SUPPLEMENTARY MATERIAL for “Generalized Low-rank plus

Sparse Tensor Estimation by Fast Riemannian Optimization”

8 Application: Poisson Tensor Robust PCA

In this section, we consider the Poisson tensor RPCA model. Suppose we observe ) € Ndix-xdm

that satisfies
Vw € [dy] X -+ X [dp], [Y]w ~ Poisson(I exp([T "] + [S*].)) independently,

where (7*,8%) € (U, ,,,S,) are the low rank part and sparse part respectively and I > 0 is the
intensity parameter that is revealed as in [14]. We choose the loss function to be the negative

log-likelihood with scaling
(T +8)= [Z Jo[T + 8l + Lexp([T + 8].,)).

This is an entry-wise loss, and simple calculation shows Assumptions 2 and 3 are satisfied with
By =B ={T+S8:||[T+S8|e. <¢T €M,,S8 €S,,} with b = e,b, = €. Since the
parameter will become trivial in an unbounded set, we impose the following assumption which

implies ||77|o. < % and thus || 7"+ 8¢, <.

Assumption 6. There exists a small ¢ > 0 such that | S*|| < §, T~ satisfies Assumption 1 with
its largest singular value A< e (Kop1)~ ,/ “C where d* =dy---d,, and r* =11 Tpy.

Similar with the binary case, we also need to show || Tl |Si]le.. = O(C). These are guar-
anteed by choosing k, = C1( for some C; > 1 depending only on Koy, m and from Lemma 5.6,
when kop,m = O(1) and | T, — T*||p < A/8, we have | Ti1]le. = O(C). We summarize the

result in the following Theorem.

Theorem 8.1. Let v > 1, k,, := C1( be the parameters used in Algorithm 2 for a constant Cy > 1
depending only on ko and m via Lemma 5.6. Suppose Assumptions 1 and 6 hold. Assume
10| < ad*, e*' < 0.4(v/0)7! for some 6 € (0,1] and ¢’ = (2C, +1)¢, and

(a) Initialization: | To— T*||r < ¢1mA - min {6212 (kg /2) =1 ), 1T olle. < comC and Ty is

(2u1K0)?-incoherent
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(b) Signal-to-noise ratio:

1+¢e¥
e ¢

A - min {52f’1/2, (mgmfl/Q)’l} > Co, (fy|Q*] e/ (rr + Jf)ef/[>, and I > Ce® log(d")

!

(¢) Sparsity condition: o < ¢35 (kA pd™ ™)=Y and v > 1+ (4m)~ - ¥

where ¢1m, Com, Cam, Cam > 0 are some constants depending on m only. If the stepsize B €

[0.0056_3C, 0.366_34/], after lnax iterations, with probability at least 1 — d2—*,

r* +dr
I/eS
St — S*II2 < € (Cama™ (1150)*™ + Co (v = 1)) Tt — T + Co e - 4] Q7]

[T e — T3 < (1= 82 || T — TH|2 + Chs + Cze® - ||

where C3 > 0 depends only on 0,(,m , and Cy,, Csm, Csm > 0 are constants depending only on

m. Moreover, if lyax is chosen large enough such that the second term on RHS of (5.9) dominates

4dm , Am=m

and assume kg™ pim ™ (Fd 4 1) S O(d™1), we get with probability at least 1 — 2 that

T * m, 2m(=m | jm— T*—FJ’F * 1/2
1T e = Tl SCordm i (7 /=2 (= 4127

1810 = 87l SCoRy /2 /d0 002 (V0 4 d) /141907 + C
where Cg, C7, Cg > 0 depend only on ~,d,(, m.

From Theorem 8.1, after a properly chosen Iy iterations, we will obtain |77, — 7|3 =

O(T;/t‘g’: + €% - 4]Q*]). As a special case when |Q2*| = 0, our result matches the previous result
in Poisson tensor PCA in [14] that is rate optimal under the same requirements on the intensity
parameter /. When there are outliers, the error for the estimation of 7" is further influenced by
the outliers.

Initialization. We shall adopt the initialization proposed in [14] with slight modification. The

theoretical guarantee is summarized in the following lemma.

Lemma 8.2. Suppose that Assumptions 1 and 6 hold. There exist absolute constants c¢,C >
0 such that if I > Cmax{d,A\7>Y. " (dir; + d;r;)7}, and the sparsity of S* satisfies |Q*| <
cC2\%FL then the output of Algorithm 4 satisfies the initialization requirement in Theorem 8.1

with probability at least 1 — 1/d*.
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Algorithm 4 Initialization for Poisson RPCA
Set T = log(2H2).
Let To = J4H0(T).
Return 7o = Trim, (7o) with 5 = 16| T ol|r/(TVd").

9 Higher Order Orthogonal Iteration Algorithm

The HOOI algorithm is summarized as follows which is applied for the initialization in Section 5.1

and 5.2.

Algorithm 5 HOOI

Input: Y € R&>xdm ¢ = (p; ... r,) maximum number of iteration: #p.y.
Let ¢ = 0, initiate U = SVD,,(M,(d)), i € [m].
fort=1,... th. do

fori=1,...,mdo
Ul = SVD, (M;(P)(U @ 0 Ul o UL, ®--- @ U
end for

end for

A~

Output: U; = Uf"”””, T=Yx, U,UT.

(2

10 When Sparse Component is Absent

In this section, we consider the special case when the sparse component is absent, i.e., 8* = 0. For
the exact low-rank tensor model, we observe that many conditions in Section 4 can be relaxed.
A major difference is that the spikiness condition is generally not required for exact low-rank
model. Consequently, the trimming step in Algorithm 2 is unnecessary. Therefore, it suffices
to simply apply the Riemannian gradient descent algorithm to solve for the underlying low-rank
tensor T . For ease of exposition, the procedure is summarized in Algorithm 6 (largely the same
as Algorithm 2).

Algorithm 6 runs fast and guarantees favourable convergence performances under weaker con-

ditions than Theorem 4.1. Indeed, since there is no sparse component, only Assumption 2 is
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Algorithm 6 Riemannian Gradient Descent for Exact Low-rank Estimate

Initialization: '?0 € M, and stepsize 5 > 0
for | =0,1,--- [, doO

G =Ve(T)

W, =T - BPr,G

T = A1 (W)
end for

Output: ?lmax

required to guarantee the convergence of Algorithm 6. Similarly as Section 4, the error of final
estimate produced by Algorithm 6 is characterized by the gradient at 7. With a slightly abuse
of notation, denote Erry, = sup y ey, xjp<1(VE(T ), X).

Theorem 10.1. Suppose Assumption 2 holds with S* =0 and By = {T : [|[T =T ||r < comA, T €
M.} for a small constant co,, > 0 depending on m only, also suppose 1.5b;b,% < 1 and 0.75b;b,* >
612 for some & € (0,1] and the stepsize B € [0.4b;b;%,1.5b,b;%] in Algorithm 6. Assume

(a) Initialization: | To—T*|r < A- C1mOT /2

(b) Signal-to-noise ratio: Erry /) < g, 6%7 1/

where ¢ m, Cam > 0 are small constants depending only on m. Then for alll =1,--- | lyax,
I1T0 = Tls < (1= &) To = Tz + CsErr,

where Cs > 0 is a constant depending only on §. Then after at most ly.x < log (A/Errgr) iterations

(also depends on by, b,, m,7 and [3), we get

1T . — T lr < C - Erry,

max

where the constant C' > 0 depends on only by, b,, m,7 and (3.

Note that Theorem 10.1 holds without spikiness condition in contrast with Theorem 4.1. It
makes sense for the model has no missing values or sparse corruptions. The assumptions on loss
function are also weaker (e.g., no need to be an entry-wise loss or entry-wisely smooth) than those

in Theorem 4.1. As a result, Theorem 10.1 is also applicable to the low-rank tensor regression
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model among others. See [14, 8, 42| and references therein. The initialization and signal-to-noise
conditions are similar to those in Theorem 4.1, e.g., by setting |2*| = a = 0 there. In addition, the
error of final estimate depends only on Erry.. Interestingly, the contraction rate does not depend
on the condition number k.

Comparison with ezisting literature In [14], the authors proposed a general framework for exact
low-rank tensor estimation based on regularized jointly gradient descent on the core tensor and
associated low-rank factors. Their method is fast and achieves statistical optimality in various
models. In contrast, our algorithm is based on Riemannian gradient descent, requires no regular-
ization and also runs fast. An iterative tensor projection algorithm was studied in [44]. But their
method only applies to tensor regression. Other notable works focusing only on tensor regression
include [47, 50, 15, 33, 22, 26]. A general projected gradient descent algorithm was proposed in [8]
for generalized low-rank tensor estimation. For Tucker low-rank tensors, their algorithm is similar
to our Algorithm 6 except that they use vanilla gradient G; while we use the Riemannian gradient
Pr,Gi. As explained in Section 3, using the vanilla gradient can cause heavy computation bur-
dens in the subsequent steps. Riemannian gradient descent algorithm for tensor completion was
initially proposed by [21]. They focused only on tensor completion model and did not investigate
its theoretical guarantees. Recently in [5], the Riemannian gradient descent algorithm is applied

for noiseless tensor regression and its convergence analysis is proved.

11 More Numerical Simulations

In Section 11.1, we apply the proposed BIC-type criterion for SG-RPCA and binary tensor learning
and demonstrate its effectiveness on synthetic data. Through Section 11.2-11.5, we treat r and «
as given and test the performance of our estimator with respect to different choices of 7. Other

algorithmic parameters like ;i1 and kp, are decided as explained in Section 6.

