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1. Supplementary notes

Supplementary Note 1: Proof of the relations among the depen-
dence parameters when Y/Y* and X/X* are binary variables.
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Supplementary Note 2: Relationship between p and p*

Recall p* and p represent the joint distribution for (Y*, X*) and (Y, X), respectively when
both variables are binary.

b = Mp (S.1)
p* = {(My®1)o(1® M)+ D}p,



where ® is the Kronecker product and o is the Hadamard product (i.e., elementwise mul-
tiplication of matrices) and

1 = (1, 1)’,
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For nondifferential misclassification, (S.2) holds and can be further simplified to
p" = (My ® Mx + D)p, (5:2)

where ® is the Kronecker product and
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Supplementary Note 3: Derivations of L, and L,, for binary Y and
X

In the most general setting with differential and dependent misclassification errors for
binary Y and X, the likelihood function based on validation data is

1-y;
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Using the rule of total probability and definition of the dependence parameters, we have
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Supplementary Note 4: Boundaries of D parameters.

The proof is given in a general setting, that is, categorical Y and X. Let D;; 4 = P(Y"* =
WX =jlY =5, X=1)—PY*=ilY =5, X =t)P(X*=j|Y =5, X =t). Because

PV =i X' =jlY =5, X =1) < P(Y'=ilY =sX=1)
we have

Dy < PY* =iy =5, X =t)— P(Y* =i]Y =5, X = )P(X* = j|Y = 5, X = 1)
P(Y" =iV =5, X =t)(1 - P(X"=j|Y =5, X =1)).
Similarly
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= P(X"=jly =5 X =t)(1 - P(Y" =i]Y =5,X =t)).
On the other hand, due to the fact P(ANB) = P(A)+P(B)—P(AUB) > P(A)+P(B)—1,

we have
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Moreover, simply dropping the first item in the definition of D;; 4,
Dijo > —PY"=ilY =, X=)P(X"=jlY =5, X =1).
Note that for binary case under the nondifferential misclassification assumption,
PY*"=ilY =5,X=t) = PY"=i|lY =5)
= SN{(1— SNy)I 0PI 0 (1 — g Py yi=s),

P(X*=j]Y =5, X =t) = P(X*=j|X=1)
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Supplementary Note 5: Proof of 6 = F(cov(Y*, X*|Y, X)).

The proof is for a general setting with differential misclassification errors in both Y and
X, which includes nondifferential misclassification errors as a special case. By definition of
covariance, we have

cov(Y*, X*|Y,X) = E(Y*X*|Y,X)— E(Y*Y,X)E(X"Y, X)
= P(Y*=X"=1]Y,X) - P(Y*=1]Y,X)P(X* = 1Y, X).



Also we have
E(P(YV* =X"=1|V,X)) =Y P(Y*" = X" =1[Y =y, X = 2)p,
Y, T

= (Dn + SNy1SNX1>p11 + (_DIO + SNyo(1 — SPX1>>p10 +

(—D01 +(1— SPY1)5NX0>Z?01 + (Doo + (1 — SPyo)(1 — SPXO))pOO
= 6+ SNy1SNxi1pi1 + SNyo(1 — SPx1)pio + (1 — SPy1)SNxopor + (1 — SPyo)(1 — SPxo)poo-

While
E(P(Y* = 1|Y,X)P(X* = 1|Y,X)) = ZP(Y* = 1|Y =y, X = x)P(X* = 1|Y =y, X = x)py,x
Y, T
= SNy1SNx1p11 + SNyo(1 — SPx1)p1o + (1 — SPy1)SNxopor + (1 — SPyo)(1 — SPxo)poo-

Therefore, combining the above three equalities together, we have 6 = E(cov(Y™*, X*|Y, X)).

2. Supplementary plots

2.1 Binary variables

Here are the plots for the simulation scenario in Section 4.1 when X and/or Y is subject
to differential errors.
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Figure S.1: Relative bias of model parameters when Y is subject to differential misclassi-
fication error and X is subject to nondifferential misclassification error with n,/n = 10%:
red for naive model, blue for independent misclassification error model, green for dependent
misclassification model.
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Figure S.2: Relative bias of model parameters when Y is subject to differential misclassi-
fication error and X is subject to nondifferential misclassification error with n,/n = 30%:
red for naive model, blue for independent misclassification error model, green for dependent
misclassification model.
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Figure S.3: Relative bias of model parameters when Y is subject to differential misclassi-
fication error and X is subject to nondifferential misclassification error with n,/n = 50%:
red for naive model, blue for independent misclassification error model, green for dependent

misclassification model.
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Figure S.4: Relative bias of model parameters when Y is subject to nondifferential misclas-
sification error and X is subject to differential misclassification error with n,/n = 10%: red
for naive model, blue for independent misclassification error model, green for dependent
misclassification model.
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Figure S.5: Relative bias of model parameters when Y is subject to nondifferential misclas-
sification error and X is subject to differential misclassification error with n,/n = 30%: red
for naive model, blue for independent misclassification error model, green for dependent
misclassification model.
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Figure S.6: Relative bias of estimated parameters when Y is subject to nondifferential
misclassification error and X is subject to differential misclassification error with n,/n =
50%: red for naive model, blue for independent misclassification error model, green for
dependent misclassification model.
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Figure S.7: Relative bias of model parameters when both Y and X are subject to differ-
ential misclassification errors with n,/n = 10%: red for naive model, blue for independent
misclassification error model, green for dependent misclassification model.
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Figure S.8: Relative bias of model parameters when both Y and X are subject to differ-
ential misclassification errors with n,/n = 30%: red for naive model, blue for independent
misclassification error model, green for dependent misclassification model.
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Figure S.9: Relative bias of model parameters when both Y and X are subject to differ-
ential misclassification errors with n,/n = 50%: red for naive model, blue for independent
misclassification error model, green for dependent misclassification model.
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2.2 Categorical variables

Here are the plots for the simulation scenario in Section 4.2 when Y, X, Y* and X* are
all trinary variables.
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Figure S.10: Relative bias of estimated parameters when both Y and X are trinary variables
with n,/n = 10%.
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Figure S.11: Relative bias of estimated parameters when both Y and X are trinary variables
with n,/n = 30%.
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Figure S.12: Relative bias of estimated parameters when both Y and X are trinary variables

with n,/n = 50%.
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