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S.1 Technical Lemmas

Lemma 1 can help us understand the model-free property of p( Xy, Y | z).
Lemma 1. Under Condition (C1) - (C4),

1. (CONSISTENCY) p( X, Y | 2) B p(Xy,Y | 2) for k € M;

2. (DISTRIBUTION FREE) np(X;,Y | z) % N, for k € M®, where N, is some non-degenerate

random variable that does not depend on the distribution of Xy, Y and z.

This is a direct result of Theorem 3 in (Cai et al., 2022). N} is actually an infinite sum
of weighted 2, and the weights are real numbers associated with the distribution of U,V and
w. Since, when k£ € M° U,V and w are mutually independent and all follow Uniform(0, 1)
distribution, we know that p(Xy,Y | z) is model-free in the sense that its distribution does not

depend on the distribution of X, Y and z.



S.2 Proofs

We begin by introducing some notations. Let P be a probability measure. The L,(P)-norm of a
1

function f is denoted as || f[| p) = ([ If]"dP)". For simplicity, we denote ¢;, ¢, C;, and C' as

some positive constants that may take different values (independent of n and p) in each appearance

throughout this section.

Definition 1 (COVERING NUMBER). Let T be some subset of a metric space (T, D), where T is
a set and D is a metric on T. For € > 0, the e-covering number N (e, T, D) of T is the minimum
number of balls with radius €, needed to cover T . Specifically, it is the smallest value of N, such

that there exist ty,...,txy in T, and for all s € T.
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Definition 2 (ENVELOPE FUNCTION). An envelope F of a collection of functions F is any

function x — F(x) such that |f(z)| < F(z), for any x and f € F.

Definition 3 (GRAPH). The graph of a real-valued function f on a set S is defined as the subset
{(s,t) : 0 <t < f(s) or f(s) <t <0} of S®R, where ® denotes product o-field. The subgraph
of f is defined as the subset {(s,u): f(s) > u} of S®R.

Definition 4 (VC CrLASS). Let F be a uniformly bounded collection of measurable functions on
a measurable space (S,S) and let F' be an envelope of F. F is called a bounded measurable VC

class of functions if

1. (BOUNDED MEASURABLE) the class F is separable or is image admissible Suslin (Dudley,

2014),

2. (VC CLASS) and there exist some positive numbers A and v such that

Nl Pl 7 La(P) < (£) 1)



for any probability measure P on (S,S) and any € € (0,1). We refer to A and v as the VC

characteristics of the class F.

By the definition of e-covering number, we assume in what follows that A > 3y/e and v > 1
for the convenience of proof. Interested readers are referred to Giné and Guillou (2001); Giné and

Guillou (2002) for details.

S.2.1 Technical Lemmas

Lemma 2. (HOEFFDING’S LEMMA) If pr(a <Y <b) =1, then
E[exp{s(Y —EY)}] < exp {s*(b—a)?/8}, for all s > 0.

Lemma 3. Under (C1.1), the class of functions F = {x+ K (t —x) : t € R} is a bounded

measurable VC' class of functions.

Proof. The following proof is adapted from Giné and Guillou (2002) Page 911.

Let p denote a polynomial on R? x R and ¢ denote a real measurable function. Then the
family of sets {{(s,u) : p((t —s)/h,u) > p(u)} : t € RY h > 0} is contained in the family of
positivity sets (see definition in Dudley (2014) Section 4.2 Page 179) of a finite dimensional space
of functions. By Theorem 4.6 and 4.8 in Dudley (2014), F is a bounded VC class of measurable
functions.

And since the map (t,x) — K(t — x) is jointly measurable, the class F is image admissible

Suslin, hence measurable. Thus F is a bounded measurable VC class of (measurable) functions.