11.1 Performance of BIC-type Criterion

We test the performance of BIC-type criterion (3.3) for SG-RPCA and binary tensor learning. As

explained in Section 6, v is set to 1 and pu; = 2™ + log(d). More exactly, the BIC-type criterion
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Figure 5: BIC values for SG-RPCA; the true rank r = (3,3,3)". Left: true a = 0.05; Right: true
a=0.1.

for SG-RPCA (assuming Gaussian noise with equal but unknown variances) is
BIC(r,a) == (|Sralle + Z ) -log(d*) + d* log (| A = Tra — Sral2).

The true tensor 7 € R4 with d = 100 and r = (3,3,3)". We test two true sparsity levels
a € {0.05,0.1}. The true tensor T satisfies | T||,., = 0.1, and 8™ is generated as above satisfying
|S*||le.. = 4, and all entries of Z* satisfy i.i.d. N(0,0?) with o, = 0.01. For each o € {0.05,0.1},
we test, in our algorithm, r € {(1,1,1),(2,2,2),(3,3,3),(4,4,4),(5,5,5)} and o € (0.02,0.2). The
results are displayed in Figure 5. The BIC-values are sensitive to both r and a. We note that the
BIC-values for r > 3 are strictly larger than that of r = (3,3, 3), but the difference is too small to
be spotted in the figures.

For robust binary tensor learning, we also set r = (3,3,3)" and T* € R4 with d = 100,
and 8 is generated as above. The true a € {0.005,0.01}. We fix p(z) = (1 + e~ 19)~1. The BIC

criterion for the binary case is:

BIC(r,q) : ||5||£0+Z ) log(d") 22 o log p([T +8).)+(1-[Al,) log (1-p([T+8).,))).

For each true o € {0.005,0.01}, we test BIC for r € {(1,1,1),(2,2,2),(3,3,3), (4,4,4),(5,5,5)}
and « varying from 0.001 to 0.015. The results are displayed in Figure 6 showing that BIC is
more sensitive to r and less sensitive to « for a small range. After the true r is identified, the BIC

criterion works reasonably well for selecting a.
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Figure 6: BIC values for binary tensor learning; the true rank r = (3,3,3)7. Left: true a = 0.005;
Right: true o = 0.01. The BIC curve for r = (3,3,3)" is highlighted.

11.2 Tensor Sub-Gaussian Robust PCA

The low-rank tensor T € R™4 with d = 100 and Tucker ranks r = (2,2,2)" is generated
from the HOSVD of a trimmed standard normal tensor. It satisfies the spikiness condition, with
high probability, and has singular values A ~ 3 and A ~ 1. Given a sparsity level a € (0,1),
the entries of sparse tensor 8" are i.i.d. sampled from Be(a) x N(0, 1), which ensures 8* € Sp(q)
with high probability. This ensures that the non-zero entries of 8* have typically much larger
magnitudes than the entries of 7. The noise tensor Z has i.i.d. entries sampled from N(0, o2).
The default choice of 7y is 2, k,, = 0o and f; is set as previously. The convergence performances of
log(H’i’l —Tle/IIT7|lr) by Algorithm 2 are examined and presented in the left panels of Figure 7.
The top-left plot in Figure 7 displays the effects of o on the convergence of Algorithm 2.
It shows that the convergence speed of Algorithm 2 is insensitive to «, while the error of final
estimates %lmax is related to a.. This is consistent with the claims of Theorem 5.1. In the middle-
left plot of Figure 7, we observe that, for a fixed sparsity level «, the error of final estimates
grows as the tuning parameter v becomes larger. The bottom-left plot of Figure 7 shows the
convergence of Algorithm 2 for different noise levels. All these plots confirm the fast convergence
of our Riemannian gradient descent algorithm. In particular, there are stages during which the
log relative error decreases linearly w.r.t. the number of iterations, as proved in Theorem 4.1.

The statistical stability of the final estimates by Algorithm 2 is demonstrated in the right panels
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of Figure 7. Each curve represents the average relative error of 7\'; based on 10 simulations, and

the error bar shows the confidence region by one empirical standard deviation. Based on these
plots, we observe that the standard deviations of |77, — 7 *||r grow as the noise level o, the

sparsity level a or the tuning parameter v increases.

11.3 Tensor PCA with Heavy-tailed Noise

The low-rank tensor 7% € R¥¥*? with d = 100 and Tucker ranks r = (2,2,2)" is generated from
the HOSVD of a trimmed standard normal tensor, as in Section 11.2. Given a parameter 6, we
generate the noisy tensor whose entries are i.i.d. and satisfy the Student-t distribution with degree
of freedom . But notice here we also apply a global scaling to better control the noise standard
deviation. We denote the noisy tensor after scaling by Z. This generated tensor Z satisfies
Assumption 4 with the same parameter 6. Once the parameter ¢ and global scaling are given, we
are able to calculate the variance o2. The convergence performances of log(||T7 — 7|/ T*||r)
by Algorithm 2 are examined and presented in the upper panels of Figure 8.

In this experiment, we set v = 2, k,, = 0o and p; as previously. The top-left plot in Figure 8
displays the effects of a on the convergence of Algorithm 2. The case o = 0 reduces to the normal
Riemannian gradient descent, which cannot output a satisfiable result due to the heavy-tailed
noise, even if a warm initialization is provided. This shows the importance of gradient pruning
in Algorithm 2. When a > 0, the convergence speed of the algorithm is insensitive to «, but
the final estimates %lmax is related to «. In the top-right plot of Figure 8, we observe the error
becomes larger as § decreases (or equivalently, as o2 increases). All these results match the claim
of Theorem 5.4 and confirm the fast convergence of Riemannian gradient descent. And there are
indeed stages where the log relative error decreases linearly w.r.t. the number of iterations.

The statistical stability of the final estimates by Algorithm 2 applied to tensor PCA with
heavy-tailed noise is demonstrated in the bottom panel of Figure 8. Each curve represents the
average relative error of %lmax based on 5 simulations, and the error bar shows the confidence

region by one empirical standard deviation. Based on these plots, we observe that for each fixed

2

2, equivalently), we need to choose « carefully to achieve the best performance. This is

0 (or o
reasonable since in the heavy-tail noise setting, we do not know the sparsity of outliers. Also, the

figure shows that Algorithm 2 is stable for different v and 6.
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|7, = T*|l&/|IT*|lr. The error bars on the right panels are based on 1 standard deviation from

10 replications. Here the default v is 2.
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Figure 8: Performances of Algorithm 2 for tensor PCA with heavy-tailed noise. The low-rank
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T has size d x d x d with d = 100 and has Tucker ranks r = (2,2,2)". The relative error on

upper panels is defined by || T, — T*||¢/||T*||r. The error bars on the lower panels are based on

1 standard deviation from 5 replications. Here the default choice of 7 is 2.
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11.4 Binary Tensor Learning

In the binary tensor setting, we generate the low-rank tensor 7% € R4 with d = 100 and
Tucker ranks r = (2,2,2)" from the HOSVD of a trimmed standard normal tensor. But here
we did a scaling to T so that the singular value A ~ 300 and A ~ 100. Given a sparsity level
a € (0,1), the entries of sparse tensor 8* are i.i.d. sampled from Be(a) x N(0, 1), which ensures
8" € Sp(a) With high probability. We generate the tensor 7 and 8" in this way in order to meet
the requirements of Assumption 5. In the following experiments, we are considering the logistic
link function with the scaling parameter o, i.e., p(z) = (1 +e~2/7)~!. The default choice of 7 is
1.1, kyy = 1 and pq is set as previously. The convergence performances of log(||T7 — T *||e /| T ||¢)
by Algorithm 2 are examined and presented in the top two panels of Figure 9.

The top-left plot in Figure 9 shows the effect of o on the convergence of Algorithm 2. From
the figure, it is clear that the error of final estimates %lmax is related to a. This again verifies the
results in Theorem 5.7. In the top-right plot in Figure 9, we can see the error of the final estimates
increases as the parameter v becomes larger. All these experiments show that Riemannian gradient
descent converges fast and there are stages when the log relative error decreases linearly w.r.t. the
number of iterations.

The statistical stability of the final estimates by Algorithm 2 is demonstrated in the bottom

panel of Figure 9. Each curve represents the average relative error of ’7’; based on 5 simulations,

and the error bar shows the confidence region by one empirical standard deviation. From these
plots, we observe that the standard deviations of || 77,.. — T*||r grow as the noise level, the

sparsity level a or the tuning parameter v increases.

11.5 Tensor Poisson Robust PCA

In the Poisson tensor RPCA case, we generate 7* € R4 with d = 100 and Tucker rank
r = (2,2,2)" such that || 7*||. = 0.5. Meanwhile, the sparse outliers &* is generated such
that all its entries are i.i.d. sampled from Be(a) x N(0,1) and scaled such that || 8., = 0.5.
Throughout the experiments, both ¢ and kp, is set to 0.5, and the default choice of v is 1.1.

In the first experiment, we fix the intensity I = 10 and change the sparsity level. The conver-

gence performances of log(|| T, — T*||/||T*||¢) by Algorithm 2 is displayed in the left panel of
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Figure 10. In the second experiment, for different values of o and I, we conduct 5 i.i.d. instances

and plot the error bar. The results are displayed in the right panel of Figure 10.

