
SUPPLEMENTARY MATERIAL for “Generalized Low-rank plus

Sparse Tensor Estimation by Fast Riemannian Optimization”

8 Application: Poisson Tensor Robust PCA

In this section, we consider the Poisson tensor RPCA model. Suppose we observe Y 2 N
d1⇥···⇥dm

that satisfies

8! 2 [d1]⇥ · · ·⇥ [dm], [Y ]! ⇠ Poisson(I exp([T ⇤]! + [S⇤]!)) independently,

where (T ⇤
,S⇤) 2 (Ur,µ1 , S↵) are the low rank part and sparse part respectively and I > 0 is the

intensity parameter that is revealed as in [14]. We choose the loss function to be the negative

log-likelihood with scaling

L(T + S) =
1

I

X

!

(�[Y ]![T + S]! + I exp([T + S]!)) .

This is an entry-wise loss, and simple calculation shows Assumptions 2 and 3 are satisfied with

B
⇤
2 = B

⇤
1 = {T + S : kT + Sk`1  ⇣,T 2 Mr,S 2 S�↵} with bl,⇣ = e

�⇣
, bu,⇣ = e

⇣ . Since the

parameter will become trivial in an unbounded set, we impose the following assumption which

implies kT ⇤k`1  ⇣

2 and thus kT ⇤ + S⇤k`1  ⇣.

Assumption 6. There exists a small ⇣ > 0 such that kS⇤k1  ⇣

2 , T
⇤ satisfies Assumption 1 with

its largest singular value �̄  cm(0µ1)�m

q
d⇤

r⇤ ⇣ where d
⇤ = d1 · · · dm and r

⇤ = r1 · · · rm.

Similar with the binary case, we also need to show k bT lk`1 , kbS lk`1 = O(⇣). These are guar-

anteed by choosing kpr = C1⇣ for some C1 > 1 depending only on 0µ1,m and from Lemma 5.6,

when 0µ1,m = O(1) and k bT l � T ⇤kF  �/8, we have k bT l+1k`1 = O(⇣). We summarize the

result in the following Theorem.

Theorem 8.1. Let � > 1, kpr := C1⇣ be the parameters used in Algorithm 2 for a constant C1 > 1

depending only on 0µ1 and m via Lemma 5.6. Suppose Assumptions 1 and 6 hold. Assume

|⌦⇤| ⇣ ↵d
⇤, e2⇣

0  0.4(
p
�)�1 for some � 2 (0, 1] and ⇣ 0 = (2C1 + 1)⇣, and

(a) Initialization: k bT 0 � T ⇤kF  c1,m� ·min
�
�
2
r̄
�1/2

, (2m0 r̄
1/2)�1

 
, k bT 0k`1  c2,m⇣ and bT 0 is

(2µ10)2-incoherent
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(b) Signal-to-noise ratio:

� ·min
�
�
2
r̄
�1/2

, (2m0 r̄
1/2)�1

 
� C2,m

⇣
�|⌦⇤|1 + e

⇣
0

e�⇣
0 · e⇣ +

q
(r⇤ + d̄r̄)e⇣/I

⌘
, and I � Ce

⇣ log(d⇤)

(c) Sparsity condition: ↵  c3,me
�8⇣0(4m0 µ

4m
1 r̄

m)�1 and � � 1 + (4m)�1 · e8⇣0

where c1,m, c2,m, c3,m, C2,m > 0 are some constants depending on m only. If the stepsize � 2

[0.005e�3⇣0
, 0.36e�3⇣0 ], after lmax iterations, with probability at least 1� 2

d⇤ ,

k bT lmax � T ⇤k2F  (1� �
2)lmax · k bT 0 � T ⇤k2F + C1,�

r
⇤ + d̄r̄

I/e⇣
+ C3e

2⇣ · �|⌦⇤|

kbS lmax � S⇤k2F  e
4⇣0
�
C4,m↵r̄

m(µ10)
4m + C5,m(� � 1)�1

�
k bT lmax � T ⇤k2F + C6,me

2⇣+2⇣0 · �|⌦⇤|

where C3 > 0 depends only on �, ⇣,m , and C4,m, C5,m, C6,m > 0 are constants depending only on

m. Moreover, if lmax is chosen large enough such that the second term on RHS of (5.9) dominates

and assume 4m0 µ
4m
1 r̄

m(r̄d̄+ r
⇤) .m O(dm�1), we get with probability at least 1� 2

d⇤ that

k bT lmax � T ⇤k`1 C6
2m
0 µ

2m
1 (r̄m/dm�1)1/2

⇣
r
⇤ + d̄r̄

I
+ �|⌦⇤|

⌘1/2

kbS lmax � S⇤k`1 C7
2m
0 µ

2m
1 r̄

m/2
/d

(m�1)/2 ·
⇣q

(r⇤ + d̄r̄)/I + |⌦⇤|1/2
⌘
+ C8

where C6, C7, C8 > 0 depend only on �, �, ⇣,m.

From Theorem 8.1, after a properly chosen lmax iterations, we will obtain k bT lmax � T ⇤k2F =

O( r
⇤+d̄r̄

I/e⇣
+ e

2⇣ · �|⌦⇤|). As a special case when |⌦⇤| = 0, our result matches the previous result

in Poisson tensor PCA in [14] that is rate optimal under the same requirements on the intensity

parameter I. When there are outliers, the error for the estimation of T ⇤ is further influenced by

the outliers.

Initialization. We shall adopt the initialization proposed in [14] with slight modification. The

theoretical guarantee is summarized in the following lemma.

Lemma 8.2. Suppose that Assumptions 1 and 6 hold. There exist absolute constants c, C >

0 such that if I � Cmax{d̄,��2Pm

i=1(diri + d
�
i
ri)r̄}, and the sparsity of S⇤ satisfies |⌦⇤| 

c⇣
�2
�
2
r̄
�1, then the output of Algorithm 4 satisfies the initialization requirement in Theorem 8.1

with probability at least 1� 1/d⇤.
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Algorithm 4 Initialization for Poisson RPCA

Set eT = log(Y+1/2
I

).

Let eT 0 = H
HO
r ( eT ).

Return bT 0 = Trim⌘,r( eT 0) with ⌘ = 16µ1k eT 0kF/(7
p
d⇤).

9 Higher Order Orthogonal Iteration Algorithm

The HOOI algorithm is summarized as follows which is applied for the initialization in Section 5.1

and 5.2.

Algorithm 5 HOOI

Input: Y 2 R
d1⇥···⇥dm , r = (r1, · · · , rm), maximum number of iteration: tmax.

Let t = 0, initiate bU0
i
= SVDri(Mi(Y)), i 2 [m].

for t = 1, . . . , tmax do

for i = 1, . . . ,m do

bUt

i
= SVDri

�
Mi(Y)(bUt�1

m
⌦ · · ·⌦ bUt�1

i+1 ⌦ bUt

i�1 ⌦ · · ·⌦ bUt�1
1 )

�

end for

end for

Output: bUi = bUtmax
i

, bT = Y ⇥m

i=1
bUi
bUT

i
.

10 When Sparse Component is Absent

In this section, we consider the special case when the sparse component is absent, i.e., S⇤ = 0. For

the exact low-rank tensor model, we observe that many conditions in Section 4 can be relaxed.

A major di↵erence is that the spikiness condition is generally not required for exact low-rank

model. Consequently, the trimming step in Algorithm 2 is unnecessary. Therefore, it su�ces

to simply apply the Riemannian gradient descent algorithm to solve for the underlying low-rank

tensor T ⇤. For ease of exposition, the procedure is summarized in Algorithm 6 (largely the same

as Algorithm 2).

Algorithm 6 runs fast and guarantees favourable convergence performances under weaker con-

ditions than Theorem 4.1. Indeed, since there is no sparse component, only Assumption 2 is
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Algorithm 6 Riemannian Gradient Descent for Exact Low-rank Estimate

Initialization: bT 0 2 Mr and stepsize � > 0

for l = 0, 1, · · · , lmax do

Gl = rL( bT l)

W l = bT l � �PTl
Gl

bT l+1 = H
HO
r (W l)

end for

Output: bT lmax

required to guarantee the convergence of Algorithm 6. Similarly as Section 4, the error of final

estimate produced by Algorithm 6 is characterized by the gradient at T ⇤. With a slightly abuse

of notation, denote Err2r = supX2M2r,kXkF1hrL(T ⇤),X i.

Theorem 10.1. Suppose Assumption 2 holds with S⇤ = 0 and B
⇤
2 = {T : kT �T ⇤kF  c0,m�,T 2

Mr} for a small constant c0,m > 0 depending on m only, also suppose 1.5blb�2
u

 1 and 0.75blb�1
u

�

�
1/2 for some � 2 (0, 1] and the stepsize � 2 [0.4blb�2

u
, 1.5blb�2

u
] in Algorithm 6. Assume

(a) Initialization: k bT 0 � T ⇤kF  � · c1,m�r̄�1/2

(b) Signal-to-noise ratio: Err2r/�  c2,m�
2
r̄
�1/2

where c1,m, c2,m > 0 are small constants depending only on m. Then for all l = 1, · · · , lmax,

k bT l � T ⇤k2F  (1� �
2)lk bT 0 � T ⇤k2F + C�Err

2
2r

where C� > 0 is a constant depending only on �. Then after at most lmax ⇣ log
�
�/Err2r

�
iterations

(also depends on bl, bu,m, r̄ and �), we get

k bT lmax � T ⇤kF  C · Err2r,

where the constant C > 0 depends on only bl, bu,m, r̄ and �.

Note that Theorem 10.1 holds without spikiness condition in contrast with Theorem 4.1. It

makes sense for the model has no missing values or sparse corruptions. The assumptions on loss

function are also weaker (e.g., no need to be an entry-wise loss or entry-wisely smooth) than those

in Theorem 4.1. As a result, Theorem 10.1 is also applicable to the low-rank tensor regression
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model among others. See [14, 8, 42] and references therein. The initialization and signal-to-noise

conditions are similar to those in Theorem 4.1, e.g., by setting |⌦⇤| = ↵ = 0 there. In addition, the

error of final estimate depends only on Err2r. Interestingly, the contraction rate does not depend

on the condition number 0.

Comparison with existing literature In [14], the authors proposed a general framework for exact

low-rank tensor estimation based on regularized jointly gradient descent on the core tensor and

associated low-rank factors. Their method is fast and achieves statistical optimality in various

models. In contrast, our algorithm is based on Riemannian gradient descent, requires no regular-

ization and also runs fast. An iterative tensor projection algorithm was studied in [44]. But their

method only applies to tensor regression. Other notable works focusing only on tensor regression

include [47, 50, 15, 33, 22, 26]. A general projected gradient descent algorithm was proposed in [8]

for generalized low-rank tensor estimation. For Tucker low-rank tensors, their algorithm is similar

to our Algorithm 6 except that they use vanilla gradient Gl while we use the Riemannian gradient

PTl
Gl. As explained in Section 3, using the vanilla gradient can cause heavy computation bur-

dens in the subsequent steps. Riemannian gradient descent algorithm for tensor completion was

initially proposed by [21]. They focused only on tensor completion model and did not investigate

its theoretical guarantees. Recently in [5], the Riemannian gradient descent algorithm is applied

for noiseless tensor regression and its convergence analysis is proved.

11 More Numerical Simulations

In Section 11.1, we apply the proposed BIC-type criterion for SG-RPCA and binary tensor learning

and demonstrate its e↵ectiveness on synthetic data. Through Section 11.2-11.5, we treat r and ↵

as given and test the performance of our estimator with respect to di↵erent choices of �. Other

algorithmic parameters like µ1 and kpr are decided as explained in Section 6.

11.1 Performance of BIC-type Criterion

We test the performance of BIC-type criterion (3.3) for SG-RPCA and binary tensor learning. As

explained in Section 6, � is set to 1 and µ1 = 2m + log(d̄). More exactly, the BIC-type criterion
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Figure 5: BIC values for SG-RPCA; the true rank r = (3, 3, 3)>. Left: true ↵ = 0.05; Right: true

↵ = 0.1.

for SG-RPCA (assuming Gaussian noise with equal but unknown variances) is

BIC(r,↵) :=
�
kbSr,↵k`0 +

Xm

i=1
ridi

�
· log(d⇤) + d

⇤ log(kA� bT r,↵ � bSr,↵k2F).

The true tensor T ⇤ 2 R
d⇥d⇥d with d = 100 and r = (3, 3, 3)>. We test two true sparsity levels

↵ 2 {0.05, 0.1}. The true tensor T ⇤ satisfies kT ⇤k`1 = 0.1, and S⇤ is generated as above satisfying

kS⇤k`1 = 4, and all entries of Z⇤ satisfy i.i.d. N(0, �2
z
) with �z = 0.01. For each ↵ 2 {0.05, 0.1},

we test, in our algorithm, r 2 {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (5, 5, 5)} and ↵ 2 (0.02, 0.2). The

results are displayed in Figure 5. The BIC-values are sensitive to both r and ↵. We note that the

BIC-values for r > 3 are strictly larger than that of r = (3, 3, 3), but the di↵erence is too small to

be spotted in the figures.