O

Lemma 4. Under (C1.1), (C1.3) and (C3), consider f5(z), Fx(z) and §(z,x; X) defined in equa-
tion groups (7) and (8) withz € RY, 2 € R and v € R. For any fized € > 0, large enough n € N,

df < 1/2, and some positive constants Cy and Cy, we have

pr{sup fa#) - E: { () }| = } <Oy (nh ) exp (20t M) (82)




~

F5(z) — Ez {F\g(z)}‘ > e} < (n%_96> “ exp (—2M*n' %), (S3)

pr {Sup

~ ~ C
/g\(z7$; X) - E’zj)? {fq\(z,x; X)}‘ > E} <C (n%_9d€> ? exp (_2M1;2n1_20d62) . (84)

pr{sup
Proof. We first prove (S2). By Lemma 3 and Condition (C1.1), the class of functions F; :=
{z — Kj(z —z) : z € R} is a uniformly bounded measurable VC class of functions with VC
characteristics A and v. Thus, the covering number of F; satisfies condition (2.14.6) in Theorem
2.14.9 in van der Vaart and Wellner (1996). For all m; € Fi, we have |jmy|| < By := h™ "My =
n%M; by Condition (C1.3). Denote P,my = n=t 3" my(z;) and Pm; = Ez {m,(z)}. Without

loss of generality, assume K (-) > 0. We have

pr {sup | Fo@) ~ Bx { )} = ¢f =po{ sup 1~ Py =
—or v swp (B, - P > v}

miEF BU

Cy/ne\” ne?
< —2—
- (\/ZBU) exp( B?])
C N[ 164\ ( 2 1 20d 2)
= nz € ex — n € 5
(\/BMK) ( > P\

where C' depends on A and v only. The inequality holds due to Theorem 2.14.9 in van der Vaart

and Wellner (1996). Hence (S2) is proved.

Next, we prove (S3). By Lemma 2.6.16 in van der Vaart and Wellner (1996), the class of
functions F, := {z + 1(z < 2) : 2 € R} is a uniformly bounded measurable VC class of functions.
Repeating the proof for (S2) will show that (S3) holds.

Finally, we prove (S4). By the proof of Lemma 3 and Section 5 in Nolan and Pollard (1987),
the subgraph of any my € Fi, {(z,u) : mi(z) > u,u € R}, is a polynomial class (Pollard, 2012,
Definition I1.13). Similarly, the subgraph of any my € Fo, {(z,u) : ma(z) > u,u € R} is also a
polynomial class. Consider the class of functions F3 := {(z,2) — Kp(z—2z)1(x < %) :z€ R, 7 €

R} = Fi - Fo = {my - my: my € Fi,mg € Fo}. The subgraph of any ms € F3 can be represented



as
{(z,x,t) : my(z)mao(x) > t,t € R}
= ({(z,z,t) :mi(z) > t,x e Rt >0} N{(z,z,t) : ma(x) =1,z € R,t > 0})
U({(z,z,t) :my(z) > t,x € Rt <0} N{(z,z,t) : ma(x) = 1,2 € Rt <0})
U{(z,z,t) : my(z) =0,z € R, ¢t <0},
which is a finite number of Boolean operations among sets of polynomial class. By Lemma 18 in
Nolan and Pollard (1987), {(z,x,t) : mi(z)ma(x) > t,t € R} is also a polynomial class, so F3 is a

uniformly bounded measurable VC class of functions. Repeating the proof for (S2) will show that

(S4) holds. O

Lemma 5. Suppose that Condition (C1) to (C4) are fulfilled. Consider fzv(z), ﬁg(z) and §(z, z; X)

defined in Lemma 4. Then, for any 0 < v+ df < 1/2 and 0 < v < 20, we have

pr{sup jq\(z7$; j{') _ g(z, x,)?)‘ > TTL_W} < C3nC4(1—27—26d)eXp (_Cn1—27—20d) ’ (85)
pr{sup fi(z) — fz(z)| > Tn_V} < OynCa=27=20d) oy (—C’nl_%_%d) , (S6)
pr{sup Fi(z) — Fg(z)‘ > TTL‘”} < Cqn@ =22y (=Cn'=272) (S7)

for some positive constants T,C3,Cy and C.