12 Additional result on International Trade Flow Data

We now compare [13]’s method (convex relaxation) and [24]’s method (tubal-tRPCA) with our
method in terms of prediction error on the international trade flow dataset. As in Section 7, we
analyze the tensor log(1+.A4). We split log(1 + A) into two parts, namely log(1+ A) =: Again +
Aest, where A is generated by randomly taking 10% of the non-zero entries of log(1+.A4). We
then apply tubal-tRPCA with the default parameter the authors provide * and convex relaxation
with carefully tuned parameters *. We use the proposed BIC-type criterion to select the rank and
sparsity. As the left panel of Figure 11 suggests, we choose r = (3,3,3)", and the right panel
of Figure 11 shows the BIC is less sensitive to « for a small range. Therefore we set the rank
asr = (3,3,3)" and try a = 0.01,0.02,0.03. The error is measured in terms of the test error
[T + 8oy, — Auest||r and the results are presented in Table 2.

When a = 0, all methods perform poorly because the existence of outliers distort the low-rank

3Their codes are available at https://github.com/canyilu/tensor-completion-under-linear-transform.
4The codes in [13] is not publicly released so we have to tune the parameters by ourselves.
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Figure 11: BIC values on the International Trade Flow Data. Left: BIC values for different rank

and sparsity; Right: Zoom in on the case r = 3.

Method Convex tubal-tRPCA Our method | Our method | Our method | Our method
[13] [24] (a=0) (e =0.01) (e =0.02) (a = 0.03)
Pred. Error 1892.3 1894.2 1891.2 693.5 800.5 980.1

Table 2: Comparison of our method with convex relaxation [13] and tubal-tRPCA [24] in terms of
prediction error on the international trade flow data. Our BIC criterion suggests any « between

0.002 and 0.03. We note that our method with o = 0.003 yields a prediction error 566.0.

estimate making it ineffective in prediction. Meanwhile, if « is too large, say 0.1, the sparse
component might incorrectly absorb useful information from the low-rank component which, as
a result, sabotages its prediction accuracy. Fortunately, our method with the BIC suggested o

indeed significantly outperforms other methods.

13 Real Data: Statisticians Hypergraph Co-authorship

Network

This dataset [16] contains the co-authorship relations of 3607 statisticians based on 3248 papers
published in four prestigious statistics journals during 2003-2012. The co-authorship network thus

has 3607 nodes and two nodes are connected by an edge if they collaborated on at least one paper.
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A giant connected component of this network consisting of 236 nodes is seen to be the “High-
Dimensional Data Analysis” community. They also carried out community detection analysis to
discover substructures in this giant component. See more details in [16].

We analyze the substructures of the giant component by treating it as a hypergraph co-
authorship network. These 236 statisticians co-authored 542 papers®, among which 356 papers
have two co-authors, 162 papers have three co-authors and 24 papers have four co-authors. A 3-
uniform hypergraph co-authorship network is constructed by, for ¢ £ j # k, adding the hyperedge
(1, J, k) if the authors i, j, k co-authored at least one paper, and adding the hyperedges (i, 1, j) and
(1,7, 7) if the authors 4, j co-authored at least one paper. The hyperedges are undirected resulting
into a symmetric adjacency tensor A. We adopt the framework from Section 5.1 to learn the
latent low-rank tensor T in A, which is used to detect communities in the giant component. We
emphasize that our primary goal is to present the new findings by taking into consideration of
higher-order interactions among co-authors and applying novel robust tensor methods. It is not
our intention to label an author with a certain community.

The Tucker ranks are set as (4,4,4) and sparsity ratio « is varied at {0,107%,5 x 107*}. The
number of communities is set at K = 3 and the algorithm is initialized by the HOSVD of A.
To uncover community structures, we apply spectral clustering to the singular vectors of T . The
node degrees are severely heterogeneous with Peter Hall, Jianqing Fan and Raymond Carroll being
the top-3 statisticians in terms of # of co-authors. The naive spectral clustering often performs
poorly in the existence of heterogeneity, skewing to the high-degree nodes. Indeed, the top-left
plot in Figure 12 shows that the naive spectral clustering identifies these three statisticians as the
corners in a triangle, and puts Peter Hall in a single community. To mitigate the influence of node
heterogeneity, we apply SCORE [17] for community detection, which uses the leading singular
vector of T~ as normalization.

The community structures found by SCORE are displayed in Figure 12. The top-right plot
shows the three clusters identified by SCORE when the sparsity ratio is zero. The three com-
munities are: 1). “North Carolina” group including researchers from Duke University, University

of North Carolina and North Carolina State University, together with their close collaborators

5There are 328 single-authored papers. They provide no information to co-authorship relations, and are left out

in our analysis.
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such as Debajyoti Sinha, Qi-Man Shao, Bing-Yi Jing, Michael J Todd and etc.; 2). “Carroll-Hall”
group including researchers in non-parametric and semi-parametric statistics, functional estima-
tion and high-dimensional statistics, together with collaborators; 3). “Fan and Others” group®
including primarily the researchers collaborating closely with Jianqing Fan or his co-authors, and
other researchers who do not obviously belong to the first two groups. We note that the fields
of researchers in “Fan and Others” group are quite diverse, some of which overlap with those
in “Carroll-Hall” group and “North Carolina” group. However, unlike the results in [16], the
top-right plot in Figure 12 does not cluster the “Fan and Others” group into either the “North
Carolina” group or “Carroll-Hall” group.

We then set the sparsity ratio of S by o = 107%. The communities identified by SCORE
based on the singular vectors of T are illustrated in the bottom-left plot of Figure 12. Compared
with the top-right plot (o = 0), the three communities displayed in the bottom-left plot largely
remain the same. But the group memberships of some authors do change. Notably, Debajyoti
Sinha and Michael J Todd move from the “North Carolina” group to “Fan and Others” group;
Abel Rodriguez moves from the “Carroll-Hall” group to “North-Carolina” group; several authors
(e.g. Daniela M Witten, Jacob Bien, Pan Wei, Chiung-Yu Huang, Debashis Paul, Zhezhen Jin,
Lan Zhang and etc.) move from the “Fan and Others” group to “Carroll-Hall” group; Hsin-Cheng
Huang moves from the “North Carolina” group to “Carroll-Hall” group; Rasmus Waggepetersen
moves from the “Carroll-Hall” group to “Fan and Others” group. These changes of memberships
suggest that these authors may not have strong ties to the “North Carolina”, “Carroll-Hall” group
or be the co-authors of Jianqing Fan. It may be more reasonable that these authors constitute a
separate group.

This indeed happens when the sparsity ratio « increases to a certain level. The bottom-right
plot of Figure 12 shows the clustering result of SCORE when o = 5 x 10~%. Compared with the
top-right (o = 0) and bottom-left (a = 107%) plots, the community structure has a significant
change. Indeed, the “Fan and Others” group now splits into a “Fan” group including Jianqing
Fan and his co-authors, and an “Others” group including the researchers who do not have obvious

ties with “Fan” group. Moreover, the “Fan” group merges into the “Carroll-Hall” group, which

SWe name it the “Fan and Others” group simply because many researchers in this group are the co-authors of

Jianging Fan. It is not our intention to rank/label the authors.
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coincides with the clustering result of SCORE when applied onto the graph co-authorship network
(Fig. 6 in [16]). Consequently, we name the three communities in the top-right plot by the “North
Carolina”, “Carroll-Fan-Hall” and “Others” group. Interestingly, many of the authors in the
“Others” group are those whose memberships change when the sparsity ratio a increases from 0
to 107%. See the top-right and bottom-left plots of Figure 12. In addition, we observe that, as «
increases from 10™* to 5 x 1074, Donglin Zeng and Dan Yu Lin in the “Fan and Others” group
moves to “North Carolina” group. This might be more reasonable since they both work at the

University of North Carolina.

14 Proofs of theorems

14.1 Proof of Theorem 4.1

We prove the theorem by induction on |77 — T*||p and ||S; — 8*||r alternatively. From the
initialization condition we have [|[To — T*||r < c1m min{%, (K2"/F)"1} - A and Ty € B is

(241 K0 )?-incoherent.

Step 1: Bounding |8, — 8*||p for all [ > 0. Suppose we have T € B, is (24150)2-incoherent
and |77 — Tk < c1m min{%, (kEmF)71) - A
Now we estimate ||g'l — 8”||p. Denote Q; = supp(gl) and Q* = supp(8™). For Yw € Q,, from

the construction of S; in Algorithm 1, we have by the definition of Err.,

[VE(T1+ 8Dl < mingay, <k, [|VE(X) e < Erra (14.1)
From Assumption 3, we get
IVE(T,+ 8 — [VE(T 1+ 8| > b|[S — 8| (14.2)

Note that to use (14.2), we shall verify the neighborhood condition. From the upper bound
of | T; = T*||r we have |77 — T*|lr < A/8, and T is (2u1k0)>incoherent. Therefore, from

Lemma 15.7, we have:

177 = TLl” < Copr™d™ ™D (o) ™| T2 = T2
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So we have

~ rm —~ 77m—1
[T — T < C1,m\/ W(leio)zmHTl - T e < Cl,mﬂ%m“ WA’

where the last inequality is from the upper bound of |77 — 7*||p. As a result, we have

~ ~ ~ —~ Fm—1
T+ 8 =T =8| <|[Ti = T| +[Silo] + [[$7.] < Cl,m/ﬁm\/r—)‘ + Kpr + |87 e

dmfl—

Thus, both 7 + &, and T + 8" belong to the ball B, and thus (14.2) holds.
As a result of (14.1) and (14.2), we get for any w € {)

0[S — 8| < |[VE(T: + 8| + Erre.