For robust binary tensor learning, we also set r = (3, 3, 3)> and T ⇤ 2 R
d⇥d⇥d with d = 100,

and S⇤ is generated as above. The true ↵ 2 {0.005, 0.01}. We fix p(x) = (1 + e
�10x)�1. The BIC

criterion for the binary case is:

BIC(r,↵) :=
�
kbSk`0+

Xm

i=1
ridi

�
·log(d⇤)�2

X

!

�
[A]! log p([ bT +bS]!)+

�
1�[A]!

�
log
�
1�p([ bT +bS]!)

��
.

For each true ↵ 2 {0.005, 0.01}, we test BIC for r 2 {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (5, 5, 5)}

and ↵ varying from 0.001 to 0.015. The results are displayed in Figure 6 showing that BIC is

more sensitive to r and less sensitive to ↵ for a small range. After the true r is identified, the BIC

criterion works reasonably well for selecting ↵.
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Figure 6: BIC values for binary tensor learning; the true rank r = (3, 3, 3)>. Left: true ↵ = 0.005;

Right: true ↵ = 0.01. The BIC curve for r = (3, 3, 3)> is highlighted.

11.2 Tensor Sub-Gaussian Robust PCA

The low-rank tensor T ⇤ 2 R
d⇥d⇥d with d = 100 and Tucker ranks r = (2, 2, 2)> is generated

from the HOSVD of a trimmed standard normal tensor. It satisfies the spikiness condition, with

high probability, and has singular values �̄ ⇡ 3 and � ⇡ 1. Given a sparsity level ↵ 2 (0, 1),

the entries of sparse tensor S⇤ are i.i.d. sampled from Be(↵)⇥ N(0, 1), which ensures S⇤ 2 SO(↵)

with high probability. This ensures that the non-zero entries of S⇤ have typically much larger

magnitudes than the entries of T ⇤. The noise tensor Z has i.i.d. entries sampled from N(0, �2
z
).

The default choice of � is 2, kpr = 1 and µ1 is set as previously. The convergence performances of

log(k bT l�T ⇤kF/kT ⇤kF) by Algorithm 2 are examined and presented in the left panels of Figure 7.

The top-left plot in Figure 7 displays the e↵ects of ↵ on the convergence of Algorithm 2.

It shows that the convergence speed of Algorithm 2 is insensitive to ↵, while the error of final

estimates bT lmax is related to ↵. This is consistent with the claims of Theorem 5.1. In the middle-

left plot of Figure 7, we observe that, for a fixed sparsity level ↵, the error of final estimates

grows as the tuning parameter � becomes larger. The bottom-left plot of Figure 7 shows the

convergence of Algorithm 2 for di↵erent noise levels. All these plots confirm the fast convergence

of our Riemannian gradient descent algorithm. In particular, there are stages during which the

log relative error decreases linearly w.r.t. the number of iterations, as proved in Theorem 4.1.

The statistical stability of the final estimates by Algorithm 2 is demonstrated in the right panels
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of Figure 7. Each curve represents the average relative error of bT lmax based on 10 simulations, and

the error bar shows the confidence region by one empirical standard deviation. Based on these

plots, we observe that the standard deviations of k bT lmax � T ⇤kF grow as the noise level �z, the

sparsity level ↵ or the tuning parameter � increases.

11.3 Tensor PCA with Heavy-tailed Noise

The low-rank tensor T ⇤ 2 R
d⇥d⇥d with d = 100 and Tucker ranks r = (2, 2, 2)> is generated from

the HOSVD of a trimmed standard normal tensor, as in Section 11.2. Given a parameter ✓, we

generate the noisy tensor whose entries are i.i.d. and satisfy the Student-t distribution with degree

of freedom ✓. But notice here we also apply a global scaling to better control the noise standard

deviation. We denote the noisy tensor after scaling by Z . This generated tensor Z satisfies

Assumption 4 with the same parameter ✓. Once the parameter ✓ and global scaling are given, we

are able to calculate the variance �2
z
. The convergence performances of log(k bT l � T ⇤kF/kT ⇤kF)

by Algorithm 2 are examined and presented in the upper panels of Figure 8.

In this experiment, we set � = 2, kpr = 1 and µ1 as previously. The top-left plot in Figure 8

displays the e↵ects of ↵ on the convergence of Algorithm 2. The case ↵ = 0 reduces to the normal

Riemannian gradient descent, which cannot output a satisfiable result due to the heavy-tailed

noise, even if a warm initialization is provided. This shows the importance of gradient pruning

in Algorithm 2. When ↵ > 0, the convergence speed of the algorithm is insensitive to ↵, but

the final estimates bT lmax is related to ↵. In the top-right plot of Figure 8, we observe the error

becomes larger as ✓ decreases (or equivalently, as �2
z
increases). All these results match the claim

of Theorem 5.4 and confirm the fast convergence of Riemannian gradient descent. And there are

indeed stages where the log relative error decreases linearly w.r.t. the number of iterations.

The statistical stability of the final estimates by Algorithm 2 applied to tensor PCA with

heavy-tailed noise is demonstrated in the bottom panel of Figure 8. Each curve represents the

average relative error of bT lmax based on 5 simulations, and the error bar shows the confidence

region by one empirical standard deviation. Based on these plots, we observe that for each fixed

✓ (or �2
z
, equivalently), we need to choose ↵ carefully to achieve the best performance. This is

reasonable since in the heavy-tail noise setting, we do not know the sparsity of outliers. Also, the

figure shows that Algorithm 2 is stable for di↵erent ↵ and ✓.
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Figure 7: Performances of Algorithm 2 for SG-RPCA. The low-rank T ⇤ has size d ⇥ d ⇥ d with

d = 100 and has Tucker ranks r = (2, 2, 2)>. The relative error on left panels is defined by

k bT l � T ⇤kF/kT ⇤kF. The error bars on the right panels are based on 1 standard deviation from

10 replications. Here the default � is 2.
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Figure 8: Performances of Algorithm 2 for tensor PCA with heavy-tailed noise. The low-rank

T ⇤ has size d ⇥ d ⇥ d with d = 100 and has Tucker ranks r = (2, 2, 2)>. The relative error on

upper panels is defined by k bT l � T ⇤kF/kT ⇤kF. The error bars on the lower panels are based on

1 standard deviation from 5 replications. Here the default choice of � is 2.
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11.4 Binary Tensor Learning

In the binary tensor setting, we generate the low-rank tensor T ⇤ 2 R
d⇥d⇥d with d = 100 and

Tucker ranks r = (2, 2, 2)> from the HOSVD of a trimmed standard normal tensor. But here

we did a scaling to T ⇤ so that the singular value �̄ ⇡ 300 and � ⇡ 100. Given a sparsity level

↵ 2 (0, 1), the entries of sparse tensor S⇤ are i.i.d. sampled from Be(↵) ⇥ N(0, 1), which ensures

S⇤ 2 SO(↵) with high probability. We generate the tensor T ⇤ and S⇤ in this way in order to meet

the requirements of Assumption 5. In the following experiments, we are considering the logistic

link function with the scaling parameter �, i.e., p(x) = (1 + e
�x/�)�1. The default choice of � is

1.1, kpr = 1 and µ1 is set as previously. The convergence performances of log(k bT l�T ⇤kF/kT ⇤kF)

by Algorithm 2 are examined and presented in the top two panels of Figure 9.

The top-left plot in Figure 9 shows the e↵ect of ↵ on the convergence of Algorithm 2. From

the figure, it is clear that the error of final estimates bT lmax is related to ↵. This again verifies the

results in Theorem 5.7. In the top-right plot in Figure 9, we can see the error of the final estimates

increases as the parameter � becomes larger. All these experiments show that Riemannian gradient

descent converges fast and there are stages when the log relative error decreases linearly w.r.t. the

number of iterations.

The statistical stability of the final estimates by Algorithm 2 is demonstrated in the bottom

panel of Figure 9. Each curve represents the average relative error of bT lmax based on 5 simulations,

and the error bar shows the confidence region by one empirical standard deviation. From these

plots, we observe that the standard deviations of k bT lmax � T ⇤kF grow as the noise level, the

sparsity level ↵ or the tuning parameter � increases.

11.5 Tensor Poisson Robust PCA

In the Poisson tensor RPCA case, we generate T ⇤ 2 R
d⇥d⇥d with d = 100 and Tucker rank

r = (2, 2, 2)> such that kT ⇤k`1 = 0.5. Meanwhile, the sparse outliers S⇤ is generated such

that all its entries are i.i.d. sampled from Be(↵) ⇥ N(0, 1) and scaled such that kS⇤k`1 = 0.5.

Throughout the experiments, both ⇣ and kpr is set to 0.5, and the default choice of � is 1.1.

In the first experiment, we fix the intensity I = 10 and change the sparsity level. The conver-

gence performances of log(k bT l � T ⇤kF/kT ⇤kF) by Algorithm 2 is displayed in the left panel of
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(a) Left: Change of sparsity ↵, � = 1, � = 1.1; Right: Change of �, ↵ = 0.001,� = 1

(b) Left: Change of �, � = 1.1; Right: Change of �, ↵ = 0.001

Figure 9: Performances of Algorithm 2 for binary tensor learning. The low-rank T ⇤ has size

d ⇥ d ⇥ d with d = 100 and has Tucker ranks r = (2, 2, 2)>. The relative error on left panels is

defined by k bT l � T ⇤kF/kT ⇤kF. The error bars on the bottom panels are based on 1 standard

deviation from 5 replications. The default choice of � is 1.1.
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Figure 10: Performance of Algorithm 2 for tensor Poisson RPCA. The Tucker rank of T ⇤ is

r = (2, 2, 2)>. Left: Convergence behaviors with di↵erent ↵ and I is fixed with I = 10; Right:

Error bar with each setting repeated 5 i.i.d. times. Here � = 1.1 and kpr = 0.5.

Figure 10. In the second experiment, for di↵erent values of ↵ and I, we conduct 5 i.i.d. instances

and plot the error bar. The results are displayed in the right panel of Figure 10.

12 Additional result on International Trade Flow Data

We now compare [13]’s method (convex relaxation) and [24]’s method (tubal-tRPCA) with our

method in terms of prediction error on the international trade flow dataset. As in Section 7, we

analyze the tensor log(1 +A). We split log(1 +A) into two parts, namely log(1 +A) =: Atrain +

Atest, where Atest is generated by randomly taking 10% of the non-zero entries of log(1+A). We

then apply tubal-tRPCA with the default parameter the authors provide 3 and convex relaxation

with carefully tuned parameters 4. We use the proposed BIC-type criterion to select the rank and

sparsity. As the left panel of Figure 11 suggests, we choose r = (3, 3, 3)>, and the right panel

of Figure 11 shows the BIC is less sensitive to ↵ for a small range. Therefore we set the rank

as r = (3, 3, 3)> and try ↵ = 0.01, 0.02, 0.03. The error is measured in terms of the test error

k[ bT + bS]⌦test �AtestkF and the results are presented in Table 2.

When ↵ = 0, all methods perform poorly because the existence of outliers distort the low-rank

3Their codes are available at https://github.com/canyilu/tensor-completion-under-linear-transform.
4The codes in [13] is not publicly released so we have to tune the parameters by ourselves.
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Figure 11: BIC values on the International Trade Flow Data. Left: BIC values for di↵erent rank

and sparsity; Right: Zoom in on the case r = 3.

Method
Convex

[13]

tubal-tRPCA

[24]

Our method

(↵ = 0)

Our method

(↵ = 0.01)

Our method

(↵ = 0.02)

Our method

(↵ = 0.03)

Pred. Error 1892.3 1894.2 1891.2 693.5 800.5 980.1

Table 2: Comparison of our method with convex relaxation [13] and tubal-tRPCA [24] in terms of

prediction error on the international trade flow data. Our BIC criterion suggests any ↵ between

0.002 and 0.03. We note that our method with ↵ = 0.003 yields a prediction error 566.0.

estimate making it ine↵ective in prediction. Meanwhile, if ↵ is too large, say 0.1, the sparse

component might incorrectly absorb useful information from the low-rank component which, as

a result, sabotages its prediction accuracy. Fortunately, our method with the BIC suggested ↵

indeed significantly outperforms other methods.

