the target
becomes more informative for the historical data and the constraint kicks in, which result in a
larger penalty parameter that shrinks more to the informative target and ignores the unrelated
novel data. Then, constrained cross-validation is again more beneficial than its unconstrained
counterpart. Note: the hick-up in the the right panel at npast ≈ p is due to the ill-conditionedness
of the matrix X⊤

pastXpast.

17



0 50 100 150 200 250

4
0

6
0

8
0

1
0
0

1
2
0

Loss of ridge estimator with constrained CV; n=25, p=101, β0=β 2

npast

||
β^
−

β|
| 22

empty model

correct model

0 50 100 150 200 250

3
0
0

3
5
0

4
0
0

4
5
0

Loss of ridge estimator with constrained CV; n=25, p=101, β0=−β 2

npast

||
β^
−

β|
| 22

empty model

correct model

0 50 100 150 200 250

2
0

4
0

6
0

8
0

1
0
0

1
2
0

1
4
0

1
6
0

Loss of ridge estimator with constrained CV; n=50, p=101, β0=β 2

npast

||
β^
−

β|
| 22

empty model

correct model

0 50 100 150 200 250

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

4
5
0

Loss of ridge estimator with constrained CV; n=50, p=101, β0=−β 2

npast

||
β^
−

β|
| 22

empty model

correct model

Figure 3: The loss of the ridge estimator with the penalty parameter chosen via constrained 10-fold
cross-validation. The x-axis shows the sample size of the historical data, with npast = 0 representing
unconstrained cross-validation. The left and right panels show the results with an informative and
off target, respectively. The top and bottom panel correspond to n = 25 and n = 50, respectively.
Each panel shows the results with the current data sampled from the correct and empty model.
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Figure 4: The loss of the ridge estimator with the penalty parameter chosen via constrained 10-
fold un- and constrained cross-validation. The left and right panel correspond to the different
informative targets β0 = β (left) and β0 = β̂ (right). The x-axis shows the sample size of the
historical data. Each panel shows the results with the current data sampled from the empty model,
but the penalty parameter chosen differently.
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SM VI: De novo simulation, additional plots

The ‘de novo’ simulation of Section 5.1 of the main text is repeated. In the main text the elements
of the design matrix are all sampled from the standard normal. Here three alternative ways
generating the design matrix are employed:

i) The covariates are still independent, but are all differently centered. Hence, the location of
a covariate differs over the sequence of data sets. Hereto the design matrix is generated as
follows. First draw all elements of X from the standard normal. Then, add to all elements
of each column an offset sampled from U [−10, 10].

ii) The covariates are zero centered, but no longer independent. Hereto the rows of X are
sampled from the multivariate normal distribution N (0p,Σ). The covariance matrix Σ is
banded: (Σ)jj = 1 for all j, (Σ)j,j+1 = 0.5 = (Σ)j+1,j for j = 1, p − 1, (Σ)j,j+2 = 0.25 =
(Σ)j+2,j for j = 1, p− 2, (Σ)j,j+3 = 0.1 = (Σ)j+3,j for j = 1, p− 3, and zero otherwise.

iii) The covariates are nonzero centered and dependent. This is a combination of the previous
two case. First, the row of X are sampled from N (0p,Σ) with Σ as above. Then, an offset
is added to each covariate, as above.

All other aspects of the simulation set-up, e.g. the sample size, dimension, choice of the parameters
are unchanged. The results are shown in Figure 5. Figure 5 contains, for reference, also the results
of the original simulation.

Figure 5 shows that a change in the location of the covariates does not affect the updating, why
dependency among the covariates does. In particular, dependency slows down the convergence to
the true parameter value.

We have also repeated the ‘de novo’ simulation of Section 5.1 of the main text but with dif-
ferent initial targets, now using β0 = −β, β0 = 1

2β, β0 = β, and , β0 = 2β. The results, shown in
Figure 6, are in line with intuition: the closer the initial target to the true parameter, the better
the performance.
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Figure 5: The panels show the (5%, 95%-quantile intervals of the updated ridge estimates of βj

with j ∈ {0, 30, 50, 70, 100} plotted against t for regression models with different design matrices.
The solid, colored line inside these intervals is the corresponding 50% quantile. The dotted, grey
lines are the true values of the βj’s.
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Figure 6: The panels show the (5%, 95%-quantile intervals of the updated ridge estimates of βj

with j ∈ {0, 30, 50, 70, 100} plotted against t for regression models with different initial targets.
The solid, colored line inside these intervals is the corresponding 50% quantile. The dotted, grey
lines are the true values of the βj’s.
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SM VII: Application

year # counties # health indicators
2008 159 1
2009 159 1
2010 158 8
2011 111 16
2012 96 17
2013 79 22
2014 60 23
2015 67 22
2016 57 23

Table 1: Table of number of counties with full information on the response (suicide rate) and the
registered health indicators, with their number in the last column, per year.
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Figure 7: The top panel shows the trajectories of the the updated ridge regression, with its
penalty parameter chosen via unconstrained LOOCV, estimates. Each trajectory represents a
single covariate. The presence of a health indicator in the data of a particular year is evident from
a symbol on its trajectory at the corresponding year. The symbol is omitted in years that the
health indicator was not registered. The differences among the different estimators’ trajectories of
the same regression coefficient is highlighted for the two covariates with the largest effects (lower
panels).
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Figure 8: Residuals of the three fits, maximum likelihood (OLS) and the updated ridge regression,
with its penalty parameter chosen via un- and constrained LOOCV, vs. year.
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