Therefore,
IPo(B = SV} < 5llPo(VE(Ti+ S + 2t
2 T * * * * * 2 2’Ql| 2
= SIPa(VE(Ti+87) = Pa(VE(T" +8) + Po,(VE(T" + 87} + =1 Er
! l

! T 4 2|02
< LIPa (VST +87) ~ P (VST + S+ P (VST + 8+ 2 Er,
l i :

402

- 6|0
< o (7 - T+ L1
l

b}

Err?, (14.3)

where the last inequality is due to ||Pq,(VE(T* + 8*))||2 < ||Err%, and Assumption 3 since
7\'1 + 8" e B.
From (14.3), Lemma 15.8, we have

o * C mbi m—=m - * 6 Q
Po (8~ 892 < 0 )l T - T+ S e, (14.4)
i i
here C5,,, > 0 is an absolute constant depending only on m.
For Vw = (wi,...,wn) € 2\, we have |[S; — 8*],| = |[8*].]. Since the loss function is

entry-wise by Assumption 3, we have [V&(T )] = [V&(T1+8))].. Clearly, T; and T+ 8" both
belong to B , by Assumption 3 we get

V(T )] — V(T + 8| > b

87
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Now we bound |[:§l — 87|,| as follows. For any w € Q*\(,

1S — 8| = [87u] < E V(T — [VE(T1+ 8|
< bl ( V(T )|+ [VE(T: +s*)]w|)
< bl ( VET ol + [[VE(T 1+ 8%) = V&(T* + 8| + [[VE(T* + s*)]w|)
< VST + 2UT1 = Tl + 5 B,

where the last inequality is again due to Assumption 3 since ’i’l + 8" € BY,. Therefore we have

T 2 - 402 . 4
[Paa, (St = S)E < 5l Pana(VE(T))IE + w2 Pae(Ti =T )+ Lt \Su[Errl, (14.5)
z z

!
Since w € "\, we have

VLTl < max, el M;(VE(T7))| %) (14.6)
Now since we have 8* € S,, we have

VLTl < max, el My(VE(T, + 8%))[(0- D)

(v—1)ad;”
(O700) e a)

< max;"

el (MAVE(Ti+87) = MiVE(T +8Y)))

Using AM-GM inequality, we have:

eIi (Mi(VS(%z +87)) - M(VE(T" + S*))> H2

[VE(T)o]” < 2max, o Dod + 2Err’,
~ 2
n|lel, (M(VE(T 1 +8) - M(VE(T +8Y)) |
<2 — F 1 2Er?, (14.8)
i=1 ('Y - 1)adz

Now for all fixed ¢ € [m], for all w; € [d;], w; appears at most ad; times since Q*\(2; is an a-fraction

set. This observation together with (14.8) lead to the following:

Z IVE(T, +8%) — V&(T* + 8|2
v—1
=1

2 b2
m “HTZ T 4 2100\ |Errt. (14.9)

[Pa: \QL(VS(TZ e <2 + 2|\ |Err?,
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Therefore together with (14.5) and (14.9) and Lemma 15.8, we have

s i 4mb% 1 b2
IPaa (8= SV < (U + e

(ko)™ ) [T~ T+ 197\
l
(14.10)

where Cy,,, > 0 are constants depending only on m. Now we combine (14.4) and (14.10) and we

get
= . 4mb? 1 b2 ~ . Cr
181 571 < (F g + Camlnsa) ™ oo ) T = Tl + 1 U OfEre, (14)
l l

where Cf5,, > 0 depending only on m and C; > 0 an absolute constant.

Now if we choose a < (Cs kg™ prg™r™ Zz) and y—1 > 4m for some sufficient large constants

C5,, > 0 depending only on m, then we have

~ b2~ C
18- 8"} < IT1 =TI + 310 U ufEre, (14.12)
u 1
and
HSl —8*|r < _HTZ — T |lr + —\/ |2 U Q| Errog (14.13)

In addition, from the upper bound of |77 — T*||p, (14.13) implies that ||S; — 8*[|p < coA for a
small ¢y > 0. This fact is helpful later since it implies that ’?\'l + 31 belongs to the ball B} and

thus activates the conditions in Assumption 2.

Step 2: bounding ||’?l — T7||% for all [ > 1. From previous step, we have verified
HSZ 1 —S*lr < _HTZ — T |lr + —\/ |2 U Q|Erree < oA (14.14)
And from the Algorithm 2, ’7'1 = Trim¢, »(W;—1). Now from Lemma 15.6, we get,

T 1% = | Trimg,e(Wi-1) = Tl

< Wi = T+ G Wi - T

)
< (1+ DIWes - T}

< (1 =0T — T3 + 60 Errgy + Oy (14 by +62) b2 (|97 + vad*) Er%, (14.15)
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Notice to use Lemma 15.6, we need to verify |[W;_1 — T *||r < A/8, which we will check momen-

tarily. Also, from (14.15) and the signal-to-noise ration condition, we get
1T — T*|lp < ey min{6%F /2, k327121 A

On the other hand, from lemma 15.6, we have T is (2p1K0)?-incoherent. Further, from Lemma 15.7
and the definition of k. we have T € B’ . This finishes the induction for the error ||’?'l —T"r.

Now the only thing we need to check is the upper bound for |W;_1 — T |-

Step 2.1: bounding ||W;_1 — T ||r. From the Algorithm 2, we have for arbitrary 1 > § > 0,
Wit =Tl = [ Ties = T = BPr,_,(G1o1 = G7) = 6Pr, Gl
<+ DIT i =T = 9Po, (11 = G+ 1+ D)FIPo, (7)1} (1416)
Now we consider the bound for |71 — T* — 8Pr,_,(Giey — G2,
1T =T = BPr_(Gra = G)Ip = 1 Ta = T[% = 28(T01 = T, P, (611 — G°))
+ B2 Pr_ (G — G) 7 (14.17)

The upper bound of ||g'l_1 — &7|| ensures that Ti1+8 ¢ Bj. Using the smoothness condition

in Assumption 2, we get
B[P, (Gioy — G2 < BT i + Sy — T = 87|12 (14.18)
Now we consider the bound for [(T7_; — T*,Pr,_,(Gi_1 — G*))|. First we have:
(T =T Pr, (G —G)) = (T1oa = T,G11 — G) — (T1o1 = T, P (Gio1 — GY)).
The estimation of <’ﬁ_1 —T",G_1 —G") is as follows:
(T =TG- 6) =T - T +8.1-8.G.1-G)— (8.1 - 8,611 - G
>0l T i =T+ 8 = S F = (Siei = 8%, G = G7), (14.19)

where the last inequality follows from Assumption 2. And the estimation of <'?’l_1—7'*, Pﬁ,l (G1_1—

G*)) is as follows:

(T o = T Ph_ (Gt — GN < 1Pe_ (Tiea = THelGier — 67 Ir
< Cl,mbu

< T = TR T = T 4+ 8 = 87l (14.20)
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where the last inequality follows from Lemma 15.1. Together with (14.19) and (14.20), we get,

<7A'1—1 — T Pr,_,(Gi-1—G)) > sz7A'z—1 — T+ 8 — S| — (31—1 -8.6.,-6"
Cl,mbu

ST = TR T = T+ 810 = 8% (14.21)

Together with (14.18) and (14.21), we get

~ Ol - . R )

[T =T = 5P, (611~ G < (14200, 20T = T 4 8y = Sl ) [T~ T
+ (8% =260 Tie = T + 811 = 87

+26/(81-1 — 87, G — G (14.22)

In order to bound (14.22), we derive separately the bound for each terms.

Bounding |71 — T* 4+ &,_1 — 8*||2. From the bound for ||§,_; — &*[|p in (14.14), we get,

| T =T+ 81 = Sl <2/ Tima = T7IE + 201801 — 87l

~ C
<AT i —THE+ b—lgm* U Q1 |Ercs, (14.23)
Thus,
- S ~ C
1T =T+ 81— 8 |lp < 2T 1 — T ||r + b—1 1 U Q1 |Erre (14.24)
1

Bounding [(Gi_; — G*, 8-, — 8*)|. We first bound ||G,_1 — G*||r by (14.24):

1G1-1 = G"llp < bull Ties = T+ 8121 — S*lr
N Ciby
< 2,|T 10 — T lr + 2 V] U Q4 |Erre (14.25)
1

Now we estimate [(Gi_y — G*, 8,1 — &%) from (14.14) and (14.25) as follows,

(Gr1—G".811— 8 <G - GllellSi1 - S'[le

- 1C
< (0.02b; + 0.01802) | T 11 — T*|1? + Eb—;m* U Q4 |Er +
l

Cl bu

7 QU |Er (14.26)
l
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Bounding [(T,_1 — T*,8,1 — 8%)|. From (14.14), we have

(T — T, 811 = 8| < [T = T |Ipl1Sies — s*nF

< (0. 01—||7'z 1—7'*||F+—\/|Q*UQZ B[ T = Tl

<0.02 T — T2 + b—2|Q* U Q1 |Er?
I
Now we go back to (14.22) and from (14.23) - (14.27), we get:

1T = T = BPr,_,(Gis — 691}
< (1= 1848 + 58%62) | T 1oy — T2+ Co(1 + by + 62)b; 2|0 U Q4 |En?

where the condition \ > Cl,m%\|7A’l—1 — T7||F is used in the last step.
By combining (14.17) and (14.28), we get

Wi = T2 = [T — T — BPr, ,Gi|f?