13 Real Data: Statisticians Hypergraph Co-authorship

Network

This dataset [16] contains the co-authorship relations of 3607 statisticians based on 3248 papers

published in four prestigious statistics journals during 2003-2012. The co-authorship network thus

has 3607 nodes and two nodes are connected by an edge if they collaborated on at least one paper.
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A giant connected component of this network consisting of 236 nodes is seen to be the “High-

Dimensional Data Analysis” community. They also carried out community detection analysis to

discover substructures in this giant component. See more details in [16].

We analyze the substructures of the giant component by treating it as a hypergraph co-

authorship network. These 236 statisticians co-authored 542 papers5, among which 356 papers

have two co-authors, 162 papers have three co-authors and 24 papers have four co-authors. A 3-

uniform hypergraph co-authorship network is constructed by, for i 6= j 6= k, adding the hyperedge

(i, j, k) if the authors i, j, k co-authored at least one paper, and adding the hyperedges (i, i, j) and

(i, j, j) if the authors i, j co-authored at least one paper. The hyperedges are undirected resulting

into a symmetric adjacency tensor A. We adopt the framework from Section 5.1 to learn the

latent low-rank tensor bT in A, which is used to detect communities in the giant component. We

emphasize that our primary goal is to present the new findings by taking into consideration of

higher-order interactions among co-authors and applying novel robust tensor methods. It is not

our intention to label an author with a certain community.

The Tucker ranks are set as (4, 4, 4) and sparsity ratio ↵ is varied at {0, 10�4
, 5⇥ 10�4}. The

number of communities is set at K = 3 and the algorithm is initialized by the HOSVD of A.

To uncover community structures, we apply spectral clustering to the singular vectors of bT . The

node degrees are severely heterogeneous with Peter Hall, Jianqing Fan and Raymond Carroll being

the top-3 statisticians in terms of # of co-authors. The naive spectral clustering often performs

poorly in the existence of heterogeneity, skewing to the high-degree nodes. Indeed, the top-left

plot in Figure 12 shows that the naive spectral clustering identifies these three statisticians as the

corners in a triangle, and puts Peter Hall in a single community. To mitigate the influence of node

heterogeneity, we apply SCORE [17] for community detection, which uses the leading singular

vector of bT as normalization.

The community structures found by SCORE are displayed in Figure 12. The top-right plot

shows the three clusters identified by SCORE when the sparsity ratio is zero. The three com-

munities are: 1). “North Carolina” group including researchers from Duke University, University

of North Carolina and North Carolina State University, together with their close collaborators

5There are 328 single-authored papers. They provide no information to co-authorship relations, and are left out

in our analysis.
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Figure 12: Sub-structures detected in the “High-Dimensional Data Analysis” community based on

the hypergraph co-authorship network. The Tucker ranks are set as (4, 4, 4) with varied sparsity

ratio at {0, 10�4
, 5⇥ 10�4} and the algorithm is initialized by the HOSVD of adjacency tensor A.
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such as Debajyoti Sinha, Qi-Man Shao, Bing-Yi Jing, Michael J Todd and etc.; 2). “Carroll-Hall”

group including researchers in non-parametric and semi-parametric statistics, functional estima-

tion and high-dimensional statistics, together with collaborators; 3). “Fan and Others” group6

including primarily the researchers collaborating closely with Jianqing Fan or his co-authors, and

other researchers who do not obviously belong to the first two groups. We note that the fields

of researchers in “Fan and Others” group are quite diverse, some of which overlap with those

in “Carroll-Hall” group and “North Carolina” group. However, unlike the results in [16], the

top-right plot in Figure 12 does not cluster the “Fan and Others” group into either the “North

Carolina” group or “Carroll-Hall” group.

We then set the sparsity ratio of bS by ↵ = 10�4. The communities identified by SCORE

based on the singular vectors of bT are illustrated in the bottom-left plot of Figure 12. Compared

with the top-right plot (↵ = 0), the three communities displayed in the bottom-left plot largely

remain the same. But the group memberships of some authors do change. Notably, Debajyoti

Sinha and Michael J Todd move from the “North Carolina” group to “Fan and Others” group;

Abel Rodriguez moves from the “Carroll-Hall” group to “North-Carolina” group; several authors

(e.g. Daniela M Witten, Jacob Bien, Pan Wei, Chiung-Yu Huang, Debashis Paul, Zhezhen Jin,

Lan Zhang and etc.) move from the “Fan and Others” group to “Carroll-Hall” group; Hsin-Cheng

Huang moves from the “North Carolina” group to “Carroll-Hall” group; Rasmus Waggepetersen

moves from the “Carroll-Hall” group to “Fan and Others” group. These changes of memberships

suggest that these authors may not have strong ties to the “North Carolina”, “Carroll-Hall” group

or be the co-authors of Jianqing Fan. It may be more reasonable that these authors constitute a

separate group.

This indeed happens when the sparsity ratio ↵ increases to a certain level. The bottom-right

plot of Figure 12 shows the clustering result of SCORE when ↵ = 5 ⇥ 10�4. Compared with the

top-right (↵ = 0) and bottom-left (↵ = 10�4) plots, the community structure has a significant

change. Indeed, the “Fan and Others” group now splits into a “Fan” group including Jianqing

Fan and his co-authors, and an “Others” group including the researchers who do not have obvious

ties with “Fan” group. Moreover, the “Fan” group merges into the “Carroll-Hall” group, which

6We name it the “Fan and Others” group simply because many researchers in this group are the co-authors of

Jianqing Fan. It is not our intention to rank/label the authors.
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coincides with the clustering result of SCORE when applied onto the graph co-authorship network

(Fig. 6 in [16]). Consequently, we name the three communities in the top-right plot by the “North

Carolina”, “Carroll-Fan-Hall” and “Others” group. Interestingly, many of the authors in the

“Others” group are those whose memberships change when the sparsity ratio ↵ increases from 0

to 10�4. See the top-right and bottom-left plots of Figure 12. In addition, we observe that, as ↵

increases from 10�4 to 5 ⇥ 10�4, Donglin Zeng and Dan Yu Lin in the “Fan and Others” group

moves to “North Carolina” group. This might be more reasonable since they both work at the

University of North Carolina.

14 Proofs of theorems

14.1 Proof of Theorem 4.1

We prove the theorem by induction on k bT l � T ⇤kF and kbS l � S⇤kF alternatively. From the

initialization condition we have k bT 0 � T ⇤kF  c1,m min{ �
2

p
r̄
, (2m0

p
r̄)�1} · � and bT 0 2 B

⇤
1 is

(2µ10)2-incoherent.

Step 1: Bounding kbS l�S⇤kF for all l � 0. Suppose we have bT l 2 B
⇤
1 is (2µ10)2-incoherent

and k bT l � T ⇤kF  c1,m min{ �
2

p
r̄
, (2m0

p
r̄)�1} · �.

Now we estimate kbS l � S⇤kF. Denote ⌦l = supp(bS l) and ⌦⇤ = supp(S⇤). For 8! 2 ⌦l, from

the construction of bS l in Algorithm 1, we have by the definition of Err1,

|[rL( bT l + bS l)]!|  minkXk`1kpr krL(X )k`1  Err1 (14.1)

From Assumption 3, we get

|[rL( bT l + bS l)]! � [rL( bT l + S⇤)]!| � bl|[bS l � S⇤]!|. (14.2)

Note that to use (14.2), we shall verify the neighborhood condition. From the upper bound

of k bT l � T ⇤kF we have k bT l � T ⇤kF  �/8, and bT l is (2µ10)2-incoherent. Therefore, from

Lemma 15.7, we have:

|[ bT l � T ⇤]!|2  C1,mr̄
m
d
�(m�1)(µ10)

4mk bT l � T ⇤k2F.
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So we have

|[ bT l � T ⇤]!|  C1,m

r
r̄m

d
m�1 (µ10)

2mk bT l � T ⇤kF  C1,mµ
2m
1

s
r̄m�1

d
m�1�,

where the last inequality is from the upper bound of k bT l � T ⇤kF. As a result, we have

��[ bT l + bS l � T ⇤ � S⇤]!
�� 

��[ bT l � T ⇤]!
��+ |[bS l]!|+ |[S⇤]!|  C1,mµ

2m
1

s
r̄m�1

d
m�1�+ kpr + kS⇤k`1 .

Thus, both bT l + bS l and bT l + S⇤ belong to the ball B⇤
1 and thus (14.2) holds.

As a result of (14.1) and (14.2), we get for any ! 2 ⌦l

bl

��[bS l � S⇤]!
�� 

��[rL( bT l + S⇤)]!
��+ Err1.

Therefore,

kP⌦l
(bS l � S⇤)k2F  2

b2
l

kP⌦l
(rL( bT l + S⇤))k2F +

2|⌦l|
b2
l

Err21

=
2

b2
l

kP⌦l
(rL( bT l + S⇤))� P⌦l

(rL(T ⇤ + S⇤)) + P⌦l
(rL(T ⇤ + S⇤))k2F +

2|⌦l|
b2
l

Err21

 4

b2
l

kP⌦l
(rL( bT l + S⇤))� P⌦l

(rL(T ⇤ + S⇤))k2F +
4

b2
l

kP⌦l
(rL(T ⇤ + S⇤))k2F +

2|⌦l|
b2
l

Err21

 4b2
u

b2
l

kP⌦l
( bT l � T ⇤)k2F +

6|⌦l|
b2
l

Err21, (14.3)

where the last inequality is due to kP⌦l
(rL(T ⇤ + S⇤))k2F  |⌦l|Err21 and Assumption 3 since

bT l + S⇤ 2 B
⇤
1.

From (14.3), Lemma 15.8, we have

kP⌦l
(bS l � S⇤)k2F  C2,mb

2
u

b2
l

(µ10)
4m

r̄
m
↵k bT l � T ⇤k2F +

6|⌦l|
b2
l

Err21 (14.4)

here C2,m > 0 is an absolute constant depending only on m.

For 8! = (!1, . . . ,!m) 2 ⌦⇤\⌦l, we have |[bS l � S⇤]!| = |[S⇤]!|. Since the loss function is

entry-wise by Assumption 3, we have [rL( bT l)]! = [rL( bT l+ bS l)]!. Clearly, bT l and bT l+S⇤ both

belong to B
⇤
1, by Assumption 3 we get

|[rL( bT l)]! � [rL( bT l + S⇤)]!| � bl|[S⇤]!|.
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Now we bound |[bS l � S⇤]!| as follows. For any ! 2 ⌦⇤\⌦l,

|[bS l � S⇤]!| = |[S⇤]!| 
1

bl
|[rL( bT l)]! � [rL( bT l + S⇤)]!|

 1

bl

⇣
|[rL( bT l)]!|+ |[rL( bT l + S⇤)]!|

⌘

 1

bl

⇣
|[rL( bT l)]!|+ |[rL( bT l + S⇤)�rL(T ⇤ + S⇤)]!|+ |[rL(T ⇤ + S⇤)]!|

⌘

 1

bl
|[rL( bT l)]!|+

bu

bl
|[ bT l � T ⇤]!|+

1

bl
Err1,

where the last inequality is again due to Assumption 3 since bT l + S⇤ 2 B
⇤
1. Therefore we have

kP⌦⇤\⌦l
(bS l � S⇤)k2F  2

b2
l

kP⌦⇤\⌦l
(rL( bT l))k2F +

4b2
u

b2
l

kP⌦⇤\⌦l
( bT l � T ⇤)k2F +

4

b2
l

|⌦⇤\⌦l|Err21 (14.5)

Since ! 2 ⌦⇤\⌦l, we have

|[rL( bT l)]!|  maxm
i=1 |e>!i

Mi(rL( bT l))|(�↵d
�
i ) (14.6)

Now since we have S⇤ 2 S↵, we have

|[rL( bT l)]!|  maxm
i=1 |eT!i

Mi(rL( bT l + S⇤))|((��1)↵d�i )

 maxm
i=1

���e>!i

⇣
Mi(rL( bT l + S⇤))�Mi(rL(T ⇤ + S⇤))

⌘ ���
((��1)↵d�i )

+ Err1 (14.7)

Using AM-GM inequality, we have:

|[rL( bT l)]!|2  2maxm
i=1

���e>!i

⇣
Mi(rL( bT l + S⇤))�Mi(rL(T ⇤ + S⇤))

⌘���
2

F

(� � 1)↵d�
i

+ 2Err21

 2
mX

i=1

���e>!i

⇣
Mi(rL( bT l + S⇤))�Mi(rL(T ⇤ + S⇤))

⌘���
2

F

(� � 1)↵d�
i

+ 2Err21 (14.8)

Now for all fixed i 2 [m], for all !i 2 [di], !i appears at most ↵d�
i
times since ⌦⇤\⌦l is an ↵-fraction

set. This observation together with (14.8) lead to the following:

kP⌦⇤\⌦l
(rL( bT l))k2F  2

mX

i=1

krL( bT l + S⇤)�rL(T ⇤ + S⇤)k2F
� � 1

+ 2|⌦⇤\⌦l|Err21

 2mb
2
u

� � 1
k bT l � T ⇤k2F + 2|⌦⇤\⌦l|Err21. (14.9)
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Therefore together with (14.5) and (14.9) and Lemma 15.8, we have

kP⌦⇤\⌦l
(bS l � S⇤)k2F 

✓
4mb

2
u

b2
l

1

� � 1
+ C4,m

b
2
u

b2
l

(µ10)
4m

r̄
m
↵

◆
k bT l � T ⇤k2F +

16

b2
l

|⌦⇤\⌦l|Err21

(14.10)

where C4,m > 0 are constants depending only on m. Now we combine (14.4) and (14.10) and we

get

kbS l � S⇤k2F 
✓
4mb

2
u

b2
l

1

� � 1
+ C5,m(µ10)

4m
r̄
m
b
2
u

b2
l

↵

◆
k bT l � T ⇤k2F +

C1

b2
l

|⌦⇤ [ ⌦l|Err21 (14.11)

where C5,m > 0 depending only on m and C1 > 0 an absolute constant.

