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Sections 1 and 2 contain proofs of Propositions 3.1 and 3.2. In Section 3 we show and discuss

Proposition 3.3. Sections 4 and 5 provide details about the proposed MCMC scheme and addi-

tional simulated results. Finally, Sections 6 and 7 contain sensitivity analyses to hyperparameter

choices and further results for the two real data applications in the main text.

1 Proof of Proposition 3.1 and related discussion

Proposition 3.1. For Kj(D) := aDj /Ujj|≺j� we have

γ
(k)
j (X | Ak

j )/n(k) d→ N
(

1

2

(
Kj(D)φ

(k)
0j − 1 + trΣ0≺j�/g − ln

(
Kj(D)φ

(k)
0j

)
+ C1

)
,(

φ
(k)
0j Kj(D)− 1

)2
/(2n(k)) + trΣ2

0≺j�/(2n
(k))

)
,

where C1 = ln(aDj /2)− ψ
(
aDj /2

)
. Furthermore γ

(k)
j (X | Ak

j )
a.s.→ +∞.
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Proof. First we can write

γ̃
(k)
j (X,θ) = ln

πk(j)

1− πk(j)
+

n(k)∑
i=1

ln
ϕ
(
x

(k)
ij |0, φ

(k)
j

)
ϕ
(
x

(k)
ij | −L>≺j ]x

(k)
i,paD(j), σ

2
j

)
= ln

πk(j)

1− πk(j)
− 1

2
(φ

(k)
j )−1

n(k)∑
i=1

(x
(k)
ij )2 +

n(k)

2
ln

σ2
j

φ
(k)
j

+
1

2
σ−2
j

n(k)∑
i=1

(x
(k)
ij +L>≺j ]x

(k)
i,paD(j))

2.

To derive the quantity of interest γ
(k)
j (X | Ak

j ) note that (D,L) |X(k),Ak
j

d
= (D,L) as in

(6), and

φ
(k)
j |X

(k),Ak
j ∼ I-Ga

(
a

(k)
j + n(k)/2, b

(k)
j +

∑
i

(x
(k)
ij )2/2

)
.

Therefore we can derive Eθ|X,Ak
j

[
1/σ2

j

]
= Kj(D), Eθ|X,Ak

j

[
lnσ2

j

]
= ln

(
Ujj|≺j�/2

)
−ψ

(
aDj /2

)
,

where ψ is the digamma function, and, recalling ψ(x) � lnx for large x,

Eθ|X,Ak
j

[
1/φ

(k)
j

]
=

[
2a

(k)
j + n(k)

]
/

[
2b

(k)
j +

∑
i

(x
(k)
ij )2

]
a.s.→ 1/φ

(k)
0j ,

Eθ|X,Ak
j

[
lnφ

(k)
j

]
= ln

(
b
(k)
j +

∑
i

(x
(k)
ij )2/2

)
− ψ

(
a

(k)
j + n(k)/2

)
a.s.→ lnφ

(k)
0j ,

Eθ|X,Ak
j

[
L≺j ]/σ

2
j

]
= −Kj(D)U−1

≺j�U≺j ] = 0,

Eθ|X,Ak
j

[
L≺j ]L

′
≺j ]/σ

2
j

]
= U−1

≺j� +Kj(D)U−1
≺j�U≺j ](U

−1
≺j�U≺j ])

> = I|paD(j)|/g,

from which, with X̄
(k)
2j :=

∑
i(x

(k)
ij )2/n(k) and X̄

(k)
2≺j� :=

∑
i x

(k)
i,paD(j)

(
x

(k)
i,paD(j)

)>
/n(k),

γ
(k)
j (X | Ak

j )/n(k) � 1

2

[
Kj(D)− 1/φ

(k)
0j

]
X̄

(k)
2j +

1

2g
trX̄

(k)
2≺j� −

1

2
ln 2U−1

jj|≺j�φ
(k)
0j −

1

2
ψ
(
aDj /2

)
a.s.→ 1

2

(
Kj(D)φ

(k)
0j − 1 + trΣ0≺j�/g − lnKj(D)φ

(k)
0j + C1

)
. (1)

Since ψ(x) < lnx for all x > 1/2, it is true that C1 > 0, since aDj ≥ 1 from the discussion

following Equation (6). Also, Kj(D)φ
(k)
0j − 1 − lnKj(D)φ

(k)
0j ≥ 0 for all possible values of the

terms involved, with equality holding for Kj(D)−1 = φ
(k)
0j . Then the quantity in (1) is strictly

positive, showing γ
(k)
j (X | Ak

j )
a.s.→ +∞.

To prove asymptotic normality, denote vec the matrix vectorization (and vec−1 its inverse

function), and note that from the above discussion γ
(k)
j (X | Ak

j )/n(k) � h
(
X̄

(k)
2j , vec X̄

(k)
2≺j�

)
,

where h(x, y) =
(
Kj(D)x− 1 + tr vec−1 y − lnKj(D)x+ C1

)
/2, with derivatives computed as

h′x(x, y) = ∂h(x, y)/∂x = (Kj(D) − 1/x)/2 and h′y(x, y) = ∂h(x, y)/∂y = vec I|paD(j)|/2. Since

X̄
(k)
2j

d→ N
(
φ

(k)
0j , 2(φ

(k)
0j )2/n(k)

)
and vec X̄

(k)
2≺j�

d→ N
(
Σ0≺j�, 2 (Σ0≺j� ⊗Σ0≺j�) /n(k)

)
(see for
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instance Ghazal and Neudecker 2000), with null covariance between X̄
(k)
2j and vec X̄

(k)
2≺j�, from

the Delta method we have

γ
(k)
j (X | Ak

j )/n(k) d→ N
(
h
(
φ

(k)
0j , vec Σ0≺j�

)
, 2(φ

(k)
0j )2/n(k) · h′x

(
φ

(k)
0j , vec Σ0≺j�

)2
+

2/n(k)h′y

(
φ

(k)
0j , vec Σ0≺j�

)′
(Σ0≺j� ⊗Σ0≺j�)h′y

(
φ

(k)
0j , vec Σ0≺j�

))
corresponding to the distribution in the statement.

The proposition states that, if j ∈ Ik, i.e. node j is a target under intervention k, this

will be detected with sample size large enough and for any given graph D, therefore with a

false negative rate eventually zero. The scaled log-odds of the (correct) target classification has

asymptotic Gaussian distribution. From the normality and by replacing φ
(k)
0j and Σ0≺j� by

some estimators, we can further provide a reasonable range within which the posterior log-odds

is expected to be for a given fixed sample size. Also note that φ
(k)
0j → 0 corresponds to the limit

case of deterministic (non stochastic) interventions. In our result this scenario clearly coincides

with a degenerate normal distribution with infinite mean, since there is no uncertainty in the

log-odds of an intervention.

Note that the mean of the asymptotic distriution increases when aDj is large. This is typical

of a node with many parents in a large graph, that, coherently to intuition, makes easier the

identification of an intervention, since the latter will suppress many dependence relations. With

C1 ≈ 0 (aDj large), we would have that for Kj(D)−1 = φ
(k)
0j , γ

(k)
j (X | Ak

j )
a.s.→ trΣ0≺j�/(2g):

with many parents and equal variances with or without intervention, target discrimination is

still feasible thanks to the variability of the node parents. Then the extreme case when it is

not possible to identify an intervention is when aDj large, pre- and post-intervention variances

coincide, and either (a) the node has no parents or (b) the parents have a degenerate distribution

with null variances.