Proof. It suffices to prove (S5) since (S6) and (S7) can be proved similarly. The proof consists
of two steps:

Step 1. We prove that, for 0 < v < 26, there exists some 7 > 0 such that

E; 5 {/g\(z,x; )N()} —g(z,x; )N()’ <tn~7/2 (S8)

sup
Note that
Ex{ize X)) = Byg{E-21(X <o)}

- E [Eﬁ {Kh(z DX <) | 2}]



—- E, [Kh(z ~2)E, & {1()’5 <) z}]
= | Kz kg, {IL()N( <a)|z= u} £(a) du.

Expanding g(z,m;)~( ) with respect to z in a Taylor series (Chacén and Duong, 2018, Equation
(2.5)) using Condition (C1.2) and (C4) gives that

sup |E; ¢ {?(Z,x;f()} - g(zax;ff)’

Z,T

= swp| | Kz —w) [Eg‘z{ﬂ()? <) yz:u} f;(u)—]E;qE{ll()Z<x) |Z:z}f;(z)] du

z,T

— sup ]EX‘Z{]I (X < 2) ]%:z—i—ht}f;(erht) —Em{ﬂ()? <) |'i:z} f;(z)} dt‘
— sup Fep(x | 2+ ht) f(z + ht) — Fm(x\z)f;(@}dt’
= sup

\\\

{
{g (z + ht, z; X) (z,a:;)?)}dt‘
< omh = arn~ %

holds for some constant o > 0, where t = (u—2)/h. Then for 0 < v < 26, there exists some 7 > 0

such that

~{ 9(z, x; X)} —g(z,x;)N()‘ <Ttn7/2.
Step 2. By (S8) and Lemma 4, we have

pr {sup

Z,T

3,01 %) — g2, %) 2 70 |

G(z,7;X) — E. ~{ 9(z, x; X)H > Tn_7/2}

< C3nC’4(1—2'y—29d)eXp (_Onl—Q'y—QGd)

for some positive constants 7, C3, Cy and C. This is because we can set the € in the LHS of (S4)

as 7n~7/2 and plug € into the RHS of (S4). Hence (S5) is proved.



Lemma 6. Suppose the conditions in Lemma & hold, we have

iz,2: X X
pr{sup gz, X)  glz,5X)

for some positive constants 7,C5, Cg and C.

Zrn_”y} < C5n06(1—27—29d)exp (_Cn1—2'y—2d0)

f2() 12(2)

Proof. Under Condition (C3), there exists some constant dy € (0, 1) such that My := My —dy > 0.

We have

s %) _gnm X)),
pr{szl,lf 7(2) f2(2) 'Z }

= pr{su E(Z’x;)ﬂ(/l_g(z’x;y) z,7; X (AL_L>'>W_7}
! {va fz(z) o) falz)  faz) ]|~

< pr{sup ﬁ(z,x;X)A— 9(z,x; X) > /2, fz(z)‘ ZMf} +
2 fa(2)
TR |
pr < sup g(z,x;X)‘ — >Tn""/2, fg(z)‘ > My p +
22 fz(2)| | fa(2)]
pr{|fa(2)| < My} (59)

For the first term of the RHS of (S9), by Lemma 5, for some positive constants Ct, Cf, and C",

o ) — ol o ¥ R
pf{sup R P B fz<z>\2Mf}
Z,x fz(z)
< pr{sup §(z,x;)~()—g(z,x;)N() ZTan_“’/Z}

< OénCé(l—?y—Q@d)eXp (_Cln1—27—29d) )

For the second term of the RHS of (S9), by Lemma 5, for some positive constants CY, C¢ and C”,

fo(z) = ful2)|

f2(2)|1f2(2)]

> TMfMLMU1n7/2}

pr q sup > /2, | fal2)| > M;

z,x

g(z,x;)?)‘

e

1" _ _ _ _
< Cé/nCG(l 2y 20d)exp (_C//nl 2y 29d).




For the third term of the RHS of (S9), we have

|

~

Ja@)| < My} = o {|fal2)+ i) - fal2)| < 2y}
pr {1/2(2)] - | fal2) - fal2)
< »r{|fa@) — fa(2)] > do}.