5 o~ 2
S (1 + 5)”7.171 - T* - BPTZ—l (glfl - g*>HI2? + (1 + S

5 ~ 2
<(1+ 5) (1 —1.848b, +56°62) | T — T|7 + (1 + 5)B2Err§r
+ Cy (1+ Bby, + B0} b, %[ U Q1 |ErrZ,
5 ~ 2
< (14 3) (1= 18486+ 58%00) | Toa =T[5 + (14 5)5°Errs,

1 * * 2
= (192 + yad*) Errs,

+ C (1+ Bb, + B%0}) ;

u

where in the second inequality we used

[Pr._,(G)lle = sup (Pr,_,(G7),Y)= sup (G",Pr,_,(¥)) < Errar
1Y llr=1 |Ylp=1

_)BQH,PTLA (g

(14.27)

(14.28)

Bl

(14.29)

(14.30)

since Pr, ,(Y) € My, and in the last inequality we use |Q* U Q1| < |Q*] + [Q-1] < |QF] + yad*.
Now we choose proper 3 € [0.005b;/(b2),0.360;/(b%)] so 1 —1.8483b, +55%% < 1—6, and we get

IWiei =T lr < (1=06)(1+ 5/2)”'?1_1 — T*|lp + 35 'Errgy + C1(by + 1)61_1\/ || + aryd*Erry,

(14.31)

where we use the fact that 3 < 1. From the signal-to-noise ratio condition, we have 36 'Erry, +

Cy(by + 1)b'/|9*] + ayd*Erry, < 4C f This implies that [[W;_1 — T*||lr < A/8 holds.
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14.2 Proof of Theorem 4.3

Let Q and Q* denote the support of S . and 8* respectively. By the proof of Theorem 4.1, we

have

181 — S| < b [T = Tl + 2= ifwe O

N T e = Tl + = ifw e Q°\Q
Therefore, we conclude that

2Erro

~ . 2by | = .
1St = SNt < =Tt = T, + (14.32)
bl i bl
Now, we can apply Lemma 15.7 and we obtain
T e — Tl < O™ 2d= =072 2m 2 T (14.33)

Now, by putting together (14.32), (14.33) and (4.8), we get

=1

S T
1St = 87 llewe < C2,mf€§mlﬁm<W

2Err
b’

1/2
) . (Errgr + (]9 + Vozd*)l/ZErroo) +

where C ,,, and Cy,, are constants depending only on m. Now since we assume by, b, = O(1), we

finish the proof of Theorem 4.3.

14.3 Proof of Theorem 5.1

We first estimate the probability of the following two events.

Error < Como - (dF + 1)/ (14.34)

Erree < C9,,0- log*?d (14.35)

for some constants Cy,,, Cj,, > 0 depending only on m. Notice here the first event (14.34) holds

with probability at least 1 — exp(—c¢,,7d) by Lemma 15.3. And for the second event (14.35), we

have from the definition,
Ertag = max { | VE(T" + 8") o minyy,_<oo V)0 | = I12]]e. (14.36)

So we have (14.35) holds with probability at least 1 — 0.5d~2 from Lemma 15.4. Taking union
bounds and we get both (14.35) and (14.34) hold with probability at least 1 — d~2. And finally
applying Theorem 4.1 and Theorem 4.3 gives the desired result.
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14.4 Proof of Lemma 5.2

Denote the event & = {|| Z||,.. < 2v/mo./log(d)}, then from Lemma 15.4, we have & holds with
probability at least 1 — 2(d*)~'. Now we set 7; = 2¢/mo,+/log(d) + (d*) ™%, ||T*||¢, then under
&1, we have | T* + Z||,.. < 7. From the definition of 7y, we have |7o| < |T* + Z|(Pd" =11 < 7.

Denote Q; = {w : |[A],]| < 70} From the definition of Ay, we have

lollf = D [T"+8" + 2}

weNy
> T+ 2242 ) (ST + 2l

weNy weNINO*
> 3T+ 21 - 47|

weNy
=T+ Z|; - Z [T+ Z]2 — 4Q* |7}

wle

> |7+ 2| — (pd" + 41|77, (14.37)

where the penultimate inequality holds since for all w, |[T* 4+ Z],| < 7 and for all w € Q;, we
have |[8*].| < [[T* + Z].| + 70 < 27. Now we estimate the lower bound for |7 + Z||%. Since
Z has i.i.d. subgaussian entries, we have || Z||% > 1d*o? with probability at least 1 — 2 exp(—cd*)
for some absolute constant ¢ > 0, and 2(7, Z) < L[| 7|} + 202 log(d) with probability at least
1 —2(d*)~!. Put these altogether, we see

17+ 205 = 175 + [ 21F + 2T, 2) > —HT*||F+— . (14.38)
Combine (14.37) and (14.38), we have
2 1 * || 2 1 2 7% * * 2
1Aollp = ST 5 + Jozd” — (pd” + 4|77 (14.39)

Therefore with the choice 7 = 10y/m+/log(d) ”A‘)!F, we see that 7 > 7 and 7, := 10y/m/log(d) 17 >
7. With such a choice of 7, since for w € (*)¢, we have |[T"],, + [Z].| < 7 < 7, so we obtain
A= P+ (A) + Po- (A) = Pigeye(T* + Z) + Po-(Trunc,(A))
=T "+ Z + Pq«(Trunc,(A) = T* — 2)
=T +Z+E,
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where € = Pq«(Trunc,(A) — T — Z) and the first equality holds since for w € (2%)¢, |[A],] <
TNl + [[Z.]] € 7u. Under event £, we have ||E]||r < 2| |/?7,.

Now we use bold-face capital letters as shorthand notation for the unfolding of corresponding
calligraphic-font bold-face letters, for example, T} = M,;(T7),i € [m|. We denote X = T" + &.
We also denote U} be the top r; left singular vectors of T}, V; be the top r; left singular vectors
of X, and fIZO be the top r; left singular vectors of ;il

From Wedin’s sin® theorem, we have from condition (a),
| |V?r,
A Y

where d.(U, V) = mingeo, |[UR — V|. Meanwhile, from | X; — T:||r = ||E|lr < |Q*]'/?7,, we also

have UTi<Xi) > %7 0r¢+1(Xz’) < % and HXzH < %

d.(U;, V;) < (14.40)

Since subtracting a multiple of identity matrix does not change the top eigenvectors, in order
to bound the distance d.(V;, ﬁ?), we consider |A;AT — X, X7 — o2d; 14, ||, where o2 is the variance

of the entry of Z and d; = d*/d;. In fact, we have
AAT - X X! —o%d 1y, = X, 27 + 2,XT + 7,27 — 02d; 1,

Now we first consider the operator norm of X;Z! under the event &£;. From Talagrand’s concen-

tration inequality, we have

P(\Hxizfn CEIXZT]| < Corlog(d)os Xl -

51> > 1 — 2exp(—ct?).

Since P(£;) > 1/2 and from [34, Theorem 1.1], we have E[||X,ZT|||&1] < 2E||X;ZT|| < CVdio. || X

Therefore setting t = y/log(d) and the event
& ={IXZ]|| < Cuv/di|Xillo.}, & =285,
we know that P(&|€;) > 1 — 2md ! and thus P(&) > (1 — 2md ) (1 — 2(d*) ™).
Now we turn to bounding ||Z;Z] —d; 021,.||. From [35, Theorem 4.6.1], we have with probability
exceeding 1 — 2 exp(—d;),
12,2} — d; 14| < C(d")" 207

Denote the event & = {||Z;ZT — d; 0?14 | < C(d*)'/?0?} and & = N, &4 and we have P(&3) >

1—2%"" exp(—d;). Therefore under the event &, &, and from condition (b), we have

CoVdo X + C(d¥) /202
A? ‘
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Together with (14.40), we have

Cm\/jgzj\—{- C(d*)l/Qo_g C’Q*’l/ZTu
N’ L S

d.(U;, TY) < (14.41)

Denote the event

= {ullx max (Vi ©- 0V 9 V1800 Vi)l £ Col(Var 4770, }.
1= GlI<1, 50

And from [46, Lemma 5], we have P(£y) > 1 — Cmexp(—cd). For the following we denote

X =Tj(Ub®---@U,) = Ti(Py; Uy @ - - © Py;, UL,
7! =7,(U®- - U )
Al=A(Ue---aT),
where Py = UU”. We shall denote L, = max™, d,(U*, U?). For the base case, from (14.41) and

condition (b), we see Ly < % Now suppose we have L; < %

From the process of HOOI, we have U™ = SVD,, (A;(UL®---® U )). And thus we obtain

0 (X4) > 0, (Us @+ @ UL) - [ [ ouain (U0

=2
>0, (Us @@ Uy, (1 — Lf)"m D2
> Cm(l - Lt)2A7 (1442)

for some small constant ¢, > 0 depending only on m, and the last inequality holds since 1—L? > %.

We bound ||Z}]| under the event &,.

I1Z3] = 1Z:(Us @ - - @ UL, )|
= 11Z1((Po; + Piy) @+ @ (Pus, + P ) (Uy @ @ U, )|
< Col(d)V2 + 725, + C[(dr)? + 720, L, (14.43)
where the last inequality holds since &, holds and ||IAJ'fTU;k |l < Li. Now since ﬁﬁ“ is the top

ry left singular vectors of :Aﬁ and U is the top r; left singular vectors of X}, from Wedin’s sin©®

Theorem, we have

< ClAL =X CUE e + [1Z5])

- A B A

(1443 O V27, + Cp[(d)V? + 7D/, + O, [(dF)H? + 7m=D/2) 0, L,
< 3 :

dc<ﬁ§+17 Ul)
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The derivation for dc(ﬁf“, U;) when ¢ > 2 is similar to this case and hence

C|Q* Y27, + Cpu[(d)Y/? + Fm=D/2 g, N Con[(dP)Y/? 4- Fm=1/2] g,
A A

Li <

Ly.

From condition (), we have C,,[(dF)"/? + 7m=1/2]g_ /X < 1/2, so the above inequality implies

C|* Y21, + Cp[(d)Y? + Fm=D/2 g,
X .