Now if we choose ↵  (C5,m
4m
0 µ

4m
0 r̄

m b
4
u

b4l
)�1 and ��1 � 4m b

4
u

b4l
for some su�cient large constants

C5,m > 0 depending only on m, then we have

kbS l � S⇤k2F  b
2
l

b2
u

k bT l � T ⇤k2F +
C1

b2
l

|⌦⇤ [ ⌦l|Err21 (14.12)

and

kbS l � S⇤kF  bl

bu
k bT l � T ⇤kF +

C1

bl

p
|⌦⇤ [ ⌦l|Err1 (14.13)

In addition, from the upper bound of kT l � T ⇤kF, (14.13) implies that kbS l � S⇤kF  c0� for a

small c0 > 0. This fact is helpful later since it implies that bT l + bS l belongs to the ball B⇤
2 and

thus activates the conditions in Assumption 2.

Step 2: bounding k bT l � T ⇤k2F for all l � 1. From previous step, we have verified

kbS l�1 � S⇤kF  bl

bu
k bT l � T ⇤kF +

C1

bl

p
|⌦⇤ [ ⌦l|Err1  c0�. (14.14)

And from the Algorithm 2, bT l = Trim⇣l,r(W l�1). Now from Lemma 15.6, we get,

k bT l�T ⇤k2F = kTrim⇣l,r(W l�1)� T ⇤k2F

 kW l�1 � T ⇤k2F + Cm

p
r̄

�
kW l�1 � T ⇤k3F

 (1 +
�

4
)kW l�1 � T ⇤k2F

 (1� �
2)k bT l�1 � T ⇤k2F + 6��1Err2r + C1

�
1 + bu + b

2
u

�
b
�2
l

(|⌦⇤|+ �↵d
⇤)Err21 (14.15)
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Notice to use Lemma 15.6, we need to verify kW l�1 � T ⇤kF  �/8, which we will check momen-

tarily. Also, from (14.15) and the signal-to-noise ration condition, we get

k bT l � T ⇤kF  c1 min{�2r̄�1/2
,

�2m
0 r̄

�1/2} · �.

On the other hand, from lemma 15.6, we have bT l is (2µ10)2-incoherent. Further, from Lemma 15.7

and the definition of k1 we have bT l 2 B
⇤
1. This finishes the induction for the error k bT l � T ⇤kF.

Now the only thing we need to check is the upper bound for kW l�1 � T ⇤kF.

Step 2.1: bounding kW l�1 � T ⇤kF. From the Algorithm 2, we have for arbitrary 1 � � > 0,

kW l�1 � T ⇤k2F = k bT l�1 � T ⇤ � �PTl�1
(Gl�1 � G⇤)� �PTl�1

G⇤k2F

 (1 +
�

2
)k bT l�1 � T ⇤ � �PTl�1

(Gl�1 � G⇤)k2F + (1 +
2

�
)�2kPTl�1

(G⇤)k2F (14.16)

Now we consider the bound for k bT l�1 � T ⇤ � �PTl�1
(Gl�1 � G⇤)k2F,

k bT l�1 � T ⇤ � �PTl�1
(Gl�1 � G⇤)k2F = k bT l�1 � T ⇤k2F � 2�h bT l�1 � T ⇤

,PTl�1
(Gl�1 � G⇤)i

+ �
2kPTl�1

(Gl�1 � G⇤)k2F (14.17)

The upper bound of kbS l�1�S⇤kF ensures that bT l�1+ bS l�1 2 B
⇤
2. Using the smoothness condition

in Assumption 2, we get

�
2kPTl�1

(Gl�1 � G⇤)k2F  �
2
b
2
u
k bT l�1 + bS l�1 � T ⇤ � S⇤k2F (14.18)

Now we consider the bound for |h bT l�1 � T ⇤
,PTl�1

(Gl�1 � G⇤)i|. First we have:

h bT l�1 � T ⇤
,PTl�1

(Gl�1 � G⇤)i = h bT l�1 � T ⇤
,Gl�1 � G⇤i � h bT l�1 � T ⇤

,P?
Tl�1

(Gl�1 � G⇤)i.

The estimation of h bT l�1 � T ⇤
,Gl�1 � G⇤i is as follows:

h bT l�1 � T ⇤
,Gl�1 � G⇤i = h bT l�1 � T ⇤ + bS l�1 � S⇤

,Gl�1 � G⇤i � hbS l�1 � S⇤
,Gl�1 � G⇤i

� blk bT l�1 � T ⇤ + bS l�1 � S⇤k2F � hbS l�1 � S⇤
,Gl�1 � G⇤i, (14.19)

where the last inequality follows from Assumption 2. And the estimation of h bT l�1�T ⇤
,P?

Tl�1
(Gl�1�

G⇤)i is as follows:

|h bT l�1 � T ⇤
,P?

Tl�1
(Gl�1 � G⇤)i|  kP?

Tl�1
( bT l�1 � T ⇤)kFkGl�1 � G⇤kF

 C1,mbu

�
k bT l�1 � T ⇤k2Fk bT l�1 � T ⇤ + bS l�1 � S⇤kF (14.20)
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where the last inequality follows from Lemma 15.1. Together with (14.19) and (14.20), we get,

h bT l�1 � T ⇤
,PTl�1

(Gl�1 � G⇤)i � blk bT l�1 � T ⇤ + bS l�1 � S⇤k2F � hbS l�1 � S⇤
,Gl�1 � G⇤i

� C1,mbu

�
k bT l�1 � T ⇤k2Fk bT l�1 � T ⇤ + bS l�1 � S⇤kF (14.21)

Together with (14.18) and (14.21), we get

k bT l�1 � T ⇤ � �PTl�1
(Gl�1 � G⇤)k2F 

✓
1 + 2�bu

C1,m

�
k bT l�1 � T ⇤ + bS l�1 � S⇤kF

◆
k bT l�1 � T ⇤k2F

+ (�2
b
2
u
� 2�bl)k bT l�1 � T ⇤ + bS l�1 � S⇤k2F

+ 2�|hbS l�1 � S⇤
,Gl�1 � G⇤i| (14.22)

In order to bound (14.22), we derive separately the bound for each terms.

Bounding k bT l�1 � T ⇤ + bS l�1 � S⇤k2F. From the bound for kbS l�1 � S⇤kF in (14.14), we get,

k bT l�1 � T ⇤ + bS l�1 � S⇤k2F  2k bT l�1 � T ⇤k2F + 2kbS l�1 � S⇤k2F

 4k bT l�1 � T ⇤k2F +
C1

b2
l

|⌦⇤ [ ⌦l�1|Err21 (14.23)

Thus,

k bT l�1 � T ⇤ + bS l�1 � S⇤kF  2k bT l�1 � T ⇤kF +
C1

bl

p
|⌦⇤ [ ⌦l�1|Err1 (14.24)

Bounding |hGl�1 � G⇤
, bS l�1 � S⇤i|. We first bound kGl�1 � G⇤kF by (14.24):

kGl�1 � G⇤kF  buk bT l�1 � T ⇤ + bS l�1 � S⇤kF

 2buk bT l�1 � T ⇤kF +
C1bu

bl

p
|⌦⇤ [ ⌦l�1|Err1 (14.25)

Now we estimate |hGl�1 � G⇤
, bS l�1 � S⇤i| from (14.14) and (14.25) as follows,

|hGl�1 � G⇤
, bS l�1 � S⇤i|  kGl�1 � G⇤kFkbS l�1 � S⇤kF

 (0.02bl + 0.01�b2
u
)k bT l�1 � T ⇤k2F +

1

�

C1

b2
l

|⌦⇤ [ ⌦l�1|Err21 +
C1bu

b2
l

|⌦⇤ [ ⌦l�1|Err21 (14.26)
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Bounding |h bT l�1 � T ⇤
, bS l�1 � S⇤i|. From (14.14), we have

|h bT l�1 � T ⇤
, bS l�1 � S⇤i|  k bT l�1 � T ⇤kFkbS l�1 � S⇤kF

 (0.01
bl

bu
k bT l�1 � T ⇤kF +

C1

bl

p
|⌦⇤ [ ⌦l�1|Err1)k bT l�1 � T ⇤kF

 0.02k bT l�1 � T ⇤k2F +
C1

b2
l

|⌦⇤ [ ⌦l�1|Err21 (14.27)

Now we go back to (14.22) and from (14.23) - (14.27), we get:

k bT l�1 � T ⇤ � �PTl�1
(Gl�1 � G⇤)k2F


�
1� 1.84�bl + 5�2

b
2
u

�
k bT l�1 � T ⇤k2F + C1(1 + bu + b

2
u
)b�2

l
|⌦⇤ [ ⌦l�1|Err21 (14.28)

where the condition � � C1,m
bu
bl
k bT l�1 � T ⇤kF is used in the last step.

By combining (14.17) and (14.28), we get

kW l�1 � T ⇤k2F = k bT l�1 � T ⇤ � �PTl�1
Gl�1k2F

 (1 +
�

2
)k bT l�1 � T ⇤ � �PTl�1

(Gl�1 � G⇤)k2F + (1 +
2

�
)�2kPTl�1

(G⇤)k2F

 (1 +
�

2
)
�
1� 1.84�bl + 5�2

b
2
u

�
k bT l�1 � T ⇤k2F + (1 +

2

�
)�2Err22r

+ C1

�
1 + �bu + �

2
b
2
u

�
b
�2
u
|⌦⇤ [ ⌦l�1|Err21

 (1 +
�

2
)
�
1� 1.84�bl + 5�2

b
2
u

�
k bT l�1 � T ⇤k2F + (1 +

2

�
)�2Err22r

+ C1

�
1 + �bu + �

2
b
2
u

� 1

b2
u

(|⌦⇤|+ �↵d
⇤)Err21 (14.29)

where in the second inequality we used

kPTl�1
(G⇤)kF = sup

kYkF=1
hPTl�1

(G⇤),Yi = sup
kYkF=1

hG⇤
,PTl�1

(Y)i  Err2r (14.30)

since PTl�1
(Y) 2 M2r and in the last inequality we use |⌦⇤ [ ⌦l�1|  |⌦⇤|+ |⌦l�1|  |⌦⇤|+ �↵d

⇤.

Now we choose proper � 2 [0.005bl/(b2u), 0.36bl/(b
2
u
)] so 1�1.84�bl+5�2

b
2
u
 1� �, and we get

kW l�1 � T ⇤kF  (1� �)(1 + �/2)k bT l�1 � T ⇤kF + 3��1Err2r + C1(bu + 1)b�1
l

p
|⌦⇤|+ ↵�d⇤Err1

(14.31)

where we use the fact that �  1. From the signal-to-noise ratio condition, we have 3��1Err2r +

C1(bu + 1)b�1
l

p
|⌦⇤|+ ↵�d⇤Err1  �

4
�

Cm
p
r̄
. This implies that kW l�1 � T ⇤kF  �/8 holds.
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14.2 Proof of Theorem 4.3

Let b⌦ and ⌦⇤ denote the support of bS lmax and S⇤, respectively. By the proof of Theorem 4.1, we

have

��[bS lmax � S⇤]!
�� 

8
><

>:

bu
bl

��[ bT lmax � T ⇤]!
��+ 2Err1

bl
, if ! 2 b⌦

2bu
bl
k bT lmax � T ⇤k`1 + 2Err1

bl
, if ! 2 ⌦⇤ \ b⌦

Therefore, we conclude that

kbS lmax � S⇤k`1  2bu
bl

�� bT lmax � T ⇤��
`1

+
2Err1
bl

. (14.32)

Now, we can apply Lemma 15.7 and we obtain

k bT lmax � T ⇤k`1  C1,mr̄
m/2

d
�(m�1)/2

µ
2m
1 

2m
0 k bT lmax � T ⇤kF (14.33)

Now, by putting together (14.32), (14.33) and (4.8), we get

kbS lmax � S⇤k`1  C2,m
2m
0 µ

2m
1

⇣
r̄
m

d
m�1

⌘1/2
·
�
Err2r + (|⌦⇤|+ �↵d

⇤)1/2Err1
�
+

2Err1
bl

,

where C1,m and C2,m are constants depending only on m. Now since we assume bl, bu = O(1), we

finish the proof of Theorem 4.3.