IN

< ML—50}

then by Lemma 5, for some positive constants CY’, Cf’ and C", choose ¢y = 7n~" for some proper

7 and 7,

|

]/C;(Z) - fa(Z)’ S Tn—’y} < Cg/ncg'u—m—wd)exp (_C///n1—27—26d) '

fAz(Z)‘ < Mf} < pr{

Hence we have
gz, 5:X)  g(z,2;X)

> {Szl,lf () fo(2)

for some positive constants Cs, Cs and C.

> Tn'y} < 05n06(172'~/729d)exp (_C«nlfQ'nyHd)

Lemma 7. Suppose that A(u) and B(u) are functions of vector u € U. They satisfy

sup |A(u)| < My < 0o, sup|B(u)| < Mp < 0.
uelU uelU

sup A\(u)‘ <Mz < oo, sup E(u)‘ < Mpz < o0.
uelU uelU

Suppose we have

sup pr{‘;l(u) — A(u)‘ > 7'71‘7} < %0 exp (=C'n' ),
uclU

suppr{‘g(u) — B(u)‘ > Tn_”’} < Ofn% U Mexp (=C"n'1),
uelU

where 1,7, C% CY C§, CY and n < 1 are positive constants. Then we have
sup pr{‘g(u)é(u) - A(u)B(u)‘ > Tﬂ’”} < CmUMexp (=Cn'")
uclU

for some positive constants C7,Cs and C'.



Proof. For some proper constants Cy, C§, Cho, C1, C11 and Cfy,
(u)B(u)‘ > TTL—’Y}
(u)B(w) + A(u) Blu) = A(w)B(u)| = 07 |

)B
] > rn '7/2} + Suppr{ W) ]E(u) - A(u)’ > mﬂ/z}

N

sup pr{ A(u)B(u) —

uel

=)
&
E)
&
|
:u)

IN
wn
=

o

ke
=

IN
)]
=
e}
e}
=
= =
)
IS
—
&
—~
E
|
=
\_/

B(u) — B(u )‘ > TM n 7/2} —|—suppr{’ﬁ(u) —A(u)’ > TMgln_“*/Q}

uel
anC10(1—n)eXp (_Cllnl—n) + Céncio(l—ﬁ)exp (—Cilnlfﬂ)

IN

IN

Cns0exp (—Cnl’") ,

where C;, Cs and C' are some proper positive constants.

[
S.2.2 Proof of Theorem 1(i)
Denote p(Xy,Y|Z) as pr, and p(Xg, Y |Z) as py. Define
ok =p(Xp,Y | z) =n"? Z Z { (e 1VkimUhil 4 e7Uni 4 Uil 4 e7Uki 4 eUhi™h 4 271 — 4)
i=1 j=1
We have
(e o)
ke(p)]
< pr (max|pk — pk| > an 7/2) +pr (max]ﬁk —pr| > an7/2> . (S10)
ke kelp]

We decompose py as
Pk = gk1 + k2 + C79k3 + Gka + Grs + Cr9ke + C79k7 + C7gks + C?ng,
where

Y

g =E (ef\Um*Uk2|€*|V1*V2|€*HW1*W2||1)



r 2
g2 = E |71Vt {Z (67% + 6%1)} 6”W1W2”1] )

=1

gz = E (e*\UklkazlefHVVﬁWzlll) ’

[ (2
gra = E {Z *Uki + eUkil)}e|V1V2|€W1W2||1] 7

2 2
grs = E {Z “Uki 4 eU’”l)} {Z (e +e" } e“’lw?”l] :
=1 i=1
2
6 = E {Z —Up; + eUki—l) } e—||W1—w2||1] :
=1
k7 = —vi= ”WI_WQHI) ;
2
Jrs = Vi el } “lw W“] :
Gro = —[lwi—wz|1 )

pr can be correspondingly decomposed as

Pk = Gk1 + Gk2 + C70k3 + Gka + Grs + Crke + C7k7 + C70Rs + Cgﬁkg’

