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1. Supplementary notes

Supplementary Note 1: Proof of the relations among the depen-
dence parameters when Y/Y ∗ and X/X∗ are binary variables.

P (Y ∗ = y,X∗ = 1− x|Y = y,X = x)− P (Y ∗ = y|Y = y,X = x)P (X∗ = 1− x|Y = y,X = x)
= P (Y ∗ = y|Y = y,X = x)− P (Y ∗ = y,X∗ = x|Y = y,X = x)
−P (Y ∗ = y|Y = y,X = x) + P (Y ∗ = y|Y = y,X = x)P (X∗ = x|Y = y,X = x)

= −
(
P (Y ∗ = y,X∗ = x|Y = y,X = x)− P (Y ∗ = y|Y = y,X = x)P (X∗ = x|Y = y,X = x)

)
= −Dyx,

P (Y ∗ = 1− y,X∗ = x|Y = y,X = x)− P (Y ∗ = 1− y|Y = y,X = x)P (X∗ = x|Y = y,X = x)
= P (X∗ = x|Y = y,X = x)− P (Y ∗ = y,X∗ = x|Y = y,X = x)
−P (X∗ = x|Y = y,X = x) + P (Y ∗ = y|Y = y,X = x)P (X∗ = x|Y = y,X = x)

= −{P (Y ∗ = y,X∗ = x|Y = y,X = x)− P (Y ∗ = y|Y = y,X = x)P (X∗ = x|Y = y,X = x)}
= −Dyx,

and

P (Y ∗ = 1− y,X∗ = 1− x|Y = y,X = x)−
P (Y ∗ = 1− y|Y = y,X = x)P (X∗ = 1− x|Y = y,X = x)

= P (X∗ = 1− x|Y = y,X = x)− P (Y ∗ = y,X∗ = 1− x|Y = y,X = x)−
P (X∗ = 1− x|Y = y,X = x) + P (Y ∗ = y|Y = y,X = x)P (X∗ = 1− x|Y = y,X = x)−
P (Y ∗ = y|Y = y,X = x)P (X∗ = x|Y = y,X = x)

= −P (Y ∗ = y,X∗ = 1− x|Y = y,X = x) + P (Y ∗ = y|Y = y,X = x)P (X∗ = 1− x|Y = y,X = x)
= Dyx.

Supplementary Note 2: Relationship between p and p∗

Recall p∗ and p represent the joint distribution for (Y ∗, X∗) and (Y,X), respectively when
both variables are binary.

p∗ = Mp (S.1)
p∗ = {(MY ⊗ 1) ◦ (1⊗MX) + D}p,
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where ⊗ is the Kronecker product and ◦ is the Hadamard product (i.e., elementwise mul-
tiplication of matrices) and

1 = (1, 1)′,

MY =
(

SNY 1 SNY 0 1− SPY 1 1− SPY 0
1− SNY 1 1− SNY 0 SPY 1 SPY 0

)
,

MX =
(

SNX1 SNX0 1− SPX1 1− SPX0
1− SNX1 1− SNX0 SPX1 SPX0

)
,

D =


D11 −D10 −D01 D00
−D11 D10 D01 −D00
−D11 D10 D01 −D00
D11 −D10 −D01 D00

 .

For nondifferential misclassification, (S.2) holds and can be further simplified to

p∗ = (MY ⊗MX + D)p, (S.2)

where ⊗ is the Kronecker product and

MY =
(

SNY 1− SPY

1− SNY SPY

)
, MX =

(
SNX 1− SPX

1− SNX SPX

)
.

Supplementary Note 3: Derivations of Lv and Lm for binary Y and
X

In the most general setting with differential and dependent misclassification errors for
binary Y and X, the likelihood function based on validation data is

Lv(θ) =
nv∏
i=1

pyixi

[{
SN

y∗
i

Y xi
(1− SNY xi

)1−y∗
i

}yi
{

1− SP y∗
i

Y xi
(1− SPY xi

)1−y∗
i

}1−yi

{
SN

x∗
i

Xyi
(1− SNXyi

)1−x∗
i

}xi
{
SN

x∗
i

Xyi
(1− SNXyi

)1−x∗
i

}1−xi

+(−1)I(y∗
i =yi)+I(x∗

i =xi)Dyixi

]
.