14.3 Proof of Theorem 5.1

We first estimate the probability of the following two events.

Err2r  C0,m�z · (d̄r̄ + r
⇤)1/2 (14.34)

Err1  C
0
0,m�z log

1/2
d̄ (14.35)

for some constants C0,m, C
0
0,m > 0 depending only on m. Notice here the first event (14.34) holds

with probability at least 1 � exp(�cmr̄d̄) by Lemma 15.3. And for the second event (14.35), we

have from the definition,

Err1 = max
n
krL(T ⇤ + S⇤)k`1 ,minkXk`11 krL(X )k`1

o
= kZk`1 (14.36)

So we have (14.35) holds with probability at least 1 � 0.5d̄�2 from Lemma 15.4. Taking union

bounds and we get both (14.35) and (14.34) hold with probability at least 1 � d̄
�2. And finally

applying Theorem 4.1 and Theorem 4.3 gives the desired result.
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14.4 Proof of Lemma 5.2

Denote the event E1 = {kZk`1  2
p
m�z

p
log(d̄)}, then from Lemma 15.4, we have E1 holds with

probability at least 1� 2(d⇤)�1. Now we set ⌧l = 2
p
m�z

p
log(d̄) + (d⇤)�1/2

µ1kT ⇤kF, then under

E1, we have kT ⇤ +Zk`1  ⌧l. From the definition of ⌧0, we have |⌧0|  |T ⇤ +Z|(bpd⇤�|⌦⇤|c)  ⌧l.

Denote ⌦1 = {! : |[A]!|  ⌧0} From the definition of A0, we have

kA0k2F =
X

!2⌦1

[T ⇤ + S⇤ +Z ]2
!

�
X

!2⌦1

[T ⇤ +Z ]2
!
+ 2

X

!2⌦1\⌦⇤

[S⇤]![T ⇤ +Z ]!

�
X

!2⌦1

[T ⇤ +Z ]2
!
� 4|⌦⇤|⌧ 2

l

= kT ⇤ +Zk2F �
X

!2⌦c
1

[T ⇤ +Z ]2
!
� 4|⌦⇤|⌧ 2

l

� kT ⇤ +Zk2F � (pd⇤ + 4|⌦⇤|)⌧ 2
l
, (14.37)

where the penultimate inequality holds since for all !, |[T ⇤ + Z ]!|  ⌧l and for all ! 2 ⌦1, we

have |[S⇤]!|  |[T ⇤ +Z ]!| + ⌧0  2⌧l. Now we estimate the lower bound for kT ⇤ +Zk2F. Since

Z has i.i.d. subgaussian entries, we have kZk2F � 1
2d

⇤
�
2
z
with probability at least 1� 2 exp(�cd

⇤)

for some absolute constant c > 0, and 2hT ⇤
,Zi  1

2kT
⇤k2F + 2�2

z
log(d̄) with probability at least

1� 2(d⇤)�1. Put these altogether, we see

kT ⇤ +Zk2F = kT ⇤k2F + kZk2F + 2hT ⇤
,Zi � 1

2
kT ⇤k2F +

1

4
�
2
z
d
⇤
. (14.38)

Combine (14.37) and (14.38), we have

kA0k2F � 1

2
kT ⇤k2F +

1

4
�
2
z
d
⇤ � (pd⇤ + 4|⌦⇤|)⌧ 2

l
. (14.39)

Therefore with the choice ⌧ = 10
p
m

p
log(d̄)µ1

kA0kFp
d⇤

, we see that ⌧ � ⌧l and ⌧u := 10
p
m

p
log(d̄)µ1⌧l �

⌧ . With such a choice of ⌧ , since for ! 2 (⌦⇤)c, we have |[T ⇤]! + [Z ]!|  ⌧l  ⌧ , so we obtain

eA = P(⌦⇤)c(A) + P⌦⇤( eA) = P(⌦⇤)c(T ⇤ +Z) + P⌦⇤(Trunc⌧ (A))

= T ⇤ +Z + P⌦⇤(Trunc⌧ (A)� T ⇤ �Z)

=: T ⇤ +Z + E,
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where E = P⌦⇤(Trunc⌧ (A) � T ⇤ � Z) and the first equality holds since for ! 2 (⌦⇤)c, |[A]!| 

|[T ⇤]|! + |[Z!]|  ⌧u. Under event E1, we have kEkF  2|⌦⇤|1/2⌧u.

Now we use bold-face capital letters as shorthand notation for the unfolding of corresponding

calligraphic-font bold-face letters, for example, T⇤
i
= Mi(T ⇤), i 2 [m]. We denote X = T ⇤ + E .

We also denote U⇤
i
be the top ri left singular vectors of T⇤

i
, Vi be the top ri left singular vectors

of Xi and bU0
i
be the top ri left singular vectors of eAi.

From Wedin’s sin⇥ theorem, we have from condition (a),

dc(U
⇤
i
,Vi) 

C|⌦⇤|1/2⌧u
�

, (14.40)

where dc(U,V) = minR2Or kUR�Vk. Meanwhile, from kXi�T⇤
i
kF = kEkF  |⌦⇤|1/2⌧u, we also

have �ri(Xi) � 3�
4 , �ri+1(Xi)  �

4 and kXik  5�̄
4 .

Since subtracting a multiple of identity matrix does not change the top eigenvectors, in order

to bound the distance dc(Vi,
bU0

i
), we consider keAi

eAT

i
�XiXT

i
��2

v
d
�
i
Idik, where �2

v
is the variance

of the entry of Z and d
�
i
= d

⇤
/di. In fact, we have

eAi
eAT

i
�XiX

T

i
� �

2
v
d
�
i
Idi = XiZ

T

i
+ ZiX

T

i
+ ZiZ

T

i
� �

2
v
d
�
i
Idi .

Now we first consider the operator norm of XiZT

i
under the event E1. From Talagrand’s concen-

tration inequality, we have

P

✓��kXiZ
T

i
k � EkXiZ

T

i
k
��  Cm

q
log(d̄)�zkXik · t

����E1
◆

� 1� 2 exp(�ct
2).

Since P(E1) � 1/2 and from [34, Theorem 1.1], we have E[kXiZT

i
k|E1]  2EkXiZT

i
k  C

p
di�zkXik.

Therefore setting t =
p

log(d̄) and the event

E i

2 = {kXiZ
T

i
k  Cm

p
dikXik�z}, E2 = \m

i=1E i

2,

we know that P(E2|E1) � 1� 2md̄
�1 and thus P(E2) � (1� 2md̄

�1)(1� 2(d⇤)�1).

Now we turn to bounding kZiZT

i
�d

�
i
�
2
z
Idik. From [35, Theorem 4.6.1], we have with probability

exceeding 1� 2 exp(�di),

kZiZ
T

i
� d

�
i
�
2
z
Idik  C(d⇤)1/2�2

z
.

Denote the event E i

3 = {kZiZT

i
� d

�
i
�
2
v
Idik  C(d⇤)1/2�2

z
} and E3 = \m

i=1E i

3 and we have P(E3) �

1� 2
P

m

i=1 exp(�di). Therefore under the event E2, E3, and from condition (b), we have

dc(Vi,
bU0

i
)  Cm

p
d̄�z�̄+ C(d⇤)1/2�2

z

�
2 .
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Together with (14.40), we have

dc(U
⇤
i
, bU0

i
)  Cm

p
d̄�z�̄+ C(d⇤)1/2�2

z

�
2 +

C|⌦⇤|1/2⌧u
�

. (14.41)

Denote the event

E4 =
⇢

m

max
i=1

max
kVjk1,j 6=i

kZi(Vi+1 ⌦ · · ·⌦Vm ⌦V1 ⌦ · · ·⌦Vi�1)k  Cm(
p
d̄r̄ + r̄

m�1
2 )�z

�
.

And from [46, Lemma 5], we have P(E4) � 1� Cm exp(�cd̄). For the following we denote

Xt

1 = T⇤
1(bUt

2 ⌦ · · ·⌦ bUt

m
) = T⇤

1(PU⇤
2
bUt

2 ⌦ · · ·⌦ PU⇤
m
bUt

m
)

Zt

1 = Z1(bUt

2 ⌦ · · ·⌦ bUt

m
)

eAt

1 = eA1(bUt

2 ⌦ · · ·⌦ bUt

m
),

where PU = UUT . We shall denote Lt = maxm
i=1 dc(bUt

i
,U⇤

i
). For the base case, from (14.41) and

condition (b), we see L0  1
2 . Now suppose we have Lt  1

2 .

From the process of HOOI, we have bUt+1
1 = SVDr1(eA1(bUt

2 ⌦ · · ·⌦ bUt

m
)). And thus we obtain

�r1(X
t

1) � �r1(U
⇤
2 ⌦ · · ·⌦U⇤

m
) ·

mY

i=2

�min(U
⇤T
i
bUt

i
)

� �r1(U
⇤
2 ⌦ · · ·⌦U⇤

m
)(1� L

2
t
)(m�1)/2

� cm(1� Lt)
2
�, (14.42)

for some small constant cm > 0 depending only onm, and the last inequality holds since 1�L
2
t
� 3

4 .

We bound kZt

1k under the event E4.

kZt

1k = kZ1(bUt

2 ⌦ · · ·⌦ bUt

m
)k

= kZ1

�
(PU⇤

2
+ P?

U⇤
2
)⌦ · · ·⌦ (PU⇤

m
+ P?

U⇤
m
)
�
(bUt

2 ⌦ · · ·⌦ bUt

m
)k

 Cm[(d̄)
1/2 + r̄

(m�1)/2]�z + Cm[(d̄r̄)
1/2 + r̄

(m�1)/2]�zLt, (14.43)

where the last inequality holds since E4 holds and kbUtT

i
U⇤

i?k  Lt. Now since bUt+1
1 is the top

r1 left singular vectors of eAt

1 and U1 is the top r1 left singular vectors of Xt

1, from Wedin’s sin⇥

Theorem, we have

dc(bUt+1
1 ,U1) 

CkeAt

1 �Xt

1k
�

 C(kE1kF + kZt

1k)
�

(14.43)

 C|⌦⇤|1/2⌧u + Cm[(d̄)1/2 + r̄
(m�1)/2]�z + Cm[(d̄r̄)1/2 + r̄

(m�1)/2]�zLt

�
.
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The derivation for dc(bUt+1
i

,Ui) when i � 2 is similar to this case and hence

Lt+1 
C|⌦⇤|1/2⌧u + Cm[(d̄)1/2 + r̄

(m�1)/2]�z
�

+
Cm[(d̄r̄)1/2 + r̄

(m�1)/2]�z
�

Lt.

From condition (b), we have Cm[(d̄r̄)1/2 + r̄
(m�1)/2]�z/�  1/2, so the above inequality implies

Ltmax  (
1

2
)tmax · L0 +

C|⌦⇤|1/2⌧u + Cm[(d̄)1/2 + r̄
(m�1)/2]�z

�
.

If we choose tmax � (Cm log(d̄0) _ 1), then

Ltmax 
C|⌦⇤|1/2⌧u

�
+

Cm[(d̄)1/2 + r̄
(m�1)/2]�z

�
. (14.44)

Set the event E5 = {kZ ⇥m

i=1 PbUi
kF  C(r⇤ +

P
m

i=1 diri)�
2
z
}. Then from [46, Lemma 5],

P(E5) � 1� exp(�Cd̄r̄). And we also consider kT ⇤ ⇥i
bUT

i?kF, we consider i = 1 for simplicity.

kT ⇤ ⇥1
bUT

1?kF = kbUT

1?T
⇤
1kF  kPbU1?

T⇤
1(bUtmax�1

2 ⌦ · · ·⌦ bUtmax�1
m

)kF ·
mY

i=2

�
�1
min(U

⇤T
i
bUtmax�1

i
)

 Cm(kEkF +
p
r1kZtmax�1

1 k)

 Cm|⌦⇤|1/2⌧u + Cm(
p

d1r1 +
p
r⇤)�z, (14.45)

where the second inequality holds from [46, Lemma 6] and the last inequality holds from (14.43).