2 Proof of Proposition 3.2 and related discussion

Proposition 3.2. For δjk :=
a
(k)
j

b
(k)
j

σ2
0j − 1 we have

γ
(k)
j (X | Āk

j )/n(k) d→ N

(
1

2

(
a

(k)
j

b
(k)
j

Σ0jj − 1− ln
a

(k)
j

b
(k)
j

σ2
0j + C2

)
,

(
Σ0jj

σ2
0j

δjk

)2

/(2n(k)) +
Σ2

0jj − σ4
0j

σ4
0j

[
δjk/n

(k) +

(
5Σ0jj − 3σ2

0j

Σ0jj + σ2
0j

)
/(2n(k))

] ,

where C2 = ln
(
a

(k)
j

)
− ψ

(
a

(k)
j

)
. Furthermore γ

(k)
j (X | Āk

j )
a.s.→ +∞.
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Proof. From Ben-David et al. (2015) we know that

σ2
j |X(k) ∼ I-Ga

(
1

2

(
aDj + n(k)

)
,
1

2
U

(k)
jj|≺j�

)
,

L≺j ] |σ2
j ,X

(k) ∼ N|paD(j)|

(
−
(
U

(k)
≺j�

)−1
U

(k)
≺j ], σ

2
j

(
U

(k)
≺j�

)−1
)
,

whereU (k) := U+(X(k))′X(k), and we have that Φ(k)|X(k), Āk
j

d
= Φ(k) as in (7) in the main text.

Therefore we can first compute Eθ|X,Āk
j

[
1/φ

(k)
j

]
= a

(k)
j /b

(k)
j and Eθ|X,Āk

j

[
lnφ

(k)
j

]
= ln b

(k)
j −

ψ
(
a

(k)
j

)
Furthermore, with K(k)

j (D) := (aDj + n(k))/U
(k)
jj|≺j�, we can derive Eθ|X,Āk

j

[
1/σ2

j

]
=

K(k)
j (D)

a.s.→ σ−1
0j , and

Eθ|X,Āk
j

[
lnσ2

j

]
= ln

(
U

(k)
jj|≺j�/2

)
− ψ

(
1

2

(
aDj + n(k)

))
a.s.→ lnσ2

0j ,

Eθ|X,Āk
j

[
L≺j ]/σ

2
j

]
= −K(k)

j (D)
(
U

(k)
≺j�

)−1
U

(k)
≺j ]

a.s.→ −σ−2
0j Σ−1

0≺j�Σ0≺j ],

Eθ|X,Āk
j

[
L≺j ]L

′
≺j ]/σ

2
j

]
=

(
U

(k)
≺j�

)−1
+K(k)

j (D)
(
U

(k)
≺j�

)−1
U

(k)
≺j ]U

(k)′

≺j ]

(
U

(k)
≺j�

)−1

a.s.→ σ−2
0j Σ−1

0≺j�Σ0≺j ]Σ
′
0≺j ]Σ

−1
0≺j�

Then, with X̄
(k)
2j :=

∑
i(x

(k)
ij )2/n(k) a.s.→ Σ0jj , vec X̄

(k)
2≺j� := vec

∑
i x

(k)
i,paD(j)

(
x

(k)
i,paD(j)

)>
/n(k) a.s.→

vec Σ0≺j� and X̄
(k)
2[j� :=

∑n(k)

i=1 x
(k)
ij

(
x

(k)
i,paD(j)

)>
/n(k) a.s.→ Σ0 [j�,

γ̄
(k)
j (X|Āk

j )/n(k) � 1

2
X̄

(k)
2j Eθ|X,Āk

j

[
1/φ

(k)
j

]
− 1

2

(
Eθ|X,Āk

j

[
lnσ2

j

]
− Eθ|X,Āk

j

[
lnφ

(k)
j

])
−1

2
X̄

(k)
2j Eθ|X,Āk

j

[
1/σ2

j

]
− 1

2
tr
{
X̄

(k)
2≺j�Eθ|X,Āk

j

[
L≺j ]L

′
≺j ]/σ

2
j

]}
−X̄(k)

2[j�Eθ|X,Āk
j

[
L≺j ]/σ

2
j

]
a.s.→ 1

2

a
(k)
j

b
(k)
j

Σ0jj −
1

2

(
lnσ2

0j − ln b
(k)
j + ψ

(
a

(k)
j

))
− 1

2

Σ0jj

σ2
0j

−1

2
σ−2

0j tr
{

Σ0≺j ]Σ
′
0≺j ]Σ

−1
0≺j�

}
+ σ−2

0j Σ′0≺j ]Σ
−1
0≺j�Σ0≺j ]

=
1

2

(
a

(k)
j

b
(k)
j

Σ0jj − 1− ln
a

(k)
j

b
(k)
j

σ2
0j + C2

)
, (2)

where we have used Σ′0≺j ]Σ
−1
0≺j�Σ0≺j ] = Σ0jj −σ2

0j . Since ψ(x) < lnx for all x > 1/2, it is true

that C2 > 0, since a
(k)
j ≥ 1 from the discussion following Equation (7) in the main text. Also,

a
(k)
j /b

(k)
j Σ0jj − 1− ln a

(k)
j /b

(k)
j σ2

0j ≥ 0 for all possible values of the terms involved, with equality

holding for a
(k)
j /b

(k)
j = Σ0jj = σ2

0j . Then (2) is strictly positive, showing γ̄
(k)
j (X|Āk

j )
a.s.→ +∞.

To show the asymptotic distribution, first note that we can write the quantity of interest

as γ̄
(k)
j (X|Āk

j )/n(k) = h̄
(
X̄

(k)
2j , vec X̄

(k)
2≺j�, X̄

(k)
2≺j]

)
, where vec is the matrix vectorization (and
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vec−1 its inverse function) and X̄
(k)
2≺j] = (X̄

(k)
2[j�)>, and where the function h̄ is defined as

h̄(x, y, z) =
1

2

(
a

(k)
j

b
(k)
j

− u(x, y, z)−1

)
x− 1

2
tr

(
zz′ω(y)−1

u(x, y, z)

)
+

1

u(x, y, z)
z′w(y)−1z − 1

2

(
lnu(x, y, z)− ln b

(k)
j + ψ

(
a

(k)
j

))
=

1

2

(
a

(k)
j

b
(k)
j

x− 1− ln
a

(k)
j

b
(k)
j

u(x, y, z) + C2

)
, (3)

with u(x, y, z) = x− z>ω(y)−1z and ω(y) = vec−1(y). The partial derivatives of h̄ can be recov-

ered as h̄′x(x, y, z) = ∂h̄(x, y, z)/∂x = (a
(k)
j /b

(k)
j − 1/u(x, y, z))/2, h̄′y(x, y, z) = ∂h̄(x, y, z)/∂y =

− vec(ω(y)−1zz>ω(y)−1/u(x, y, z))/2 and h̄′z(x, y, z) = ∂h̄(x, y, z)/∂z = ω(y)−1z/u(x, y, z). It is

then easy to see, using L0≺j] = −Σ−1
0≺j�Σ0≺j ], that

∇ḡ
(
X̄

(k)
2j , vec X̄

(k)
2≺j�, X̄

(k)
2≺j]