1
Lt < (5) - Lo+

If we choose tyayx > (Cy, log(dko) V 1), then

- < C|Q*>‘\1/27'u N Cm[(CZ)l/Q _;f(m—l)/Q]UZ‘

(14.44)

Set the event & = {[|Z x2; Pg llr < C(r* + 3, diri)o?}. Then from [46, Lemma 5],

P(E) > 1 — exp(—Cdr). And we also consider || T x; UL ||p, we consider i = 1 for simplicity.

m
17 % ULl = U7, Ti|le < [|Pg,, Ti(Us™ ' @~ @ Upe=h) I - | [ o, (U7 U
1=2

< Cu(lE€]le + V| ZE=H)
< C|Q[P7 + Con(Vary + Vi¥)o, (14.45)

where the second inequality holds from [46, Lemma 6] and the last inequality holds from (14.43).
Now we are in the right position to bound |7 — 7*||p under &s.

1T = T*lp = A X", P — T*|Ir
< (A =T x P lle + T = T <, Pg. I

m
< Elle + 112 %, Pg, e+ Y 1T x: Ul |le

i=1

< Co| V%7, + C (V' + V dF)o, (14.46)

where the last inequality follows from (14.45). Finally applying Lemma 15.6 and we get 7\'0 is
(2441 K9 )?-incoherent and H’?O — T r < 2”’?— T*||r. Therefore from condition (a), (b) in Lemma

5.2, the initialization condition (a) in Theorem 5.1 holds.

14.5 Proof of Lemma 5.3

For each j € [m] and i € [d;], we have
o] M8l =3 (2Ll > 00) =3 Dk
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where Y € {0, 1}9*4m having i.i.d. Bernoulli entries and g := P([Y], = 1) = P(|[Z].] > ao.) <

a= .

Denote X;; =3, _;[Y]w. By Chernoff bound, if d; ¢ > 3log(md®), we get

P(Xiy —d;g>djq) <exp{—d;'q/3} < (md)”"
implying that

P(ﬂm {Xy < 247q}) = 1= md(md) " =1-d2, (14.47)
On the other hand, if d; ¢ < 3log(md?), by Chernoff bound, we get

IP’(XU > 1010g(mcf3)> < (md*)~!
implying that
]P’(ﬂm (X, < 101og(mci3)}> >1—mdmd) "t =1-d2 (14.48)

Putting (14.47) and (14.48), since ¢ < oY, we get

P(ﬂ-,j {Xyy < max {10log(md*), 2d; 0"} }) > 1 - d 2,

which completes the proof.

14.6 Proof of Theorem 5.4

Conditioned on €; defined in Lemma 5.3, Theorem 5.4 is a special case of Theorem 5.1. In-
deed, in Theorem 5.1, we replace o, with ao., and |Q*|logd with o/d* =< dlog(md), then we get
Theorem 5.4.

14.7 Proof of Lemma 5.5

From the choice of v in Theorem 5.4, we see that the sparsity of S, is bounded by o/ < % log(md®).
Therefore the condition (a) in Lemma 5.2 is satisfied. Now applying Lemma 5.2 and we get the

desired result.
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14.8 Proof of Lemma 5.6

From Lemma 15.6, we have Trim, (W) is 2y ko-incoherent. Now for all j € [m],

9

IM; (AN < MO MG T+ W = T e < P

So we conclude

A 9 e 7 m
T W) < AT Tro) [ 96/16) (o)™

where the last inequality follows from the upper bound for A. This finishes the proof of the lemma.

14.9 Proof of Theorem 5.7

From the choice of " and Lemma 5.6, we know Assumption 2 and 3 hold with parameters b, » and
by with respect to the set B =B, ={T + S : [|[T +S|o. <, T € M,,S € S,,}. Now the
proof follows the proof of Theorem 4.1 with slight modification. Since we can now guarantee in
each iteration 7\'1 + 3'1 € BY = B’ from Lemma 5.6 and the choice of k,,, we can use Assumption
3 instead of Assumption 2 when estimating the low rank part. So we only need to estimate Erry,
and Erry,. From (5.8), we have Erro, < L;. Now we estimate Erry,. In fact, from the definition of

Errop, we have

Erry, = sup (VE(T"+8"),M,).
MeEMa,, || M|p<1

Since for all w € [dy] x ... X [d,,], we have [VE£(T" 4+ 8")|, is bounded random variable with the
upper bound given by L. So apply Lemma 15.3, we have Erry, < CL¢ - (dF + 7*)'/? with with
probability at least 1 — d~2. Now we plug in the bounds for Erro, and Erry, to Theorem 4.1 and
we get the first part of the theorem. For the /., bound, we apply Theorem 4.3 and Lemma 15.7.
And we finish the proof of the theorem.

14.10 Proof of Lemma 5.8

We first introduce some notations. Let mg = |2 |, and denote T* = (T7){mo) §* = (§*)mo)
and A = .A<m°>, then T* S* A are matrices of size dy ... dp, X dpgs1 - .- dm =: di X d5. Since T*
admits the decomposition 7 = C*-[U%,--- , U* ], we have T* = (U,,,®- - -@U;)C™ (U, ®---®

U,,,+1)7 and hence the rank of T* is r = min{ry - - - Yy, Tmgs1 - Tm - We denote M = T* 4 S*.
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Algorithm 7 Initialization for binary tensor

Let A = A = reshape(A, [y - .. dyy, dimgt1 - - d]) With mg = [2] and let M be the

minimizer to (14.49).
T = reshape(i/l\7 [dy, ... dy]).
To = Trimy(T) with = 164 | T ||x/(7V).

Output: '?0.

Under Assumption 5, we have | T, [|S*[lr.. < § and thus [[M||,, < ¢. Now we bound the

nuclear norm of M. Using triangle inequality and we have

M. < (1T + (187
< %(m*)l/? + %m*w min(d;, d;)"/?

min(d;, d;)'/?

(Td*)1/2 |Q*|1/2)(Td*)1/2

< ((rd)'?,

where the last inequality holds since condition (a) holds. Now with a little bit abuse of notation,

we consider the following convex program,

min £(X) = —(A, log(p(X))) — (1 — A, log(1 — p(X))), s.t. [|X]||s < ¢(Vd*r and | X||,. < ¢,
(14.49)

where the notation 1 — A is the entrywise subtraction, and p(X) is applying p entrywisely to X.

Denote M be the minimizer to (14.49) and apply the Theorem 1 in [10] with the sample size d*

_<
di+d3’

and we get with probability at least 1 —
M~ MI[; < Celr(d; + dy)d"]?

with C¢ = C'- (L and f¢ = supy, < XG5

Now we reshape M back to a tensor, and denote T = reshape(ﬁ, [di,...,dn]). Since reshape

keeps the Frobenius norm unchanged, we have

I~ Tl = T~ T < [V~ Me + 8%l < O [r(d + di)a ] + |25
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Finally we output T = Trimm(’?) with 7 = 1641 T ||¢/(7v/d*), and from Lemma 5.6 and

Lemma 15.6, since condition (b) and (¢) hold, we get

7
VE

And together with the upper bound for A in Assumption 5, the initialization condition in Theorem

.

(1) u(To) < 2k0p1; (2) [ To = Tlle < 2T = T*lles (3) [T Nl < Conlpro)

5.7 1s satisfied.

14.11 Proof of Theorem 8.1

The proof of this theorem is similar to that of Theorem 5.7. From the choice of ¢’ and Lemma
5.6, we know Assumption 2 and 3 hold with parameters b, = e~ and by = e¢’ with respect
to the set By = B, = {T +S : [T +S|o. <, T € M;,S € S,,}. Now the proof follows
the proof of Theorem 4.1 with slight modification. Since we can now guarantee in each iteration
’?l + 31 € B5 = B, from Lemma 5.6 and the choice of k,, we can use Assumption 3 instead of
Assumption 2 when estimating the low rank part. So we only need to estimate Err,, and Erro,.

From (5.8), we have Erro, < [|[VE(T" 4+ 87)||,.. Simple calculation shows
1
VE(T +8") = —fy +exp(T" + 87),

and notice using a union bound and Poisson’s tail bound, when I > Ce¢log(d*), we have with
probability exceeding 1 — =, [|Y|lo.. < 10/e¢. Therefore we have Erro, < 11eC.

The estimation for Erry, is given in Theorem 4.3 [14], which states
r* + mdr
Errgy < Cy| —77—
Mor ~ I/e(

Now we plug in the bounds for Err,, and Erry. to Theorem 4.1 and we get the first part of the

with probability exceeding 1 — di*.

theorem. For the /., bound, we apply Theorem 4.3 and Lemma 15.7. And we finish the proof of

the theorem.

14.12 Proof of Lemma 8.2

With slight modification of the proof of Theorem 4.3 in [14], we have
o~ * eC - — *
[To—T HFSC\/T(; diri + 1/ d; 7i) + |87 [|e
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under the condition I > Ced with probability exceeding 1 — 1/d*. Therefore since we as-
sume I > Cy o7 (diry + d;ry)7A™% and |Q*| < CC2A%), we have || To — T*|p < crmA -

min {672, (k¥m7/2)71} < A/8. Now we apply Lemma 5.6 and Lemma 15.6 we see

3

(1) u(To) < 2k0p1; (2) [ To = Tlle < 2T = T*lles (3) [T Nl < Conlparrio)™ =

v

From Assumption 6, we see the initialization requirements in 8.1 is satisfied.