Using the rule of total probability and definition of the dependence parameters, we have

Lm(θ) =
n∏

i=nv+1

∑
yx

pyx

{
P (Y ∗i = y∗i |Yi = y)P (X∗i = x∗i |Xi = x) +Dyx(−1){I(y∗

i =y)+I(x∗
i =x)}

}

=
n∏

i=nv+1

∑
yx

pyx

[{
SN

y∗
i

Y x(1− SNY x)1−y∗
i

}y{
(1− SPY x)y∗

i SP
1−y∗

i
Y x

}1−y{
SN

x∗
i

Xy(1− SNXy)1−x∗
i

}x

{
(1− SPXy)x∗

iSP
1−x∗

i
Xy

}1−x
+ (−1)I(y∗

i =y)+I(x∗
i =x)Dyx

]
,

=
n∏

i=nv+1

(
Lm,ind(θ|y∗i , x∗i ) + (−1)(y∗

i +x∗
i )δ
)
. (S.3)
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Supplementary Note 4: Boundaries of D parameters.
The proof is given in a general setting, that is, categorical Y and X. Let Dij,st = P (Y ∗ =
i,X∗ = j|Y = s,X = t)− P (Y ∗ = i|Y = s,X = t)P (X∗ = j|Y = s,X = t). Because

P (Y ∗ = i,X∗ = j|Y = s,X = t) ≤ P (Y ∗ = i|Y = s,X = t),

we have

Dij,st ≤ P (Y ∗ = i|Y = s,X = t)− P (Y ∗ = i|Y = s,X = t)P (X∗ = j|Y = s,X = t)
= P (Y ∗ = i|Y = s,X = t)

(
1− P (X∗ = j|Y = s,X = t)

)
.

Similarly

Dij,st ≤ P (X∗ = j|Y = s,X = t)− P (Y ∗ = i|Y = s,X = t)P (X∗ = j|Y = s,X = t)
= P (X∗ = j|Y = s,X = t)

(
1− P (Y ∗ = i|Y = s,X = t)

)
.

On the other hand, due to the fact P (A∩B) = P (A)+P (B)−P (A∪B) ≥ P (A)+P (B)−1,
we have

Dij,st ≥ P (Y ∗ = i|Y = s,X = t) + P (X∗ = j|Y = s,X = t)− 1−
P (Y ∗ = i|Y = s,X = t)P (X∗ = j|Y = s,X = t)

= −
(
1− P (Y ∗ = i|Y = s,X = t)

)(
1− P (X∗ = j|Y = s,X = t)

)
.

Moreover, simply dropping the first item in the definition of Dij,st,

Dij,st ≥ −P (Y ∗ = i|Y = s,X = t)P (X∗ = j|Y = s,X = t).

Note that for binary case under the nondifferential misclassification assumption,

P (Y ∗ = i|Y = s,X = t) = P (Y ∗ = i|Y = s)
= SN is

Y (1− SNY )(1−i)sSP
(1−i)(1−s)
Y (1− SPY )i(1−s),

P (X∗ = j|Y = s,X = t) = P (X∗ = j|X = t)
= SN jt

X (1− SNX)(1−j)tSP
(1−j)(1−t)
X (1− SPX)j(1−t).