Now we are in the right position to bound k bT � T ⇤kF under E5.

k bT � T ⇤kF = k eA⇥m

i=1 PbUi
� T ⇤kF

 k( eA� T ⇤)⇥m

i=1 PbUi
kF + kT ⇤ � T ⇤ ⇥m

i=1 PbUi
kF

 kEkF + kZ ⇥m

i=1 PbUi
kF +

mX

i=1

kT ⇤ ⇥i
bUT

i?kF

 Cm|⌦⇤|1/2⌧u + Cm(
p
r⇤ +

p
d̄r̄)�z, (14.46)

where the last inequality follows from (14.45). Finally applying Lemma 15.6 and we get bT 0 is

(2µ10)2-incoherent and k bT 0�T ⇤kF  2k bT �T ⇤kF. Therefore from condition (a), (b) in Lemma

5.2, the initialization condition (a) in Theorem 5.1 holds.

14.5 Proof of Lemma 5.3

For each j 2 [m] and i 2 [dj], we have

ke>
i
Mj(S↵)k`0 =

X
!:!j=i

�
|[Z ]!| > ↵�z

�
=
X

!:!j=i

[Y ]!
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where Y 2 {0, 1}d1⇥···⇥dm having i.i.d. Bernoulli entries and q := P([Y ]! = 1) = P(|[Z ]!| > ↵�z) 

↵
�✓.

Denote Xij =
P

!:!j=i
[Y ]!. By Cherno↵ bound, if d�

j
q � 3 log(md̄

3), we get

P

⇣
Xij � d

�
j
q � d

�
j
q

⌘
 exp

�
� d

�1
j
q/3
 
 (md̄

3)�1

implying that

P

⇣\
i,j

�
Xij  2d�

j
q
 ⌘

� 1�md̄(md̄
3)�1 = 1� d̄

�2
. (14.47)

On the other hand, if d�
j
q  3 log(md̄

3), by Cherno↵ bound, we get

P

⇣
Xij � 10 log(md̄

3)
⌘
 (md̄

3)�1

implying that

P

⇣\
i,j

�
Xij  10 log(md̄

3)
 ⌘

� 1�md̄(md̄
3)�1 = 1� d̄

�2
. (14.48)

Putting (14.47) and (14.48), since q  ↵
�✓, we get

P

⇣\
i,j

n
Xij  max

�
10 log(md̄

3), 2d�
j
↵
�✓ 
o⌘

� 1� d̄
�2
,

which completes the proof.

14.6 Proof of Theorem 5.4

Conditioned on E1 defined in Lemma 5.3, Theorem 5.4 is a special case of Theorem 5.1. In-

deed, in Theorem 5.1, we replace �z with ↵�z, and |⌦⇤| log d̄ with ↵0
d
⇤ ⇣ d̄ log(md̄), then we get

Theorem 5.4.

14.7 Proof of Lemma 5.5

From the choice of ↵ in Theorem 5.4, we see that the sparsity of S↵ is bounded by ↵0 ⇣ d̄

d⇤ log(md̄
3).

Therefore the condition (a) in Lemma 5.2 is satisfied. Now applying Lemma 5.2 and we get the

desired result.
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14.8 Proof of Lemma 5.6

From Lemma 15.6, we have Trim⌘,r(W) is 2µ10-incoherent. Now for all j 2 [m],

kMj(H
HO
r (fW))k  kMj(fW)k  kMj(T ⇤)k+ kW � T ⇤kF  9

8
�̄.

So we conclude

kTrim⌘,r(W)k`1  9

8
�̄

mY

i=1

(2µ10)
r

rj

dj
 (9⇣/16) · (µ10)

m
.

where the last inequality follows from the upper bound for �̄. This finishes the proof of the lemma.

14.9 Proof of Theorem 5.7

From the choice of ⇣ 0 and Lemma 5.6, we know Assumption 2 and 3 hold with parameters bl,⇣0 and

bu,⇣0 with respect to the set B⇤
2 = B

⇤
1 = {T + S : kT + Sk`1  ⇣

0
,T 2 Mr,S 2 S�↵}. Now the

proof follows the proof of Theorem 4.1 with slight modification. Since we can now guarantee in

each iteration bT l + bS l 2 B
⇤
2 = B

⇤
1 from Lemma 5.6 and the choice of kpr, we can use Assumption

3 instead of Assumption 2 when estimating the low rank part. So we only need to estimate Err1

and Err2r. From (5.8), we have Err1  L⇣ . Now we estimate Err2r. In fact, from the definition of

Err2r, we have

Err2r = sup
M2M2r,kMkF1

hrL(T ⇤ + S⇤),Mi.

Since for all ! 2 [d1]⇥ . . .⇥ [dm], we have [rL(T ⇤ + S⇤)]! is bounded random variable with the

upper bound given by L⇣ . So apply Lemma 15.3, we have Err2r  CL⇣ · (d̄r̄ + r
⇤)1/2 with with

probability at least 1 � d̄
�2. Now we plug in the bounds for Err1 and Err2r to Theorem 4.1 and

we get the first part of the theorem. For the `1 bound, we apply Theorem 4.3 and Lemma 15.7.

And we finish the proof of the theorem.

14.10 Proof of Lemma 5.8

We first introduce some notations. Let m0 = bm

2 c, and denote T⇤ = (T ⇤)hm0i, S⇤ = (S⇤)hm0i

and A = Ahm0i, then T⇤
,S⇤

,A are matrices of size d1 . . . dm0 ⇥ dm0+1 . . . dm =: d⇤1 ⇥ d
⇤
2. Since T ⇤

admits the decomposition T ⇤ = C⇤·JU⇤
1, · · · ,U⇤

m
K, we have T ⇤ = (Um0⌦· · ·⌦U1)Chm0i(Um⌦· · ·⌦

Um0+1)T and hence the rank of T⇤ is r = min{r1 · · · rm0 , rm0+1 · · · rm}. We denote M = T⇤ + S⇤.
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Algorithm 7 Initialization for binary tensor

Let A = Ahm0i := reshape(A, [d1 . . . dm0 , dm0+1 . . . dm]) with m0 = bm

2 c and let cM be the

minimizer to (14.49).

bT = reshape(cM, [d1, . . . , dm]).

bT 0 = Trim⌘,r( bT ) with ⌘ = 16µ1k bT kF/(7
p
d⇤).

Output: bT 0.

Under Assumption 5, we have kT⇤k`1 , kS⇤k`1  ⇣

2 and thus kMk`1  ⇣. Now we bound the

nuclear norm of M. Using triangle inequality and we have

kMk⇤  kT⇤k⇤ + kS⇤k⇤

 ⇣

2
(rd⇤)1/2 +

⇣

2
|⌦⇤|1/2 min(d⇤1, d

⇤
2)

1/2

=
�⇣
2
+
⇣

2
· min(d⇤1, d

⇤
2)

1/2

(rd⇤)1/2
|⌦⇤|1/2

�
(rd⇤)1/2

 ⇣(rd⇤)1/2,

where the last inequality holds since condition (a) holds. Now with a little bit abuse of notation,

we consider the following convex program,

minL(X) = �hA, log(p(X))i � h1�A, log(1� p(X))i, s.t. kXk⇤  ⇣

p
d⇤r and kXk`1  ⇣,

(14.49)

where the notation 1�A is the entrywise subtraction, and p(X) is applying p entrywisely to X.

Denote cM be the minimizer to (14.49) and apply the Theorem 1 in [10] with the sample size d
⇤

and we get with probability at least 1� C

d⇤1+d⇤2
,

kcM�Mk2F  C⇣ [r(d
⇤
1 + d

⇤
2)d

⇤]1/2

with C⇣ = C · ⇣L⇣�⇣ and �⇣ = sup|x|⇣
p(x)(1�p(x))

(p0(x))2 .

Now we reshape cM back to a tensor, and denote bT = reshape(cM, [d1, . . . , dm]). Since reshape

keeps the Frobenius norm unchanged, we have

k bT � T ⇤kF = kbT�T⇤kF  kcM�MkF + kS⇤kF  C
1/2
⇣

[r(d⇤1 + d
⇤
2)d

⇤]1/4 + |⌦⇤|1/2 ⇣
2
.
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Finally we output T 0 = Trim⌘,r( bT ) with ⌘ = 16µ1k bT kF/(7
p
d⇤), and from Lemma 5.6 and

Lemma 15.6, since condition (b) and (c) hold, we get

(1) µ( bT 0)  20µ1; (2) k bT 0 � T ⇤kF  2k bT � T ⇤kF; (3) k bT k`1  Cm(µ10)
m

p
r⇤p
d⇤
�̄.

And together with the upper bound for � in Assumption 5, the initialization condition in Theorem

5.7 is satisfied.

14.11 Proof of Theorem 8.1

The proof of this theorem is similar to that of Theorem 5.7. From the choice of ⇣ 0 and Lemma

5.6, we know Assumption 2 and 3 hold with parameters bl,⇣0 = e
�⇣0 and bu,⇣0 = e

⇣
0
with respect

to the set B
⇤
2 = B

⇤
1 = {T + S : kT + Sk`1  ⇣

0
,T 2 Mr,S 2 S�↵}. Now the proof follows

the proof of Theorem 4.1 with slight modification. Since we can now guarantee in each iteration

bT l + bS l 2 B
⇤
2 = B

⇤
1 from Lemma 5.6 and the choice of kpr, we can use Assumption 3 instead of

Assumption 2 when estimating the low rank part. So we only need to estimate Err1 and Err2r.

From (5.8), we have Err1  krL(T ⇤ + S⇤)k`1 . Simple calculation shows

rL(T ⇤ + S⇤) = �1

I
Y + exp(T ⇤ + S⇤),

and notice using a union bound and Poisson’s tail bound, when I � Ce
⇣ log(d⇤), we have with

probability exceeding 1� 1
d⇤ , kYk`1  10Ie⇣ . Therefore we have Err1  11e⇣ .

The estimation for Err2r is given in Theorem 4.3 [14], which states

Err2r  C

s
r⇤ +md̄r̄

I/e⇣

with probability exceeding 1� 1
d⇤ .

Now we plug in the bounds for Err1 and Err2r to Theorem 4.1 and we get the first part of the

theorem. For the `1 bound, we apply Theorem 4.3 and Lemma 15.7. And we finish the proof of

the theorem.

14.12 Proof of Lemma 8.2

With slight modification of the proof of Theorem 4.3 in [14], we have

k eT 0 � T ⇤kF  C

r
e⇣

I
(

mX

i=1

p
diri +

q
d
�
i
ri) + kS⇤kF
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under the condition I � Ce
⇣
d̄ with probability exceeding 1 � 1/d⇤. Therefore since we as-

sume I � C1

P
m

i=1(diri + d
�
i
ri)r̄�

�2 and |⌦⇤|  C⇣
�2
�
2
r̄
�1, we have k eT 0 � T ⇤kF  c1,m� ·

min
�
�
2
r̄
�1/2

, (2m0 r̄
1/2)�1

 
 �/8. Now we apply Lemma 5.6 and Lemma 15.6 we see

(1) µ( bT 0)  20µ1; (2) k bT 0 � T ⇤kF  2k bT � T ⇤kF; (3) k bT k`1  Cm(µ10)
m

p
r⇤p
d⇤
�̄.

From Assumption 6, we see the initialization requirements in 8.1 is satisfied.

14.13 Proof of Theorem 10.1

We use induction to prove this theorem.

Step 0: Base case. From the initialization, we have k bT 0 � T ⇤kF  c1,m�r̄
�1/2 · �.

Step 1: Estimating k bT l+1 � T ⇤kF. We prove this case assuming

k bT l � T ⇤kF  c1,m�r̄
�1/2 · �. (14.50)

We point out that this also implies k bT l � T ⇤kF  c1,mblb
�1
u
r̄
�1/2 · � since � . b

2
l
b
�2
u
. In order to

use Lemma 15.2, we need to derive an upper bound for k bT l � T ⇤ � �PTl
GlkF.

Step 1.1: Estimating k bT l � T ⇤ � �PTl
GlkF. For arbitrary 1 � � > 0, we have,

k bT l � T ⇤ � �PTl
Glk2F  (1 + �/2)k bT l � T ⇤ � �PTl

(Gl � G⇤)k2F + (1 + 2/�)�2kPTl
G⇤k2F (14.51)

Now we consider the bound for k bT l � T ⇤ � �PTl
(Gl � G⇤)k2F.

k bT l � T ⇤ � �PTl
(Gl � G⇤)k2F = k bT l � T ⇤k2F � 2�h bT l � T ⇤

,PTl
(Gl � G⇤)i+ �

2kPTl
(Gl � G⇤)k2F

 (1 + �
2
b
2
u
)k bT l � T ⇤k2F � 2�h bT l � T ⇤

,PTl
(Gl � G⇤)i (14.52)

where the last inequality holds from the Assumption 2 since bT l 2 B
⇤
2 from (14.50). Also,

h bT l � T ⇤
,PTl

(Gl � G⇤)i = h bT l � T ⇤
,Gl � G⇤i � hP?