)> a.s.→ 1

2σ2
0j

(
a

(k)
j

b
(k)
j

σ2
0j − 1, − vec

{
L0≺j]L0[j�

}>
,−2L0[j�

)>
.(4)

Furthermore, from the properties of higher-order moments of the multivariate Gaussian distri-

bution, see for instance Ghazal and Neudecker (2000), we know that

X̄
(k)
2j

d→ N1

(
Σ0jj ,

2

n(k)
Σ2

0jj

)
,

vec X̄
(k)
2≺j�

d→ N|paD(j)|2

(
vec Σ0≺j�,

2

n(k)
Σ0≺j� ⊗Σ0≺j�

)
, (5)

X̄
(k)
2≺j]

d→ N|paD(j)|

(
Σ0≺j],

1

n(k)

[
Σ0jjΣ0≺j� + Σ0≺j]Σ0[j�

])
,

where ⊗ is the Kronecker product. The cross-covariance matrices can be derived as follows:

C
(
X̄

(k)
2j , vec X̄

(k)
2≺j�

)
=

1

n(k)
C
((

x
(k)
ij

)2
, vec

{
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>
})

=
1

n(k)
C
(
E
[(
x

(k)
ij

)2
∣∣∣∣x(k)

i,paD(j)

]
, vec

{
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>
})

=
1

n(k)
C
(
L0[j�x

(k)
i,paD(j)(x

(k)
i,paD(j))

>L0≺j], vec
{
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>
})

=
1

n(k)
C
((
L0[j� ⊗L0[j�

)
vec
{
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>
}
, vec

{
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>
})

=
1

n(k)

(
L0[j� ⊗L0[j�

)
V
(

vec
{
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>
})

=
2

n(k)

(
L0[j�Σ0≺j�

)
⊗
(
L0[j�Σ0≺j�

)
=

2

n(k)
Σ0[j� ⊗Σ0[j�, (6)

where we have used vec(ABC) = (C> ⊗A) vecB and (A⊗B)(C ⊗D) = (AC)⊗ (BD) for
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conformable matrices A, B, C and D. Similarly, we see that

C
(
X̄

(k)
2≺j], vec X̄

(k)
2≺j�

)
=

1

n(k)
C
(
x

(k)
ij x

(k)
i,paD(j), vec

{
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>
})

= − 1

n(k)
C
(
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>L0≺j], vec
{
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>
})

= − 1

n(k)
C
((
L0[j� ⊗ I|paD(j)|

)
vec
{
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>
}
,

vec
{
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>
})

= − 2

n(k)

(
L0[j�Σ0≺j�

)
⊗Σ0≺j� =

2

n(k)
Σ0[j� ⊗Σ0≺j�, (7)

where we have used the relation vec(AB) = (B> ⊗ I) vecA, and

C
(
X̄

(k)
2j , X̄

(k)
2≺j]

)
=

1

n(k)
C
((

x
(k)
ij

)2
, x

(k)
ij x

(k)
i,paD(j)

)
=

1

n(k)
E
[
C
((

x
(k)
ij

)2
, x

(k)
ij x

(k)
i,paD(j)

∣∣∣∣x(k)
i,paD(j)

)]
+

1

n(k)
C
(
E
[(
x

(k)
ij

)2
∣∣∣∣x(k)

i,paD(j)

]
,x

(k)
i,paD(j)E

[
x

(k)
ij

∣∣∣x(k)
i,paD(j)

])
=

1

n(k)

{
−2σ2

0jL0[j�E
[
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>
]

+

+ C
(
L0[j�x

(k)
i,paD(j)(x

(k)
i,paD(j))

>L0≺j],−x
(k)
i,paD(j)(x

(k)
i,paD(j))

>L0≺j]

)}
=

1

n(k)

{
2σ2

0jΣ0[j� − C
((
L0[j� ⊗L0[j�

)
vec
{
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>
}
,(

L0[j� ⊗ I|paD(j)|
)

vec
{
x

(k)
i,paD(j)(x

(k)
i,paD(j))

>
})}

=
2

n(k)

{
σ2

0jΣ0[j� −
(
L0[j� ⊗L0[j�

)
(Σ0≺j� ⊗Σ0≺j�)

(
L0≺j] ⊗ I|paD(j)|

)}
=

2

n(k)

{
σ2

0jΣ0[j� −
(
L0[j�Σ0≺j�L0≺j]

) (
L0[j�Σ0≺j�I|paD(j)|

)}
=

2

n(k)
Σ0jjΣ0[j�, (8)

using (A⊗B)> = A> ⊗B> and Σ0jj − σ2
0j = L0[j�Σ0≺j�L0≺j]. Putting together the results

in (3)-(8), by Delta method that we have that

h̄
(
X̄

(k)
2j , vec X̄

(k)
2≺j�, X̄

(k)
2≺j]

)
d→ N

(
h̄
(
Σ0jj , vec Σ0≺j�,Σ0≺j ]

)
,

2

n(k)
∇h̄
(
Σ0jj , vec Σ0≺j�,Σ0≺j ]

)>
Λ∇h̄

(
Σ0jj , vec Σ0≺j�,Σ0≺j ]

))
,

where

Λ =


Σ2

0jj Σ0[j� ⊗Σ0[j� Σ0[j� ⊗Σ0jj

Σ0≺j ] ⊗Σ0≺j ] Σ0≺j� ⊗Σ0≺j� Σ0≺j ] ⊗Σ0≺j�

Σ0≺j ] ⊗Σ0jj Σ0[j� ⊗Σ0≺j�
1
2

(
Σ0≺j�Σ0jj + Σ0≺j ]Σ0[j�

)


and this distribution corresponds to the stated result.
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Proposition 3.2 tells that a true negative case of no intervention, i.e. j /∈ Ik, will be eventually

detected with sample size large enough. Note that the mean of the asymptotic distribution

is closer to zero when node j is independent from any other node, that is |paD(j)| = Ø, and

therefore Σ0jj = σ2
0j . Intuitively, it is more difficult to understand the absence of an intervention

since there are no parent-child relations that are removed by the intervention on node j, which

makes the intervention effect less apparent. In this special case, the second addend in the

asymptotic variance disappears, and the whole asymptotic distribution becomes very similar,

mutatis mutandis, to the one recovered in Proposition 3.1.

3 Graph Consistency

In the current section we prove model selection consistency of the true DAG observational

equivalence class; the latter, combined with consistent estimation of targets, allows to identify

the group-specific intervention graphs. In the following lemma and proposition, we first extend

the conjugacy result on the DAG-Wishart prior of Ben-David et al. (2015) to interventional

Gaussian multivariate data from multiple groups; then we prove, following Cao et al. (2019) and

Peluso and Consonni (2020), its Bayes factor and posterior ratio consistency outside [D0], the

equivalence class of the true DAG, and its asymptotic compatibility within [D0]. Let P k be a

q × q diagonal matrix such that P k
jj = 1 if j /∈ Ik, that is node j is not intervened in group k.

Lemma 3.1. Let D0 be the true DAG. Assume (D,L) | D follows a DAG-Wishart distribution

with hyperparameters U and aD and consider the likelihood function f
(
X |θ, I1, . . . , IK ,D

)
defined as in (5) of the main text. A posteriori we have that (D,L) | D,X, I1, . . . , IK is also

DAG-Wishart with hyperparameters nS̃ and a+n∗, where S̃ := U/n+
∑

k P
kX(k)>X(k)P k/n

and n∗ :=
∑

k diag{P k}n(k).