Supplementary Note 5: Proof of δ = E(cov(Y ∗, X∗|Y,X)).
The proof is for a general setting with differential misclassification errors in both Y and
X, which includes nondifferential misclassification errors as a special case. By definition of
covariance, we have

cov(Y ∗, X∗|Y,X) = E(Y ∗X∗|Y,X)− E(Y ∗|Y,X)E(X∗|Y,X)
= P (Y ∗ = X∗ = 1|Y,X)− P (Y ∗ = 1|Y,X)P (X∗ = 1|Y,X).
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Also we have

E
(
P (Y ∗ = X∗ = 1|Y,X)

)
=
∑
y,x

P (Y ∗ = X∗ = 1|Y = y,X = x)pyx

=
(
D11 + SNY 1SNX1

)
p11 +

(
−D10 + SNY 0(1− SPX1)

)
p10 +(

−D01 + (1− SPY 1)SNX0
)
p01 +

(
D00 + (1− SPY 0)(1− SPX0)

)
p00

= δ + SNY 1SNX1p11 + SNY 0(1− SPX1)p10 + (1− SPY 1)SNX0p01 + (1− SPY 0)(1− SPX0)p00.

While

E(P (Y ∗ = 1|Y,X)P (X∗ = 1|Y,X)) =
∑
y,x

P (Y ∗ = 1|Y = y,X = x)P (X∗ = 1|Y = y,X = x)py,x

= SNY 1SNX1p11 + SNY 0(1− SPX1)p10 + (1− SPY 1)SNX0p01 + (1− SPY 0)(1− SPX0)p00.

Therefore, combining the above three equalities together, we have δ = E(cov(Y ∗, X∗|Y,X)).

2. Supplementary plots

2.1 Binary variables
Here are the plots for the simulation scenario in Section 4.1 when X and/or Y is subject
to differential errors.
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Figure S.1: Relative bias of model parameters when Y is subject to differential misclassi-
fication error and X is subject to nondifferential misclassification error with nv/n = 10%:
red for näıve model, blue for independent misclassification error model, green for dependent
misclassification model.
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Figure S.2: Relative bias of model parameters when Y is subject to differential misclassi-
fication error and X is subject to nondifferential misclassification error with nv/n = 30%:
red for näıve model, blue for independent misclassification error model, green for dependent
misclassification model.
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Figure S.3: Relative bias of model parameters when Y is subject to differential misclassi-
fication error and X is subject to nondifferential misclassification error with nv/n = 50%:
red for näıve model, blue for independent misclassification error model, green for dependent
misclassification model.
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Figure S.4: Relative bias of model parameters when Y is subject to nondifferential misclas-
sification error and X is subject to differential misclassification error with nv/n = 10%: red
for näıve model, blue for independent misclassification error model, green for dependent
misclassification model.
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Figure S.5: Relative bias of model parameters when Y is subject to nondifferential misclas-
sification error and X is subject to differential misclassification error with nv/n = 30%: red
for näıve model, blue for independent misclassification error model, green for dependent
misclassification model.
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Figure S.6: Relative bias of estimated parameters when Y is subject to nondifferential
misclassification error and X is subject to differential misclassification error with nv/n =
50%: red for näıve model, blue for independent misclassification error model, green for
dependent misclassification model.
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Figure S.7: Relative bias of model parameters when both Y and X are subject to differ-
ential misclassification errors with nv/n = 10%: red for näıve model, blue for independent
misclassification error model, green for dependent misclassification model.
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Figure S.8: Relative bias of model parameters when both Y and X are subject to differ-
ential misclassification errors with nv/n = 30%: red for näıve model, blue for independent
misclassification error model, green for dependent misclassification model.
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Figure S.9: Relative bias of model parameters when both Y and X are subject to differ-
ential misclassification errors with nv/n = 50%: red for näıve model, blue for independent
misclassification error model, green for dependent misclassification model.
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2.2 Categorical variables
Here are the plots for the simulation scenario in Section 4.2 when Y , X, Y ∗, and X∗ are
all trinary variables.
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Figure S.10: Relative bias of estimated parameters when both Y and X are trinary variables
with nv/n = 10%.
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Figure S.11: Relative bias of estimated parameters when both Y and X are trinary variables
with nv/n = 30%.
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Figure S.12: Relative bias of estimated parameters when both Y and X are trinary variables
with nv/n = 50%.
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