14.13 Proof of Theorem 10.1

We use induction to prove this theorem.
Step 0: Base case. From the initialization, we have ||’7'0 — T p < 107 Y2\

Step 1: Estimating ||'?z+1 — T*|lr- We prove this case assuming
1T~ T < 1m0 2 (14.50)

We point out that this also implies |77 — T*||p < crmbiby 7 Y/2 -\ since 8 < b2b;2. In order to

use Lemma 15.2, we need to derive an upper bound for H'?'l — T — BPr,Gi|r.

Step 1.1: Estimating || 7, — 7* — Pr,G|lr. For arbitrary 1> 6 > 0, we have,
| T =T = BPrGullz < (14 6/2)1T: = T* = BPr(G0 — )& + (14 2/8)8°(|Pr, " |[5 (14.51)
Now we consider the bound for |7, — T* — 8Pr, (G, — G*)|12.

1T =T = BPr(Gi— G2 = 1T — T2 = 28(T 1 — T, Pr,(Gi — G)) + 52| Pr, (G — G2
<+ BT = T2 = 28(T1 — T, Pr,(G — G))  (14.52)

where the last inequality holds from the Assumption 2 since T € B} from (14.50). Also,

(T =T Pr, (G —G)) = (T1—T* G~ G — (PL(T, —T"), 6, — G")
Cl,mbu
A

> bl| T = T|If — ITe =TI (14.53)
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where the last inequality is from Assumption 2, Lemma 15.1 and Cauchy-Schwartz inequality and

Chm = 2™ — 1. Together with (14.52) and (14.53), and since we have || T, — T*||r < 72— . A,

204,C1,m =
we get,
- * *\ 112 212\ (| 112 2Bcl,mbu - %113
1T =T = 6Pri(Gr = Gl < (1 =280+ S0 T = Tllp + ———— 1T = T"lr
< (1= 198 + 22| T — T"|I3 (14.54)

Since we have 0.750,b; 1 > §/2, if we choose 3 € [0.4b;b;2, 1.5b,b; %], we have 1—1.98b,+3%b% < 1—6.
So from (14.51) and (14.54), we get

~ ) ~ 2
1T =T = BPrGuilly < (1 + )L =)T: - Tllf + (1 + 5)Erms, (14.55)

5)
where in the inequality we use the definition of Erry. and that S < 1. Now from the upper bound
for |77 — T*||r and the signal-to-noise ratio, we verified that |7, — T* — APr,Gillr < A/8 and
thus 0ax(T7 — 77 = BPr,G1) < A/8.

Step 1.2: Estimating || 7.1 — 7*|r. Now that we verified the condition of Lemma 15.2, from
the Algorithm 6, we have,

JF

H7A’z+1 - TH% < ||'?l — T = BPr,Gill} + CmTH?\’l — T - BPr, G} (14.56)

where C,,, > 0 is the constant depending only on m as in Lemma 15.2. From (14.55) and the
assumption that ||7\'l —Tr < \/% - A and Errg, <, % - A, we get
T~ 5 4]
Cm§||7'z ~T" = BPrGllr < 5 (14.57)

From (14.56), (14.55) and (14.57), we get

4

5 Err3, (14.58)

N 5~ _
1T = THF < (1+ DNTi=7T" - BPrGille < (1= )T =T l& +

Together with the assumption ||’?l —Tr S<m \/% - A and Errg, <, % -\, we get

H’?\.Hl — T r <cim (14.59)

)
A
NV

which completes the induction and completes the proof.
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15 Technical Lemmas

Lemma 15.1. Suppose T, is the tangent space at the point 7\';, then we have

2m—1

1Pz, Tl < 1T = Tll3-

Proof. See ([5], Lemma 5.2). O

Lemma 15.2. Let T* = 8" - (V5,..., V%) be the tensor with Tucker rank r = (ry,...,7,). Let
D € Ré*-xdm pe q perturbation tensor such that A\ > 80 max (D), where omax (D) = max™, | M;(D)]|.

Then we have
V7| D7
A

IA(T* + D) = T llp < | D]lp + Cu

where C,, > 0 is an absolute constant depending only on m.

Proof. Without loss of generality, we only prove the Lemma in the case m = 3. First notice that
%‘HO(T* + D) - (T* + D) ' [[PUU PUQJ PUg]]a

where U; are leading r; left singular vectors of M;(7T* + D) and Py, = U, U] .
First from ([39], Theorem 1), we have for all i € [m]

Py, = Pv: =Si1 + Z Sijs

5>2
where S j = Sat,(1+),/(Mi(D)) and specially S = (Mi(T™) ") (My(D)) " Py. +Py: Mi(D) (M, (T))".
The explicit form of S;; can be found in [39, Theorem 1]. Here, we denote AT the pseudo-inverse
of A, ie., AT =RX'L" if A has a thin-SVD as A = LYR". With a little abuse of notations,
we write (AT)* = RE*LT for any positive integer k > 1.
For the sake of brev1ty, we denote S Z 1 Si,j- By the definition of ; ;, we have the bound
1Sl < (ZLUL> . We get the upper bound for [|S;|| as follows,

4Omax(1:) 8Omax(1:>
E S < 15.1
|S H ” lj“ — )\ 4 aX(D) A ( 5 )

j>1
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So we have,
T"[Pu,; Pu,, Pus] = T - [Pvs + S1, Pvs + Sa, Py: + Ss]
=T - [Pv:, Pvy, Pv:l (15.2)
+ T - [S1,Pvs, Pv:] + T - [Pvs,S2, Pvi] + T - [Pv:, Pvs, Ss]
+ T [S1,82, Pyy] + T - [Py, 82, Ss] + T - [S1, Py, So]
+ T [S1,S2, 5] (15.3)
We now bound each of |77 - [Si,Sa, Pv:]lle, [T - [Pvs,S2,Ss][lr and [T - [S1, Pvs, S3]||r-
Without loss of generality, we only prove the bound of the first term.
M (T [S1,82, Py:]) = SIMy(T?) (Py, ©Ss) (15.4)

Write
SIM(T) = (31,1 + ZSLJ) My (T™)
Jj>2

= Py My (D) (My(T*) My(T*) + D S1;Mi(T)

j>2

CMD [P P Pusl) + Y8 M) 155

j>2

where we used the fact Py M (T™) = 0.
Thus we obtain an upper bound for ||[S;M;(7 )| as follows

181 My(T)]| < (D +Az(4“max ) < 40, (D), (15.6)

j>2

where the first inequality is due to the explicit form of S; ;. See [39, Theorem 1].
So from (15.4) and (15.6), we get

max D 2
17 151,82 Puslle < ISIM (T e - [P, © Sl < G222 157)

where C > 0 is an absolute constant.
Now we consider the linear terms T[Sy, Pvy, Pv;], T [Py, S2, Pv:] and T [Py, Py, Ss].
Clearly, we have
My (T [[Sl,Pv;,Pvg]]) =S M (T7)
My (T - [Pyr,S2, Pys]) = SoMo(TY)
M (T [Py, Pvy, Ss]) = SsMs(T7), (15.8)
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whose explicit representations are already studied in eq. (15.5). As a result, we can write

T - [S1,Pvy, Pyv;] + T - [Pv;,S2, Py + T - [Pvy, Pvs, Ss]
=D - [[7’#*,7%*,7’\/*]] +D - [Pvy, Py, Pvs] + D - [Pyy, Py, Py
+ Z ( ) - [S15, Pvs, Pvsl + Ma(T7) - [Pyy, Sags Pl + Ms(T) - [[PV;,PV;,Ss,j]])-

j>2
(15.9)
Now we bound D - [Py,, Pu,, Pu,] as follows

D - [Pu,. Pus. Pus] = D - [Py + S1, Py + Sz, Pyy + S3
=D - [Pv;, Pv;, Pyi]
+D - [S1,Pys, Pvs] + D - [Pys,Sa, Pv:] + D - [Py, Py, Sy
+D - [S1,S5,Pv:] + D - [Pv:,S2,S3] + D - [S1, Py, Ss
+D-[Sh, S, Ss] (15.10)

Similarly as proving the bound (15.7), we can show

max D 2
1D 151,88, le) < Crvm ()

max {[|D - [S1, P, Ps]llr, [|D - [S1, Sz, Pv;]

(15.11)
where C] > 0 is an absolute constant.

Finally, by (15.5), (15.7), (15.9) and (15.11), we have

H(T* +D) ’ HPUUPUwPU?,]] =T

F
<D - [Py, Pyy, Pys] + D - [Pys, Pyy, Pzl + D - [Puy, Puy, Pyl + D - [Py, Py, Py

Cl \/;Um;x( )

VT 0max (D)

< Dl + 0

(15.12)

where C},Cy > 0 are absolute constants (Cy,, = 16m + 2™t1 in the case of general m). This

finishes the proof of the lemma. m

Lemma 15.3. Assume all the entries of Z € RUX*dm qre independent mean-zero random vari-

ables with bounded Orlicz-1y norm:
H[Z]wng = Sgll)(EHZ]w’q)l/q/ql/Z <o,
a>
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Then there exists some constants Cy,, ¢, > 0 depending only on m such that

" 1/2
sup (Z, M) < Co, (r* + Z dm-)

MeMa, || M| p<1 i=1

with probability at least 1 — exp(—cy, > v, dir;), where r* =1y ... 1y,
Proof. See the proof of ([14], Lemma D.5). O

Lemma 15.4 (Maximum of sub-Gaussian). Let Zy,...,Zy be N random variables such that

Eexp{tZ;} < exp{t?c?/2} for all i € [N]. Then
2

t
. < ——).
P(max |Zi > t) < 2N exp( 203)

Proof. The claim follows from the following two facts:

P(lfgfl%?}\] Zi > t) <P(Uicien{Zi > t}) < NP(Z; > t) < NeXp(_Qig)’
and
D | %] = max, Z
with Zy4; = —Z; for i € [N]. O

Lemma 15.5 (Spikiness implies incoherence). Let T € M, satisfies Assumption 1 with parameter
1. Then we have:

w(T") < ko
where u(T™) is the incoherence parameter of T and kg is the condition number of T ™.