Proof. The DAG-Wishart (prior) distribution has density

1

ZD(U ,aD)
exp

{
−1

2
tr
((
LD−1L>

)
U
)}∏

j∈V
D
−

aDj
2

jj

for all (D,L) in the Cholesky space, with ZD(U ,aD) being the normalizing constant. In the

posterior distribution, we can write the likelihood f
(
X |θ, I1, . . . , IK ,D

)
as proportional to

K∏
k=1

p(X(k) |D,L, I1, . . . , IK , ) ∝
K∏
k=1

exp

{
−1

2
tr
((
LD−1L>

)
P kS(k)P k

)}∏
j∈V

D
−

Pk
jjn

(k)

2
jj

= exp

{
−1

2
tr

((
LD−1L>

)∑
k

P kS(k)P k

)}∏
j∈V

D
−

∑
k

Pk
jjn

(k)

2
jj ,

with S(k) = (X(k))>X(k), where we omitted the interventional terms in the likelihood not

dependent on D and L. The DAG-Wishart (posterior) distribution of (D,L) | D,X, I1, . . . , IK

follows immediately from Bayes theorem by combining prior and likelihood.
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We have Bayes factor consistency if, for all D 6= D0, the Bayes factor

BFD,D0 =
m(X | D, I1, . . . , IK)

m(X | D0, I1, . . . , IK)

P̄→ 0,

whenever D0 is the true DAG generating X, where
P̄→ denotes convergence in probability, P̄ is

the probability measure under the true DAG D0, and m(X | D, I1, . . . , Ik) is the marginal (or

integrated) likelihood. Define also ñ = n − n∗. On the other hand, we have posterior ratio

consistency if, with D0 being the true DAG, it holds that, as n→∞,

max
D6=D0

p(D |X, I1, . . . , IK)

p(D0 |X, I1, . . . , IK)
= max
D6=D0

BFD,D0(X | I1, . . . , Ik)
p(D)

p(D0)

P̄→ 0. (9)

Proposition 3.3. Let D0 be the true DAG. Assume (D,L) | D follows a DAG-Wishart dis-

tribution with hyperparameters U and aD as in Equation (8) of the main text, and consider

the likelihood function f
(
X |θ, I1, . . . , IK ,D

)
defined as in (5) of the main text. If (a) aDj =

a+ |paD(j)| − q+ 1, (b) ñj = o(n∗j ) for all j ∈ V , and (c) for all j 6= l ∈ V there exists a k such

that j /∈ Ik and l /∈ Ik hold, then as n→∞,

i) max
D/∈[D0]

p(D |X, I1, . . . , IK)

p(D0 |X, I1, . . . , IK)

P̄−→ 0,

ii)
p(D |X, I1, . . . , IK)

p(D0 |X, I1, . . . , IK)

P̄−→ p(D)

p(D0)
for all D ∈ [D0].

Proof. From the conjugacy of the DAG-Wishart distribution (Lemma 3.1), we can write the

marginal likelihood of DAG D as

m(X | D, I1, . . . , IK) = (2π)−n/2ZD
(
nS̃,aD + n∗

)
/ZD(U ,aD).

Accordingly, the Bayes factor between any two DAGs D and D0 is

BFD,D0 (X | I1, . . . , IK) =
ZD(nS̃,aD + n∗)

ZD(U ,aD)

ZD0(U ,aD0)

ZD0(nS̃,aD + n∗)
.

Since ñj = o(n∗j ) for all j ∈ V , then (a+nj)/(a+n∗j ) = (a+n∗j + ñj)/(a+n∗j )→ 1. Furthermore,

K∑
k=1

P kX(k)>X(k)P k =

 K∑
k=1

n(k)∑
i=1

x
(k)
ij x

(k)
il 1{j /∈Ik}1{l /∈Ik}


jl

�

 K∑
k=1

n(k)∑
i=1

x
(k)
ij x

(k)
il


jl

=
K∑
k=1

X(k)>X(k) = X>X,

where the asymptotic equivalence in probability holds from the assumption (c) that for all nodes

there exists a setting (group) k where both nodes are not intervened. Then, from Continuity

Mapping theorem

BFD,D0 (X | I1, . . . , IK) � ZD(U +X ′X,aD + n)

ZD(U ,aD)

ZD0(U ,aD0)

ZD0(U +X ′X,aD + n)
,
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in the same form provided by Cao et al. (2019). Result i) comes therefore from Cao et al. (2019,

Theorem 4.1), whilst result ii) comes from assumption b) together with Peluso and Consonni

(2020, Proposition 3.5).

Proposition 3.3 shows that posterior ratio and Bayes factor consistency under DAG-Wishart

prior holds outside the Markov equivalence class of the true generating DAG D0. On the other

hand, the posterior ratio tends to the prior ratio (Bayes factor equal to one) within the true

equivalence class. This result is coherent with Peluso and Consonni (2020), in the context of

a single-group observational data. Assumption (a) guarantees compatibility within equivalence

classes (Geiger and Heckerman, 2002; Peluso and Consonni, 2020), to have Bayes factors between

equivalent graphs always equal to one. The removal of this assumption does not break posterior

consistency outside [D0], but the posterior ratio within [D0] would converge to some value

dependent on the true parameters, losing compatibility. With assumption (b) we require that,

for each node, the number of non-interventional observations for node j will eventually dominate

the number of intervened records for the node. Finally, the last assumption (c) intuitively says

that, for each pair of nodes, we can estimate their dependence if there exists at least a group in

which these two nodes are not intervened.

We further note that assumption (b) on the asymptotic dominance of purely observational

data over interventional ones is particularly convenient since it permits to reconduct the problem

of graph consistency to the one in Cao et al. (2019) and in Peluso and Consonni (2020) for

the comparison, respectively, of (observationally) non-equivalent and equivalent graphs. In

this way we guarantee the identification of the correct observational equivalence class and,

together with the correct identification of target nodes, we are able to consistently estimate

the interventional DAG, up to relations of interventional equivalences. We conjecture that the

removal of this assumption, substituted by n∗j = αn for some α ∈ (0, 1), that is observational

and interventional sample sizes diverging at the same speed, can lead to the more precise result

of graph posterior consistency by breaking, within the observational equivalence class of the true

DAG, the compatibility among graphs that are not anymore equivalent after the interventions.