Tl
( bT l � T ⇤),Gl � G⇤i

� blk bT l � T ⇤k2F � C1,mbu

�
k bT l � T ⇤k3F (14.53)
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where the last inequality is from Assumption 2, Lemma 15.1 and Cauchy-Schwartz inequality and

C1,m = 2m � 1. Together with (14.52) and (14.53), and since we have k bT l � T ⇤kF  0.1bl
2buC1,m

· �,

we get,

k bT l � T ⇤ � �PTl
(Gl � G⇤)k2F  (1� 2�bl + �

2
b
2
u
)k bT l � T ⇤k2F +

2�C1,mbu

�
k bT l � T ⇤k3F

 (1� 1.9�bl + �
2
b
2
u
)k bT l � T ⇤k2F. (14.54)

Since we have 0.75blb�1
u

� �
1/2, if we choose � 2 [0.4blb�2

u
, 1.5blb�2

u
], we have 1�1.9�bl+�2

b
2
u
 1��.

So from (14.51) and (14.54), we get

k bT l � T ⇤ � �PTl
Glk2F  (1 +

�

2
)(1� �)k bT l � T ⇤k2F + (1 +

2

�
)Err22r (14.55)

where in the inequality we use the definition of Err2r and that �  1. Now from the upper bound

for k bT l � T ⇤kF and the signal-to-noise ratio, we verified that k bT l � T ⇤ � �PTl
GlkF  �/8 and

thus �max( bT l � T ⇤ � �PTl
Gl)  �/8.

Step 1.2: Estimating k bT l+1�T ⇤kF. Now that we verified the condition of Lemma 15.2, from

the Algorithm 6, we have,

k bT l+1 � T ⇤k2F  k bT l � T ⇤ � �PTl
Glk2F + Cm

p
r̄

�
k bT l � T ⇤ � �PTl

Glk3F (14.56)

where Cm > 0 is the constant depending only on m as in Lemma 15.2. From (14.55) and the

assumption that k bT l � T ⇤kF .m
�p
r̄
· � and Err2r .m

�
2

p
r̄
· �, we get

Cm

p
r̄

�
k bT l � T ⇤ � �PTl

GlkF  �

4
(14.57)

From (14.56), (14.55) and (14.57), we get

k bT l+1 � T ⇤k2F  (1 +
�

4
)k bT l � T ⇤ � �PTl

Glk2F  (1� �
2)k bT l � T ⇤k2F +

4

�
Err22r (14.58)

Together with the assumption k bT l � T ⇤kF .m
�p
r̄
· � and Err2r .m

�
2

p
r̄
· �, we get

k bT l+1 � T ⇤kF  c1,m
�p
r̄
· �, (14.59)

which completes the induction and completes the proof.
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15 Technical Lemmas

Lemma 15.1. Suppose Tl is the tangent space at the point bT l, then we have

kP?
Tl
T ⇤kF  2m � 1

�
kT ⇤ � bT lk2F.

Proof. See ([5], Lemma 5.2).

Lemma 15.2. Let T ⇤ = S⇤ · (V⇤
1, . . . ,V

⇤
m
) be the tensor with Tucker rank r = (r1, . . . , rm). Let

D 2 R
d1⇥...⇥dm be a perturbation tensor such that � � 8�max(D), where �max(D) = maxm

i=1 kMi(D)k.

Then we have

kH HO
r (T ⇤ +D)� T ⇤kF  kDkF + Cm

p
r̄kDk2F
�

where Cm > 0 is an absolute constant depending only on m.

Proof. Without loss of generality, we only prove the Lemma in the case m = 3. First notice that

H
HO
r (T ⇤ +D) = (T ⇤ +D) · JPU1 ,PU2 ,PU3K,

where Ui are leading ri left singular vectors of Mi(T ⇤ +D) and PUi = UiU>
i
.

First from ([39], Theorem 1), we have for all i 2 [m]

PUi � PV⇤
i
= Si,1 +

X

j�2

Si,j,

where Si,j = SMi(T ⇤),j(Mi(D)) and specially Si,1 = (Mi(T ⇤)>)†(Mi(D))>P?
V⇤

i
+P?

V⇤
i
Mi(D)(Mi(T ⇤))†.

The explicit form of Si,j can be found in [39, Theorem 1]. Here, we denote A† the pseudo-inverse

of A, i.e., A† = R⌃�1L> if A has a thin-SVD as A = L⌃R>. With a little abuse of notations,

we write (A†)k = R⌃�kL> for any positive integer k � 1.

For the sake of brevity, we denote Si =
P

j�1 Si,j. By the definition of Si,j, we have the bound

kSi,jk 
⇣

4�max(D)
�

⌘j
. We get the upper bound for kSik as follows,

kSik = k
X

j�1

Si,jk  4�max(D)

�� 4�max(D)
 8�max(D)

�
(15.1)
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So we have,

T ⇤·JPU1 ,PU2 ,PU3K = T ⇤ · JPV⇤
1
+ S1,PV⇤

2
+ S2,PV⇤

3
+ S3K

=T ⇤ · JPV⇤
1
,PV⇤

2
,PV⇤

3
K (15.2)

+ T ⇤ · JS1,PV⇤
2
,PV⇤

3
K + T ⇤ · JPV⇤

1
,S2,PV⇤

3
K + T ⇤ · JPV⇤

1
,PV⇤

2
,S3K

+ T ⇤ · JS1,S2,PV⇤
3
K + T ⇤ · JPV⇤

1
,S2,S3K + T ⇤ · JS1,PV⇤

2
,S3K

+ T ⇤ · JS1,S2,S3K (15.3)

We now bound each of kT ⇤ · JS1,S2,PV⇤
3
KkF, kT ⇤ · JPV⇤

1
,S2,S3KkF and kT ⇤ · JS1,PV⇤

2
,S3KkF.

Without loss of generality, we only prove the bound of the first term.

M1

�
T ⇤ · JS1,S2,PV⇤

3
K
�
= S1M1(T ⇤)

�
P⇤

V3
⌦ S2

�>
(15.4)

Write

S1M1(T ⇤) =

 
S1,1 +

X

j�2

S1,j

!
M1(T ⇤)

= P?
V⇤

1
M1(D) (M1(T ⇤))† M1(T ⇤) +

X

j�2

S1,jM1(T ⇤)

= M1

�
D · JP?

V⇤
1
,PV⇤

2
,PV⇤

3
K
�
+
X

j�2

S1,jM1(T ⇤) (15.5)

where we used the fact P?
V⇤

1
M1(T ⇤) = 0.

Thus we obtain an upper bound for kS1M1(T ⇤)k as follows

kS1M1(T ⇤)k  �max(D) + �

X

j�2

✓
4�max(D)

�

◆j

 4�max(D), (15.6)

where the first inequality is due to the explicit form of S1,j. See [39, Theorem 1].

So from (15.4) and (15.6), we get

kT ⇤ · JS1,S2,PV⇤
3
KkF  kS1M1(T ⇤)kF · kP⇤

V3
⌦ S2k  C1

p
r̄
�max(D)2

�
(15.7)

where C1 > 0 is an absolute constant.

Now we consider the linear terms T ⇤·JS1,PV⇤
2
,PV⇤

3
K, T ⇤·JPV⇤

1
,S2,PV⇤

3
K and T ⇤·JPV⇤

1
,PV⇤

2
,S3K.

Clearly, we have

M1

�
T ⇤ · JS1,PV⇤

2
,PV⇤

3
K
�
= S1M1(T ⇤)

M2

�
T ⇤ · JPV⇤

1
,S2,PV⇤

3
K
�
= S2M2(T ⇤)

M3

�
T ⇤ · JPV⇤

1
,PV⇤

2
,S3K

�
= S3M3(T ⇤), (15.8)

72



whose explicit representations are already studied in eq. (15.5). As a result, we can write

T ⇤ · JS1,PV⇤
2
,PV⇤

3
K + T ⇤ · JPV⇤

1
,S2,PV⇤

3
K + T ⇤ · JPV⇤

1
,PV⇤

2
,S3K

=D · JP?
V⇤

1
,PV⇤

2
,PV⇤

3
K +D · JPV⇤

1
,P?

V⇤
2
,PV⇤

3
K +D · JPV⇤

1
,PV⇤

2
,P?

V⇤
3
K

+
X

j�2

⇣
M1(T ⇤) · JS1,j,PV⇤

2
,PV⇤

3
K +M2(T ⇤) · JPV⇤

1
,S2,j,PV⇤

3
K +M3(T ⇤) · JPV⇤

1
,PV⇤

2
,S3,jK

⌘
.

(15.9)

Now we bound D · JPU1 ,PU2 ,PU3K as follows

D · JPU1 ,PU2 ,PU3K = D · JPV⇤
1
+ S1,PV⇤

2
+ S2,PV⇤

3
+ S3K

=D · JPV⇤
1
,PV⇤

2
,PV⇤

3
K

+D · JS1,PV⇤
2
,PV⇤

3
K +D · JPV⇤

1
,S2,PV⇤

3
K +D · JPV⇤

1
,PV⇤

2
,S3K

+D · JS1,S2,PV⇤
3
K +D · JPV⇤

1
,S2,S3K +D · JS1,PV⇤

2
,S3K

+D · JS1,S2,S3K (15.10)

Similarly as proving the bound (15.7), we can show

max
�
kD · JS1,PV⇤

2
,PV⇤

3
KkF, kD · JS1,S2,PV⇤

3
KkF, kD · JS1,S2,S3KkF

 
 C1

p
r̄
�max(D)2

�

(15.11)

where C1 > 0 is an absolute constant.

Finally, by (15.5), (15.7), (15.9) and (15.11), we have

��(T ⇤ +D) · JPU1 ,PU2 ,PU3K � T ⇤��
F


��D · JP?

V⇤
1
,PV⇤

2
,PV⇤

3
K +D · JPV⇤

1
,P?

V⇤
2
,PV⇤

3
K +D · JPV⇤

1
,PV⇤

2
,P?

V⇤
3
K +D · JPV⇤

1
,PV⇤

2
,PV⇤

3
K
��
F

+ C1

p
r̄�max(D)2

�

 kDkF + C2

p
r̄�max(D)2

�
(15.12)

where C1, C2 > 0 are absolute constants (C2,m = 16m + 2m+1 in the case of general m). This

finishes the proof of the lemma.

Lemma 15.3. Assume all the entries of Z 2 R
d1⇥...⇥dm are independent mean-zero random vari-

ables with bounded Orlicz- 2 norm:

k[Z ]!k 2 = sup
q�1

(E|[Z ]!|q)1/q/q1/2  �z
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Then there exists some constants Cm, cm > 0 depending only on m such that

sup
M2M2r,kMkF1

hZ ,Mi  Cm�z

 
r
⇤ +

mX

i=1

diri

!1/2

with probability at least 1� exp(�cm

P
m

i=1 diri), where r
⇤ = r1 . . . rm.

Proof. See the proof of ([14], Lemma D.5).

Lemma 15.4 (Maximum of sub-Gaussian). Let Z1, . . . , ZN be N random variables such that

E exp{tZi}  exp{t2�2
z
/2} for all i 2 [N ]. Then

P( max
1iN

|Zi| > t)  2N exp(� t
2

2�2
z

).

Proof. The claim follows from the following two facts:

P( max
1iN

Zi > t)  P([1iN{Zi > t})  NP(Zi > t)  N exp(� t
2

2�2
z

),

and

max
1iN

|Zi| = max
1i2N

Zi

with ZN+i = �Zi for i 2 [N ].

Lemma 15.5 (Spikiness implies incoherence). Let T ⇤ 2 Mr satisfies Assumption 1 with parameter

µ1. Then we have:

µ(T ⇤)  µ10.

where µ(T ⇤) is the incoherence parameter of T ⇤ and 0 is the condition number of T ⇤.

Proof. Denote T ⇤ = C⇤ · JU1, . . . ,UmK. Now we check the incoherence condition of T ⇤. For all

i 2 [dj] and j 2 [m],

ke>
i
Mj(T ⇤)k`2 = keiUjMj(C⇤)k`2 � ke>

i
Ujk`2 · � � ke>

i
Ujk`2

kT ⇤kFp
rj0

.

On the other hand, we have

ke>
i
Mj(T ⇤)k`2 

q
d
�
j
kT ⇤k`1  µ1kT ⇤kF

1p
dj

,

where the last inequality is due to the spikiness condition T ⇤ satisfies. Together with these two

inequalities, we have

ke>
i
Ujk`2 

r
rj

dj
µ10.