Proof. Denote T* = C* - [Uy,...,U,]. Now we check the incoherence condition of 7. For all

i € [dj] and j € [m],

T |le
T M. (T = |le;U, M. (C* > e Usdl, - N> lle! U, I )
le; M;(T7)le, = [[€U;M;(C)le, = [le; Ujlle, - A = [le; Ujle, NG

On the other hand, we have
1
Nz

where the last inequality is due to the spikiness condition 7T satisfies. Together with these two

T
€70l < /2y,
J

And this finishes the proof of the lemma. ]

le) Mi(T ) lex < \/d5 1T lews < | T

inequalities, we have
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Lemma 15.6. Let T* € M, satisfies Assumption 1 with parameter j,. Suppose that VW satisfies

W —T"r < %, then we have Trim¢ (W) is (2p1k0)*-incoherent if we choose ¢ = Ly ”‘:/Vd—llF

Also, it satisfies

CoVTIIW =TI
)\ Y

[ Trime (W) = T [le < W =T [[e +

where C,,, > 0 depends only on m.

Proof. Notice Trime (W) = SHO(W) | where W is the entrywise truncation of W with the
thresholding (/2. To check the incoherence of %HO(VV), denote ﬁj the top-r; left singular
vectors of M, (W), and Kj the r; x r; diagonal matrix containing the top-r; singular values of

M](VV) Then, there exist a V; € RY *"i satisfying {/I{Vf] = I, such that

UjA; = M;(W)V,.

Now we can also bound the ¢..-norm of T*:

Tle , IVIe+ 1T = Wie _ | [W]e+ [Tr/8
Vo T v N V-

This together with the definition of (, we have:

[Tl
< 8/7-
H1 o <8/7-m

And thus || T||e. < ¢/2. Then for all i € [d;],

\ 1T le
1T e < 11

Wlle

N =¢/2.

_ . TMW)lle - G/2- ()
T, = lef M; (W) V,A1 |, < Jee MWl -
i Oslles = lles MyWIVIA; s < =2 B S 788, (MG (T)

where the last inequality is due to [W — T*|[r < |[W = T*||lr < A/8 since || T*||... < ¢/2 and
||W||goo < (/2. Meanwhile,
1Tl < VTikoAr (M;(TT)).

There for the ¢ = HV‘;‘*‘F, we have for all j € [m]

||7'*||F +2/8
U — <2

where the second last inequality is from [|W||r < |[|T"||r + [|[W — T "||lr and the last inequality is
from [|T7||r > A
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The second claim follows from the fact that |[W — T*||lr < |[W — T*|r < A/8, and from
Lemma 15.2,

[Trima (W) — Tl = [ = T < [ — 7 + €, Y =TI
B L
This finishes the proof of the lemma. O]
We introduce some notations for the following lemmas. Denote by 7\'1 =C; - (Uy,...,Uy,),
T =C"-(Uj,...,Ux).
R, = argérelgii |U; — U;R||p, i € [m] (15.13)

If we let UTU; = L;S;W/ be the SVD of UiTU;, then the closed form of R; is given by
R, = LZ’WZ-T . And we rewrite
T =8 (Vi,---,V},)

where 8* =C* - (R],--- ,R)) and V} = U;R;,i € [m]. So V} is also yg-incoherent.

Lemma 15.7 (Entry-wise estimation of |[7;— 7 *].|). Suppose T* satisfies Assumption 1. Under

then we have

the assumptions that T is (2pu1k0)2-incoherent and | T, — T*||p < m,

[T = TLl” < Co™d D (o) ™| T = T2,
where Cy, = 24 (m + 1).

Proof. First we have

Ti-T =(C~8) (Up,- ,Up)+ Y 8 (Vi,...,Vi,U; = Vi, Up,...,U,) (15.14)
i=1
From Lemma 15.5, we get T is p?r2-incoherent. So we have for all w = (wy,...,wy,) € [di] x

X [d]

1T =Tl < llCi - 87 IFHH Do +ZIIS*HFH (Ui = Vi) HH Vi | H Uk )l

=1 k=i+1

< \/d*(2umo)2 IC: — 87 lr + (2p10)™" dm 1HS*HFZH (Ui = Vi)
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where r* = [[", r;,d* = ][/~ d; and 7 = max", r;,d = min]", d;. From AG-GM inequality, we

have
[T TLIE < (m o+ D)™ 1€~ 81+ (m o+ 1)) ™ 1T I D (U, = Vi, I
= i=1
(15.15)
< (m 4+ 1)Fd™ " (2p )™ (HCz = S*[E + X Xm: 1U; — VZ‘H%)
i=1

< 2(m + 1)rd " o) " | T~ T

where the last inequality is from Lemma 15.9, and this finishes the proof of the lemma. O

Lemma 15.8 (Estimation of ||Po (T, — T*)||2). Let  be the a-fraction set. Suppose T* satisfies

Assumption 1. Under the assumptions that T is (2u1k9)?-incoherent and ||'?l —T | < wmA

F1/2I€0 )

we have
1Po(T 7 — TR < Conlpario) ™7™ a|| Ti — T2,

where Cy, = 24T (m +1).

Proof. First from (15.15) in Lemma 15.7, we have

-m—1
4m—aT

et e DU Vi)l

=1

- * mr* *
[T=T"1ul” < (m+1)(2mk0) ™" (€= 87 |5 +(m+1) (2 59)
Since €2 is an a-fraction set, we have

1Pa(T: =Tk =Y (T -T2

weN

< (m+ 1) (2pik0) "ar(|Cr = S*|F + (m o+ 1) (2pimo) ™ eI STE Y U = VI

i=1

* * m— —m_2 - *
< (m+1)(2pk0) " ar*||Cr = 8°[[f + (m + 1) (2 k0) ™ ™A Y | U = V|2

=1

< (m A+ 1)(2u1k0)* P (Hq — S*E+)° Z 1U; — V;.*H%) (15.16)

=1

Now we invoke Lemma 15.9, and we get
IPa(T7 =TI < 20m + 1)(2par0) ™7 To = T[4
which finishes the proof of the lemma. O
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Lemma 15.9 (Estimation of | T, — T*|[2). Let T; = C;- (Uy,--- ,U,,) be the I-th step value in

Algorithm 2 and let T* = 8*- (V%,--- , V%), Suppose T, satisfies | T, — T*||r < m. Then
we have the following estimation for | T — T*||3:
10— T > 03¢ - 812 + 05 S U, — Vi
i=1
Proof. First we have
Ti—-T =(C—8) (Uy,---,U,) + f:s* (V5. Vi, U=V Ugy,...,U,) (15.17)
i=1
Notice that we have
IS+ (V1,. . Vi, Ui = Vi, Ui, U [f = (10 = VOMG(S) R (15.18)
Denote X; =8* - (V5,..., V|, U, = Vi U;.4,...,U,), then we have
=TI = €= S + 301U, ~ VOMUS )} + 230X X)) + 23 (€1 = 8- (Uy, - .U
i=1 i<j i=1
> || — 87§ + ifHUi —VilE+2) (A, x) +2 i((cz =87 (Uy, -+, Up), Xy
i=1 i<j i=1
(15.19)

Notice that M;(X;) = (U; — V;-")./\/li(S*)(Um QU1 9V, 1 ® Vl)T. So we have the estimation
of [((C; —8") - (Uy,---,U,), X;)| is as follows:

(€= 8) - (Uy,-+ ,Up), Xi)| = (M ((Cr = 8%) - (Uy, -+, Up)), M( X))
<|(U; = V) UilIC, — 8*|le[|S* I
< VMU (U; = Vi) [pllC — 8*|p (15.20)

Now we estimate ||U; (U; — V?)||r by plugging in the closed form of V as in (15.13)
1T (Ui = V)l = 1= Sille < [T S7|le = IU;TU; < ||U; - UiRif3 (15.21)

From Wedin’ sin® Theorem, we have for i € [m]

V2T — T < V2| T — T o1

U, - Vi <||U =-Ulp < = < < -
U= Vil < U= Ul < 2 S T

(15.22)
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where the second last inequality is from ||'?l —T7|| < A/2 and the last inequality is from ||'?l —
Tr < . Then from (15.20) and (15.22), we have

A
16m7l/2kg
(€ =87) - (Us,-- , Up), Xi)| < o5 |C1 = S7[J5 + g A°[ Ui = VI (15.23)
The estimation of [(X;, X;)|(i < j) is as follows. From (15.22), we have

(i, X))] = [(Mi(8)M, (Ui = V]) T ViMi(SY))]
< NS [le M 11 (0: = V) Vil

IN

MS el (U = V) T Ve (T; = V) TVl

—
S]

) _
< ViX||U; = VIR0, = ViR

—

b)
— 16m2~

IU; = Vil[ellU; = Vil

U= VIR + o 5220, — Vi3 (15.24)

<
— 32m?2~

where M; ; = I®...®IU[ (U;-V;)@U, Vi ®... U/, Vi ®I®...®1, (a) holds because
of (15.21), (b) holds because of (15.22).
As a result of (15.19), (15.23) and (15.24), we have

1T =TI} > 05]C — S + 052> U, — V|2
=1

which finishes the proof of the lemma. O
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