We refer the reader to Hauser and Bühlmann (2012) for the formal definition of interventional

Markov equivalence. Moreover, by Chickering (1995, Theorem 2), there exists a sequence of

obervationally Markov equivalent DAGs differing only for the reversal of a covered edge, that is

for an edge (u, v) of D for which pav(D) = pau(D) ∪ {u}. A comparison between D and D0,

differing only by one covered edge reversal, could show, when an intervention occurs on u or on

v and breaks the equivalence, that compatibility is replaced by posterior ratio consistency.
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4 Sampler for posterior inference

4.1 Marginal likelihood derivation

In this section we provide further details on the MCMC scheme adopted for posterior inference

on DAGs and intervention targets. Our algorithm is based on a collapsed Metropolis-Hastings

sampler (Metropolis et al., 1953), where the DAG parameters θ =
{
D,L,Φ(1), . . . ,Φ(K)

}
are

integrated out. Accordingly, we first focus on the integrated likelihood

m(X | I1, . . . , IK ,D) =

∫
θ∈Θ

f
(
X |θ, I1, . . . , IK ,D

)
p(θ) dθ. (10)

To integrate out all parameters in θ, we exploit the structure of the prior p(θ) and we first

re-write Equation (5) in the main text as

f
(
X |θ, I1, . . . , IK ,D

)
=

q∏
j=1

{
ϕn∗j

(
X∗j | −X∗paD(j)L≺j ], σ

2
j In∗j

) ∏
k:j∈Ik

ϕn(k)

(
X

(k)
j |0, φ

(k)
j I

n
(k)
j

)}
,

where X∗j is the (n∗j , 1) vector collecting all the observations X
(k)
j such that j /∈ Ik while

X∗paD(j) is the corresponding n∗j × |paD(j)| matrix of parent-nodes observations. Accordingly,

n∗j =
∑

k:j /∈Ik n
(k). Now notice that, because of prior parameter independence, the likelihood

admits the same factorization of (8) (see our main text). Therefore, the integrated likelihood

can be obtained as m
(
X | I1, . . . , IK ,D

)
=

q∏
j=1

{ ∞∫
0

∫
R|paD(j)|

{
ϕn∗j

(
X∗j | −X∗paD(j)L≺j ], σ

2
j In∗j

)
· p
(
L≺j ] |σ2

j

)
p(σ2

j ) dL≺j ] dσ
2
j

}

·
∏

k:j∈Ik

∞∫
0

{
ϕn(k)

(
X

(k)
j |0, φ

(k)
j I

n
(k)
j

)
· p
(
φ

(k)
j

)
dφ

(k)
j

}}
. (11)

Also, because of conjugacy each integral in the product is available in closed-form as the ratio

of prior and posterior normalizing constants. Therefore we obtain

m
(
X | I1, . . . , IK ,D

)
=

q∏
j=1

{
m(X∗j |X∗paD(j),D) ·

∏
k:j∈Ik

m(X
(k)
j )

}
, (12)

where

m
(
X∗j |X∗paD(j),D

)
= (2π)−

n∗j
2 ·

∣∣gI|paD(j)|
∣∣1/2∣∣gI|paD(j)| + S
∗
paD(j)

∣∣1/2
·

Γ
(
aDj
2 +

n∗j
2

)
Γ
(
aDj
2

) ·
(g

2

)aDj /2(
g+r∗j

2

)(aDj +n∗j )/2
,

m
(
X

(k)
j

)
= (2π)−

n
(k)
j
2 ·

Γ
(
a
(k)
j

2 +
n
(k)
j

2

)
Γ
(
a
(k)
j

2

) ·
(g

2

)a(k)j /2(
g+s

(k)
j

2

)(a
(k)
j +n

(k)
j )/2

,
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and

S∗paD(j) = X∗>paD(j)X
∗
paD(j),

r∗j = X∗>j X∗j −X∗>j X∗paD(j)

(
gI|paD(j)| + S

∗
paD(j)

)−1
X∗>paD(j)X

∗
j ,

s
(k)
j = X

(k)>
j X

(k)
j .

We then construct a collapsed Metropolis-Hastings sampler (Metropolis et al., 1953) to approx-

imate

p(I1, . . . , IK ,D |X) ∝ m
(
X | I1, . . . , IK ,D

)
· p(I1, . . . , IK) p(D), (13)

the posterior distribution of DAGs and intervention targets. The output is a collection of

DAGs
{
D(s)

}S
s=1

and targets
{
I

(s)
1 , . . . , I

(s)
K

}S
s=1

approximately sampled from (13), where S is

the number of finally kept MCMC iterations. We summarize our MCMC scheme in Algorithm

1 and provide details about the update of DAGs and targets in the following sections.

4.2 Update of D

The full conditional distribution of D is p(D | I1, . . . , IK ,X) ∝ m(X | I1, . . . IK ,D) p(D). Update

of DAG D can be performed through a Metropolis Hastings step, where, given the current DAG,

a new DAG D̃ is proposed from q(D̃ | D) and accepted with probability

α = min

{
1;
m
(
X | I1, . . . , IK , D̃

)
m
(
X | I1, . . . , IK ,D

) · p(D̃)

p(D)
· q(D | D̃)

q(D̃ | D)

}
. (14)

The proposal distribution q(D̃ | D) follows the lines of Chickering (2002). We consider three

types of operators that locally modify the input DAG D: insert a directed edge (InsertD u→ v

for short), delete a directed edge (DeleteD u→ v) and reverse a directed edge (ReverseD u→ v).

For a given D we then construct the set of valid operators OD, that is operators whose resulting

graph is a DAG. A DAG D̃ is then called a direct successor of D if it can be reached by applying

an operator in OD to D. Given the current D we propose D̃ by uniformly sampling an element in

OD and applying it to D. Since there is a one-to-one correspondence between each operator and

resulting DAG, the probability of transition is q(D̃ | D) = 1/|OD|, for each D̃ direct successor of

D.

4.3 Update of I1, . . . , IK

Conditionally on DAG D we update the K targets I1, . . . , IK (equivalently, the indicator vectors

h1, . . . ,hK) sequentially; see also Section 2.4 in the main text. For a given k, the full conditional

of Ik is p(Ik | {Is}s 6=k,D,X) ∝ m(X | I1, . . . , IK ,D) · p(I1, . . . , IK) Again, update of Ik condi-

tionally on {Is}s 6=k and DAG D can be performed through a Metropolis Hastings step, where a
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new target Ĩk proposed from q(Ĩk | Ik) is accepted with probability

βk = min

{
1;
m
(
X | Ĩk, {Is}s 6=k,D

)
m
(
X | Ik, {Is}s 6=k,D

) · p(Ĩk)

p(Ik)
· q(Ik | Ĩk)

q(Ĩk | Ik)

}
. (15)

Starting from a given target Ik, a candidate target Ĩk is obtained by randomly drawing a node

j ∈ {1, . . . , q} which is included in Ik if j /∈ Ik, otherwise removed. The structure of this proposal

is such that q(Ik | Ĩk)/q(Ĩk | Ik) = 1 for any Ik and Ĩk differing in one j, and equal to 0 otherwise.

Algorithm 1: MCMC scheme to sample from the posterior (13)

Input: K datasets X(1), . . . ,X(K)

Output: S samples from the posterior (13)

1 Initialize D(0), e.g. the empty DAG, and the targets I1, . . . , IK , e.g. Ik = Ø for k = 1, . . . ,K;

2 for s = 1, . . . , S do

3 Sample D̃ from q(D̃ | D(s−1)) and set D(s) = D̃ with probability α in (14),

4 otherwise D(s) = D(s−1);

5 for k = 1, . . . ,K do

6 Propose Ĩk from q(Ĩk | Ik) and set I
(s)
k = Ĩk with probability βk in (15),

7 otherwise I
(s)
k = I

(s−1)
k ;

8 end

9 end

4.4 Computational and convergence issues

We first investigate the computational time of our method as a function of the number of

variables q and sample size n(k). Figure 1 summarizes the computational time (averaged

over 12 repetitions) per iteration for q ∈ {5, 10, 20, 50, 100, 200} and for sample sizes n(k) ∈
{10, 20, 50, 100, 200, 500, 1000}. Each dotted line in the left (right) panel of the figure corre-

sponds to a fixed value of q (n(k)); moreover, higher curves are associated to higher values of

q and n(k) respectively. The behavior of all curves suggests a polynomial dependence of the

computational time from both q and n(k). Results were obtained on a PC Intel(R) Core(TM)

i7-8550U 1,80 GHz.