And this finishes the proof of the lemma.
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Lemma 15.6. Let T ⇤ 2 Mr satisfies Assumption 1 with parameter µ1. Suppose that W satisfies

kW � T ⇤kF  �

8 , then we have Trim⇣,r(W) is (2µ10)2-incoherent if we choose ⇣ = 16
7 µ1

kWkFp
d⇤

.

Also, it satisfies

kTrim⇣,r(W)� T ⇤kF  kW � T ⇤kF +
Cm

p
r̄kW � T ⇤k2F

�
,

where Cm > 0 depends only on m.

Proof. Notice Trim⇣,r(W) = H
HO
r (fW), where fW is the entrywise truncation of W with the

thresholding ⇣/2. To check the incoherence of H
HO
r (fW), denote eUj the top-rj left singular

vectors of Mj(fW), and e⇤j the rj ⇥ rj diagonal matrix containing the top-rj singular values of

Mj(fW). Then, there exist a eVj 2 R
d
�
j ⇥rj satisfying eV>

j
eVj = Irj such that

eUj
e⇤j = Mj(fW)eVj.

Now we can also bound the `1-norm of T ⇤:

kT ⇤k`1  µ1
kT ⇤kFp

d⇤
 µ1

kWkF + kT ⇤ �WkFp
d⇤

 µ1
kWkF + kT ⇤kF/8p

d⇤
.

This together with the definition of ⇣, we have:

µ1
kT ⇤kFp

d⇤
 8/7 · µ1

kWkFp
d⇤

= ⇣/2.

And thus kT ⇤k`1  ⇣/2. Then for all i 2 [dj],

ke>
i
eUjk`2 = ke>

i
Mj(fW)eVj

e⇤�1
j
k`2 

ke>
i
Mj(fW)k`2
�rj(e⇤j)


⇣/2 · (d�

j
)1/2

7/8 · �rj(Mj(T ⇤))
.

where the last inequality is due to kfW � T ⇤kF  kW � T ⇤kF  �/8 since kT ⇤k`1  ⇣/2 and

kfWk`1  ⇣/2. Meanwhile,

kT ⇤kF  p
rj0�rj(Mj(T ⇤)).

There for the ⇣ = 16
7 µ1

kWkFp
d⇤

, we have for all j 2 [m]

max
i2[dj ]

kei eUjk`2 
64

49
µ10

kT ⇤kF + �/8

kT ⇤kF

r
rj

dj
 2µ10

r
rj

dj
.

where the second last inequality is from kWkF  kT ⇤kF + kW � T ⇤kF and the last inequality is

from kT ⇤kF � �.
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The second claim follows from the fact that kfW � T ⇤kF  kW � T ⇤kF  �/8, and from

Lemma 15.2,

kTrim⇣,r(W)� T ⇤kF = kfW � T ⇤kF  kfW � T ⇤kF + Cm

p
r̄kfW � T ⇤k2F

�

 kW � T ⇤kF + Cm

p
r̄kW � T ⇤k2F

�

This finishes the proof of the lemma.

We introduce some notations for the following lemmas. Denote by bT l = Cl · (U1, . . . ,Um),

T ⇤ = C⇤ · (U⇤
1, . . . ,U

⇤
m
).

Ri = arg min
R2Ori

kUi �U⇤
i
RkF, i 2 [m] (15.13)

If we let U⇤T
i
Ui = LiSiW>

i
be the SVD of U⇤T

i
Ui, then the closed form of Ri is given by

Ri = LiW>
i
. And we rewrite

T ⇤ = S⇤ · (V⇤
1, · · · ,V⇤

m
)

where S⇤ = C⇤ · (R>
1 , · · · ,R>

m
) and V⇤

i
= U⇤

i
Ri, i 2 [m]. So V⇤

i
is also µ0-incoherent.

Lemma 15.7 (Entry-wise estimation of |[ bT l�T ⇤]!|). Suppose T ⇤ satisfies Assumption 1. Under

the assumptions that bT l is (2µ10)2-incoherent and k bT l � T ⇤kF  �

16mr̄1/20
, then we have

|[ bT l � T ⇤]!|2  Cmr̄
m
d
�(m�1)(µ10)

4mk bT l � T ⇤k2F,

where Cm = 24m+1(m+ 1).

Proof. First we have

bT l � T ⇤ = (Cl � S⇤) · (U1, · · · ,Um) +
mX

i=1

S⇤ · (V⇤
1, . . . ,V

⇤
i�1,Ui �V⇤

i
,Ui+1, . . . ,Um) (15.14)

From Lemma 15.5, we get T ⇤ is µ
2
1

2
0-incoherent. So we have for all ! = (!1, . . . ,!m) 2 [d1] ⇥

. . .⇥ [dm]

|[ bT l � T ⇤]!|  kCl � S⇤kF
mY

i=1

k(Ui)!i:k+
mX

i=1

kS⇤kFk(Ui �V⇤
i
)!i:k

i�1Y

k=1

k(V⇤
k
)!k:k

mY

k=i+1

k(Uk)!k:k


r

r⇤

d⇤
(2µ10)

2mkCl � S⇤kF + (2µ10)
2m�2

s
r̄m�1

d
m�1kS

⇤kF
mX

i=1

k(Ui �V⇤
i
)!i:k
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where r
⇤ =

Q
m

i=1 ri, d
⇤ =

Q
m

i=1 di and r̄ = maxm
i=1 ri, d = minm

i=1 di. From AG–GM inequality, we

have

|[ bT l � T ⇤]!|2  (m+ 1)(2µ10)
4m r

⇤

d⇤
kCl � S⇤k2F + (m+ 1)(2µ10)

4m�4 r̄
m�1

d
m�1kS

⇤k2F
mX

i=1

k(Ui �V⇤
i
)!i:k2

(15.15)

 (m+ 1)r̄md�(m�1)(2µ10)
4m

 
kCl � S⇤k2F + �

2
mX

i=1

kUi �V⇤
i
k2F

!

 2(m+ 1)r̄md�(m�1)(2µ10)
4mk bT l � T ⇤k2F

where the last inequality is from Lemma 15.9, and this finishes the proof of the lemma.

Lemma 15.8 (Estimation of kP⌦( bT l �T ⇤)k2F). Let ⌦ be the ↵-fraction set. Suppose T ⇤ satisfies

Assumption 1. Under the assumptions that bT l is (2µ10)2-incoherent and k bT l�T ⇤kF  �

16mr̄1/20
,

we have

kP⌦( bT l � T ⇤)k2F  Cm(µ10)
4m

r̄
m
↵k bT l � T ⇤k2F,

where Cm = 24m+1(m+ 1).

Proof. First from (15.15) in Lemma 15.7, we have

|[ bT l�T ⇤]!|2  (m+1)(2µ10)
4m r

⇤

d⇤
kCl�S⇤k2F+(m+1)(2µ10)

4m�4 r̄
m�1

d
m�1kS

⇤k2F
mX

i=1

k(Ui�V⇤
i
)!i:k2.

Since ⌦ is an ↵-fraction set, we have

kP⌦( bT l � T ⇤)k2F =
X

!2⌦

[ bT l � T ⇤]2
!

 (m+ 1)(2µ10)
4m
↵r

⇤kCl � S⇤k2F + (m+ 1)(2µ10)
4m�4

↵r̄
m�1kS⇤k2F

mX

i=1

kUi �V⇤
i
k2F

 (m+ 1)(2µ10)
4m
↵r

⇤kCl � S⇤k2F + (m+ 1)(2µ10)
4m�4

↵r̄
m
�
2

mX

i=1

kUi �V⇤
i
k2F

 (m+ 1)(2µ10)
4m

r̄
m
↵

 
kCl � S⇤k2F + �

2
mX

i=1

kUi �V⇤
i
k2F

!
(15.16)

Now we invoke Lemma 15.9, and we get

kP⌦( bT l � T ⇤)k2F  2(m+ 1)(2µ10)
4m

r̄
m
↵k bT l � T ⇤k2F,

which finishes the proof of the lemma.
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Lemma 15.9 (Estimation of k bT l � T ⇤k2F). Let bT l = Cl · (U1, · · · ,Um) be the l-th step value in

Algorithm 2 and let T ⇤ = S⇤ · (V⇤
1, · · · ,V⇤

m
). Suppose bT l satisfies k bT l �T ⇤kF  �

16mr̄1/20
. Then

we have the following estimation for k bT l � T ⇤k2F:

k bT l � T ⇤k2F � 0.5kCl � S⇤k2F + 0.5�2
mX

i=1

kUi �V⇤
i
k2F.

Proof. First we have

bT l � T ⇤ = (Cl � S⇤) · (U1, · · · ,Um) +
mX

i=1

S⇤ · (V⇤
1, . . . ,V

⇤
i�1,Ui �V⇤

i
,Ui+1, . . . ,Um) (15.17)

Notice that we have

kS⇤ · (V⇤
1, . . . ,V

⇤
i�1,Ui �V⇤

i
,Ui+1, . . . ,Um)k2F = k(Ui �V⇤

i
)Mi(S⇤)k2F (15.18)

Denote X i = S⇤ · (V⇤
1, . . . ,V

⇤
i�1,Ui �V⇤

i
,Ui+1, . . . ,Um), then we have

k bT l � T ⇤k2F = kCl � S⇤k2F +
mX

i=1

k(Ui �V⇤
i
)Mi(S⇤)k2F + 2

X

i<j

hX i,X ji+ 2
mX

i=1

h(Cl � S⇤) · (U1, · · · ,Um),X ii

� kCl � S⇤k2F +
mX

i=1

�
2kUi �V⇤

i
k2F + 2

X

i<j

hX i,X ji+ 2
mX

i=1

h(Cl � S⇤) · (U1, · · · ,Um),X ii

(15.19)

Notice that Mi(X i) = (Ui �V⇤
i
)Mi(S⇤)

�
Um ⌦Ui+1 ⌦Vi�1 ⌦V1

�>
. So we have the estimation

of |h(Cl � S⇤) · (U1, · · · ,Um),X ii| is as follows:

|h(Cl � S⇤) · (U1, · · · ,Um),X ii| = |hMi

�
(Cl � S⇤) · (U1, · · · ,Um)

�
,Mi(X i)i|

 k(Ui �V⇤
i
)>UikkCl � S⇤kFkS⇤kF


p
r̄�̄kU>

i
(Ui �V⇤

i
)kFkCl � S⇤kF (15.20)

Now we estimate kU>
i
(Ui �V⇤

i
)kF by plugging in the closed form of V⇤

i
as in (15.13)

kU>
i
(Ui �V⇤

i
)kF = kI� SikF  kI� S2

i
kF = kU⇤T

i?Uik2F  kUi �U⇤
i
Rik2F (15.21)

From Wedin’ sin⇥ Theorem, we have for i 2 [m]

kUi �V⇤
i
kF  kUi �U⇤

i
kF 

p
2k bT l � T ⇤kF

�� k bT l � T ⇤k
 2

p
2k bT l � T ⇤kF

�
 1

4mr̄1/20
(15.22)
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where the second last inequality is from k bT l � T ⇤k  �/2 and the last inequality is from k bT l �

T ⇤kF  �

16mr̄1/20
. Then from (15.20) and (15.22), we have

|h(Cl � S⇤) · (U1, · · · ,Um),X ii| 
1

8m2
kCl � S⇤k2F +

1

8
�
2kUi �V⇤

i
k2F (15.23)

The estimation of |hX i,X ji|(i < j) is as follows. From (15.22), we have

|hX i,X ji| = |hMi(S⇤)Mi,j, (Ui �V⇤
i
)>V⇤

i
Mi(S⇤)i|

 �̄kS⇤kFkMi,jkk(Ui �V⇤
i
)>V⇤

i
kF

 �̄kS⇤kFk(Ui �V⇤
i
)>V⇤

i
kFk(Uj �V⇤

j
)>V⇤

j
kF

(a)


p
r̄�̄

2kUi �V⇤
i
k2FkUj �V⇤

j
k2F

(b)

 1

16m2
�
2kUi �V⇤

i
kFkUj �V⇤

j
kF

 1

32m2
�
2kUi �V⇤

i
k2F +

1

32m2
�
2kUj �V⇤

j
k2F (15.24)

where Mi,j = I⌦ . . .⌦ I⌦U>
j
(Uj�V⇤

j
)⌦U>

j�1V
⇤
j�1⌦ . . .U>

i+1V
⇤
i+1⌦ I⌦ . . .⌦ I, (a) holds because

of (15.21), (b) holds because of (15.22).

As a result of (15.19), (15.23) and (15.24), we have

k bT l � T ⇤k2F � 0.5kCl � S⇤k2F + 0.5�2
mX

i=1

kUi �V⇤
i
k2F

which finishes the proof of the lemma.
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