Computational challenges are related the huge dimension of the graph space. More pre-

cisely, our proposal distribution for DAG moves in the MCMC is uniform over the set of direct

successors of the current DAG D, a set consisting of all those DAGs obtained from D by ap-

plying singe-edge removals, insertions or reversals. This kind of proposal results in a DAG

acceptance rate which is relatively small, especially when the posterior over DAGs is highly con-

centrated (typically when n is large), meaning that many of the proposed DAGs are discarded

by the MCMC. As a consequence, convergence to the target posterior over DAGs can require a

higher number of iterations. One possible solution not investigated in the current manuscript
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Figure 1: Computational time (in seconds) per iteration, as a function of the sample size n(k) (left panel,

for increasing values of q) and as a function of q (right panel, for increasing values of n(k)), averaged over

12 simulated multiple datasets.

is represented by Feature Inclusion Stochastic Search (FINCS) methods, based on the notion

of (marginal) probability of inclusion for a potential edge; see for instance Scott and Carvalho

(2008) and Altomare et al. (2013) who adopt FINCS for undirected graphs and DAGs with

fixed ordering of the nodes respectively. In brief, the intuition is that insertion of edges with a

higher posterior probability of inclusion (computed up to time t) is more likely to be accepted.

Accordingly, at each step t of the MCMC, moves are proposed with different probabilities, each

reflecting the probability of (non) inclusion of those edges which are involved in the move.

In a similar way, alternative choices of the proposal distribution for target nodes can speed up

MCMC convergence. More precisely, in the current version of our MCMC scheme, starting from

a given target Ik, a candidate target Ĩk is obtained by randomly drawing a node j ∈ {1, . . . , q}
which is included in Ik if j /∈ Ik, otherwise removed from Ik if j already belongs to Ik. The

structure of this proposal is such that q(Ik | Ĩk)/q(Ĩk | Ik) = 1 for any Ik and Ĩk differing in one j,

and equal to 0 otherwise. Accordingly, our proposal modifies one target at a time. Alternatively,

one can randomly choose a node j ∈ {1, . . . , q} and propose a new allocation of the node in the

K datasets. More precisely, for j = 1, . . . , q, let ξj = (ξj(1), . . . , ξj(K))> be a K-th vector of

indicators such that for each k = 1, . . . ,K, ξj(k) = 1 if and only if j ∈ Ik. Similarly as before, we

can then sample j ∈ {1, . . . , q} and propose a new configuration of vector ξj given the current

one. This kind of move applied for the simultaneous update of a set of nodes can result in an

improved MCMC mixing and convergence to the posterior of DAGs and targets.

Finally, we assess convergence of the MCMC algorithm by investigating how selected fea-

tures of the model space behave across iterations, and by evaluating the agreement between

independent MCMC chains with different starting points. To this end, we considered some pilot

simulations for each setting defined by q = 20 and q = 40 variables for a number of iterations

S = 25000 and S = 50000 respectively. Specifically, under each simulation, we ran two inde-

13



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Edge PPI (chain I)

E
dg

e 
P

P
I (

ch
ai

n 
II)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Target PPI (chain I)

Ta
rg

et
 P

P
I (

ch
ai

n 
II)

Figure 2: Simulations. Scatter plots of estimated marginal posterior probabilities of edge in-

clusion (left panel) and marginal posterior probabilities of intervention (target inclusion, right

panel) obtained from two independent MCMC chains, chain I and chain II.

pendent chains of same length, with random starting points. We then compare the estimated

marginal posterior probabilities of edge inclusion obtained from the two chains as well as the

marginal posterior probabilities of intervention (target inclusion); see also Equations (13) and

(14) in the main text. As an instance, Figure 2 shows the scatter plots of the estimated poste-

rior probabilities of edge inclusion and intervention obtained from the two chains for one pilot

simulation with q = 20. By visual inspection, we see that the agreement between the chains is

highly satisfactory, since points are clustered around the main diagonal of the plot.

5 More simulated scenarios

We present extensive simulation studies to evaluate the performance of our methodology and

comparisons with alternative approaches. We first include the complete results for the simu-

lation study introduced in the main text, with all interventional datasets. Next, we consider

additional simulation scenarios including both observational and interventional data. Under

both cases, we fix the number of groups (interventions) K = 4, while we vary the num-

ber of variables q ∈ {20, 40} and the number of observations for each group k = 1, . . . ,K,

n(k) ∈ {10, 20, 50, 100, 200, 500}. Under each scenario defined by (q, n(k)), we perform 40 simu-

lations, each corresponding to a true DAG D, family of targets {I1, . . . , IK} and resulting in a

(multiple with K = 4 groups) dataset. Specifically, we first randomly generate a topologically

ordered DAG D with probability of edge inclusion pedge = 2/q. Generation of targets I1, . . . , IK

is specific to each of the two following settings and therefore detailed in the next. Given DAG

D and family of targets {I1, . . . , IK}, parameters D, L and Φ(k) =
{
φ

(k)
j , j ∈ Ik

}
are generated

by fixing D = Iq, and φ
(k)
j = 0.1 for each j ∈ Ik and k = 1, . . . ,K; non zero elements of L are

14



instead uniformly chosen in the interval [−1,−0.1] ∪ [0.1, 1]; see also Equation (4) of the main

text.

In the first case with all interventional datasets, a family of intervention targets I1, . . . , IK is

generated under two scenarios resembling different degrees of “sparsity” in the targets. Scenario

Sparse is characterized by a moderate number of interventions, with each target Ik obtained by

drawing without replacement s ∈ {2, 4} nodes, respectively for q = 20 or q = 40. On the other

hand, in Scenario Diffuse we assign each node to one of the K targets. As a consequence, each

variable is involved in one of the K interventions, with an overall larger number of simultaneous

interventions (sizes of the targets Ik). Next, for each k = 1 . . . ,K, n(k) i.i.d. interventional data

collected in the n(k) × q data matrix X(k) are generated as in Equation (4) of our paper. Each

dataset is therefore a collection of K interventional data matrices X(1), . . . ,X(K).

In the following we present results relative to our Bayesian method (Bayes) and some bench-

mark methods. In particular we include the Unknown Target Interventional Greedy Sparsest

Permutation algorithm of Squires et al. (2020), a non-parametric strategy for target estima-

tion and structure learning based on permutation tests that we implement at significance level

α ∈ {0.1%, 0.001%} (IGSP 0.1% and IGSP 0.001% respectively), as recommended in the original

paper. Other significance levels are not included since result in worse performances. We also

include Algorithm 1 of He and Geng (2016), a method for DAG learning from interventional data

with unknown targets, that builds on the PC algorithm of Spirtes et al. (2000). We implement it

at significance level 0.05; results obtained at different significance levels and not included led to

worse performances. As a further benchmark, we also construct a baseline node-wise regression

approach, by adapting to our interventional setting the two-stage adaptive lasso method of Han

et al. (2016): we first recover a baseline DAG structure by applying the adaptive lasso to the

union of the K data matrices; next, we apply adaptive lasso to each dataset X(k) separately,

and estimate intervention targets by comparing overall and group-specific DAGs; we call this

benchmark Node-wise. Finally, we include the Greedy Interventional Equivalence Search (GIES)

method of Hauser and Bühlmann (2012), a search-and-score method based on maximum likeli-

hood estimation, which provides an estimate of the graph representing the interventional Markov

equivalence class of the true DAG. GIES was developed for known intervention targets, that we

input, as in an oracle setting, using the true intervened nodes. We implement GIES using the

Extended Bayesian Information Criterion (EBIC) with tuning coefficient γ ∈ {0.5, 1} (GIES 0.5

and GIES 1 respectively) as also recommended in Foygel and Drton (2010). All methods can be

adopted for DAG structure learning, whilst only IGSP and Node-wise can perform target esti-

mation. Finally, notice that IGSP requires n(k) > q, so that results of IGPS for n(k) ∈ {10, 20}
are missing.

All methods can be adopted for DAG structure learning, whilst only IGSP 0.1, IGSP 0.001%

and Node-wise can perform target estimation; see the main text for more details. Moreover,
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while all the benchmarks directly output single estimates of DAGs (and targets), we adapt our

Bayesian method to provide point estimates as described in our paper (Section 5.2). Finally,

notice that IGSP requires n(k) > q, so that results of IGSP for n(k) ∈ {10, 20} are missing.

A summary for q = 20 and q = 40 is reported in the box-plots of Figures 3 and 4. This

reports the distribution of FPR and FNR constructed across the N = 40 simulations for three

methods under evaluation and increasing sample sizes n(k) under Sparse and Diffuse Scenarios.

We notice that, coherently with the theoretical results of Section 4 in the main text, for our

method both sources of error vanish as sample size increases. This tendency is more evident for

FNR that rapidly goes to zero already at moderate sample sizes, e.g. n(k) = 20. It is clear the

outperformance of our proposal, relative to the benchmarks, with Node-wise performing equally

well only in terms of FNR.

We then evaluate the performance of each methodology in recovering the DAG structure. We

compare each DAG estimate D̂ with the true DAG D, by measuring the Structural Hamming

Distance (SHD, Tsamardinos et al. 2006) between the two graphs; see also the main paper for

details. Results are summarized in the box-plots of Figures 9 and 10, where each plot reports

the distribution of SHD across the N = 40 simulated datasets for the various methods and

increasing sample sizes n(k) ∈ {10, . . . , 500} under Sparse and Diffuse Scenarios. It is clear

the tendency of a better and better recovery of the true graphical structure as we increase the

amount of available data, and an overall better performance relative to all the benchmarks. The

only exception is GIES 0.5 which was however implemented with input the true targets and

outperforms our Bayesian method in few settings characterized by small sample sizes, where

indeed target identification was more difficult for our method. However, it performs worse than

Bayes as n(k) increases, especially under Scenario Sparse

In the second case, we repeat all simulation settings above, but we impose I1 = Ø, imply-

ing no interventions for the first data matrix X(1), which therefore consists of observational

data. Targets I2, I3, I4 are again generated under two different scenarios, Sparse and Diffuse.

We present results relative to both target estimation (Figures 7 and 8) and DAG structure

learning (Figures 9 and 10). We note no substantial differences relative to the case with only

interventional data.

6 Sensitivity analyses

For the two real data problems presented in the main text (Section 6), we perform sensitivity

analyses with respect to the hyperparameter η, which represents the prior probability of edge

inclusion in the DAG. Therefore, tuning of η can regulate the inclusion of specific links in

the graph space. Since interventions modify the DAG structure through edge removals, choice

of η may affect intervention targets’ identification. Accordingly, we evaluate the impact of η
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Figure 3: Simulation 1, interventional data. Distribution of the False Positive Rate (FPR, first row) and

False Negative Rate (FNR, second row) across N = 40 simulated datasets under Sparse (first column)

and Diffuse (second column) Scenarios, for number of nodes q = 20 and increasing sample sizes n(k).

Methods under comparison are: our Bayesian methodology (Bayes), the Unknown Target Interventional

Greedy Sparsest Permutation algorithm implemented at significance level α ∈ {0.1%, 0.001%} (IGSP

0.1% and IGSP 0.001%) and node-wise regression (Node-wise).
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Figure 4: Simulation 1, interventional data. Distribution of the False Positive Rate (FPR, first row) and

False Negative Rate (FNR, second row) across N = 40 simulated datasets under Sparse (first column)

and Diffuse (second column) Scenarios, for number of nodes q = 40 and increasing sample sizes n(k).

Methods under comparison are: our Bayesian methodology (Bayes), the Unknown Target Interventional

Greedy Sparsest Permutation algorithm implemented at significance level α ∈ {0.1%, 0.001%} (IGSP

0.1%, IGSP 0.001%) and node-wise regression (Node-wise).
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Figure 5: Simulation 1, interventional data. Distribution across N = 40 simulated datasets of the

Structural Hamming Distance (SHD) between estimated and true DAG under Sparse (top) and Diffuse

(bottom) Scenarios, for number of nodes q = 20 and increasing sample sizes n(k). Methods under

comparison are: our Bayesian methodology (Bayes), the Unknown Target Interventional Greedy Sparsest

Permutation algorithm implemented at significance level α ∈ {0.1%, 0.001%} (IGSP 0.1%, IGSP 0.001%),

node-wise regression (Node-wise), Algorithm 1 of He and Geng (2016) (He & Geng) and the Greedy

Interventional Equivalence Search method with tuning coefficient γ ∈ {0.5, 1} (GIES 0.5, GIES 1).
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Figure 6: Simulation 1, interventional data. Distribution across N = 40 simulated datasets of the

Structural Hamming Distance (SHD) between estimated and true DAG under Sparse (top) and Diffuse

(bottom) Scenarios, for number of nodes q = 40 and increasing sample sizes n(k). Methods under

comparison are: our Bayesian methodology (Bayes), the Unknown Target Interventional Greedy Sparsest

Permutation algorithm implemented at significance level α ∈ {0.1%, 0.001%} (IGSP 0.1% IGSP 0.001%),

node-wise regression (Node-wise), Algorithm 1 of He and Geng (2016) (He & Geng) and the Greedy

Interventional Equivalence Search method with tuning coefficient γ ∈ {0.5, 1} (GIES 0.5, GIES 1).
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Figure 7: Simulation 2, observational and interventional data. Distribution of the False Positive Rate

(FPR, first row) and False Negative Rate (FNR, second row) across N = 40 simulated datasets under

Sparse (first column) and Diffuse (second column) Scenarios, for number of nodes q = 20 and increas-

ing sample sizes n(k). Methods under comparison are: our Bayesian methodology (Bayes), the Un-

known Target Interventional Greedy Sparsest Permutation algorithm implemented at significance level

α ∈ {0.1%, 0.001%} (IGSP 0.1%, IGSP 0.001%) and node-wise regression (Node-wise).

21



Sparse Scenario Diffuse Scenario

0.00

0.25

0.50

0.75

1.00

10 20 50 100 200 500

n(k)

F
P

R

0.00

0.25

0.50

0.75

1.00

10 20 50 100 200 500

n(k)

F
P

R

Method

Bayes

IGSP 0.001%

IGSP 0.1%

Node−wise

0.00

0.25

0.50

0.75

1.00

10 20 50 100 200 500

n(k)

F
N

R

0.00

0.25

0.50

0.75

1.00

10 20 50 100 200 500

n(k)

F
N

R

Method

Bayes

IGSP 0.001%

IGSP 0.1%

Node−wise

Figure 8: Simulation 2, observational and interventional data. Distribution of the False Positive Rate

(FPR, first row) and False Negative Rate (FNR, second row) across N = 40 simulated datasets under

Sparse (first column) and Diffuse (second column) Scenarios, for number of nodes q = 40 and increas-

ing sample sizes n(k). Methods under comparison are: our Bayesian methodology (Bayes), the Un-

known Target Interventional Greedy Sparsest Permutation algorithm implemented at significance level

α ∈ {0.1%, 0.001%} (IGSP 0.1%, IGSP 0.001%) and node-wise regression (Node-wise).
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Figure 9: Simulation 2, observational and interventional data. Distribution across N = 40 simulated

datasets of the Structural Hamming Distance (SHD) between estimated and true DAG under Sparse (top)

and Diffuse (bottom) Scenarios, for number of nodes q = 20 and increasing sample sizes n(k). Methods

under comparison are: our Bayesian methodology (Bayes), the Unknown Target Interventional Greedy

Sparsest Permutation algorithm implemented at significance level α ∈ {0.1%, 0.001%} (IGSP 0.1%, IGSP

0.001%), node-wise regression (Node-wise), Algorithm 1 of He and Geng (2016) (He & Geng) and the

Greedy Interventional Equivalence Search method with tuning coefficient γ ∈ {0.5, 1} (GIES 0.5, GIES

1).
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Figure 10: Simulation 2, observational and interventional data. Distribution across N = 40 simulated

datasets of the Structural Hamming Distance (SHD) between estimated and true DAG under Sparse

(top) and Diffuse (bottom) Scenarios, for number of nodes q = 40 and increasing sample sizes n(k).

Methods under comparison are: our Bayesian methodology (Bayes), the Unknown Target Interventional

Greedy Sparsest Permutation algorithm implemented at significance level α ∈ {0.1%, 0.001%} (IGSP

0.1%, IGSP 0.001%) node-wise regression (Node-wise), Algorithm 1 of He and Geng (2016) (He & Geng)

and the Greedy Interventional Equivalence Search method with tuning coefficient γ ∈ {0.5, 1} (GIES 0.5,

GIES 1).
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Figure 11: Sachs data. Posterior probabilities of intervention p̂j∈Ik as a function of η ∈ {0.01, 0.1, 0.2}
for each node j = 1, . . . , q, for the two datasets with unknown targets, I8 (left) and I9 (right).

on the posterior probabilities of intervention p̂j∈Ik as defined in Equation (13) of our paper,

for each node j = 1, . . . , q and target Ik, k = 1, . . . ,K. For both the applications, we vary

η ∈ {0.01, 0.10, 0.20}.
Results for the Sachs data are reported in Figure 11 where each plot refers to one of the

two datasets with unknown targets. It is clear that in this setting, characterized by large group

sample sizes n(k), results are quite insensitive to the choice of η. Similar results were obtained

for the epilepsy data: from Figure 12, which reports the behaviour of p̂j∈Ik as a function of η, for

j = 1, . . . , q and each of the three unknown targets (drugs) Ik, k = 2, 3, 4, posterior probabilities

of inclusion are stable around zero for most of the nodes and targets. Differently, results are

more affected by the choice of η for nodes with non-zero probabilities of inclusion. However,

largest variations do not exceed a range of 0.25; in addition, estimated intervention targets,

obtained with a threshold for inclusion of 0.5, never change, with the only exception being one

node in the last group/intervention, included in the estimated target only for η = 0.10, with a

probability of inclusion just above 0.5.

7 Real data analyses: additional results and figures

In this section we include additional results and plots for the application to real data. Specifically,

for the epilepsy dataset we report in Figure 13 the heat map collecting the posterior probabilities

of intervention computed for each node v ∈ {1, . . . , 100} under each of the three drug therapies

(interventions) as in Equation (15) of our paper. Sparsity in the map reveals that there are few

genes exhibiting a high posterior probability of intervention under some of the treatments. In

particular, only six genes are associated with probabilities of intervention exceeding 0.5. The

same result is also clear from the posterior distribution of the number of intervened nodes (size
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Figure 12: Epilepsy data. Posterior probabilities of intervention p̂j∈Ik as a function of η ∈ {0.01, 0.1, 0.2}
for each node j = 1, . . . , q and each dataset (targets I2, I3, I4) corresponding to one of the three admin-

istrated drugs.
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Figure 13: Epilepsy data. Heat map with estimated posterior probabilities of intervention computed for

each drug-therapy (intervention) and each node/gene v (v = 1, . . . , 100).

of the intervention target) obtained for each of the three drug therapies. The approximated

posterior distribution resulting from our MCMC output is reported in Figure 14.

For the Sachs data, Figure 15 reports our estimated (median probability) DAG D̂, with blue

and pink circles representing nodes which are included in the estimated intervention targets Î8

and Î9 respectively. The same figure contains the intervention DAGs (Definition 2.1 in the main

text) of D̂ given the intervention targets Î8 and Î9, D̂Î8 and D̂Î9 respectively. The two graphs

help understanding how the original DAG structure modifies after one of the reagents is applied.

We also report in Figure 16 three DAG estimates obtained from benchmark methods Node-

wise, He & Geng and IGSP 0.1% applied to Sachs data; see also Section 5 within our paper for

a brief presentation of these methods. Again, blue (pink) circles represent nodes included in the

(estimated) intervention target Î8 (Î9); grey circles represent instead nodes which are included

in both the two targets. Notice that, because He & Geng does not provide target estimates,

this information is missing from the corresponding estimated graph. Also notice that its output

is not in general a DAG but a partially directed graph; accordingly we name it ĜH&G. Two of

these graphs, D̂NW and ĜH&G, are equal to our estimate D̂ (Figure 15) in terms of skeleton.

In addition, D̂ and D̂NW also share the same edge orientations, with the only exception of link

p38 ← JNK in D̂ which is reversed in D̂NW . By converse, orientation of most edges is not

recovered in ĜH&G and only two oriented edges, PLC → PIP2 and PIP3 → PIP2, are also

present in D̂ and D̂NW . Differently, D̂IGSP presents a different skeleton, because of the absence

of two links, and also differs from D̂ by the orientation of edges PKA→ Erk and p38→ JNK.
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Figure 14: Epilepsy data. Posterior distribution of the number of intervened nodes (size of the inter-

vention target) for each drug-treatment included in the study.
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Figure 15: Sachs data. Estimated (median probability) DAG D̂ obtained from our method with blue

(pink) circles representing nodes included in targets Î8 and Î9; two corresponding intervention DAGs,

D̂I8 and D̂I9 .
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Figure 16: Sachs data. Estimated graphs obtained from Node-wise regression, Algorithm 1 of He and

Geng (2016) and IGSP method, with blue (pink) circles representing nodes included in targets Î8 and Î9

(grey nodes included in both).
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