where
1 n n
G = WE > <e—!Um-—Ukj|e—|vi—vj|e—||Wi—Wj\\1) ,
i=1 j—l
Jr2 = — E E {e | Ui U’“’ Vigeh it peli et e’”wi’“’j”l} :
=1 j=1
1 n n
Tr3 = = E E <6*|U’ﬂ'*Ukj|€—HW1'—WJ'||1> ’
i=1 j=1

n n

1 | | | |

G = SOS T {(e7 Vs 4 et eV 4 V) ViVl mlwimwilh
i=1 j=1

n n
gk5:_ {(6 Uk2+€Uk1 1+6 Uk] +6Ukj 1) (6 V’L_i_e‘/l 1+e ‘/}_{_eVJ l)e HW’L VVJ”l}7
n?
=1 j=1
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n n

- 1 . : . . s

Jre = ﬁ E E {(6 Uki + eUIm 1 +e Uk;j + eUk:J 1) e [lw; W]|I1}7
i=1 j=1

1 n n
~ § E : —|\Vi=V;| —|lwi—w;
gk7: E (6 | ]‘e || J”l)’

i=1 j=1

Jks = % Z Z {(e_vi +e¥ it peVi 4 er_l) e‘”wi_“’j”l} ,
i=1 j=1

o= 3 5 (e iy

i=1 j=1

Pk can be decomposed in the same way as

Pk = Gk1 + Gk2 + 70k + Gka + Gks + Crke + C1Gk7 + C10ks + c?@fg,

where
1 n n =N =N . =N
Gt = ¥ Z <e—|Uki—Uk]-|€—|vz-—vj|ef||wrwy~ul) ,
i=1 j=1
1 g 5o o0 oo
G = — {eflUwUkjl (e—% AL B evj—l) e—nwi—wjul} 7
n
i=1 j=1
1 n n N N
Gis = = (gl wUkj|e—sz-—wJ-||1> ,
i=1 j=1
1 n n . =N
Goa = — {(6—% 4o Ou=t O eUkj—1> - W—vj|e—uwz-—w]~u1} 7
n
i=1 j=1
1 n n
Gis = — {(e’U’“’ + ekl el 4 eU’“J'”) (e*Vi +ei eV 4 e‘/j”) e’”wi’“’f”l} ,
n
i=1 j=1
1 n n . = . .
k6 = —5 [{e‘U’“’ + el el 4 eU’”'_l} e‘”wi_“’j”l} :
n
i=1 j=1
1 n n N .
Jer = — <e* i*Vj|e—||Wi—Wj||1> 7
n
i=1 j=1
1 n n . =R =R .
Oks = — eV eV eV Vi) Wil
n? ’
i=1 j=1
1 n n
T — —llwi=w;llx
g9 = — (6 ) .
n
i=1 j=1

The following proof consists of three steps:

11



Step 1. We deal with the first term of the RHS of (S10), i.e., we prove that

pr (Ikne?i]( |ﬁk _ ﬁk\ > an‘”) < Cpnz{l—zw—zes}exp {_Cln1—27—2€s}

for some proper positive constants ¢, ¢ and ¢'.
We first deal with gp; and gi; with the goal to prove that

c{1—-2y—20s} /n1—2'y—295}

pr ([Gk1 — Gra| > an™) < cpn exp {—¢

By Lemma 6, for some positive constants b7, b, and b5, we have

pr (m.ax ’ﬁm — Upi

me_ﬂy) _ pr{max g(Zi,in;Xk) g(ziani;Xk)

fa(z:) fa(2:)
. 9z, x; Xi)  g(z,2; Xy)
=P {Szl,lf 7.(2) fu(2)

< bllnb§(1—2'y—295)exp (_bgnl—Q'y—QGs) )

Then for some positive constants b, by and b3,

pr (max ’(Asz — ﬁkj — Ui — Ugjl | > anﬂ)
27-]
< pr (max Upi — Ups| > an™/ 2) +pr (max ‘@j — Upj| = an™"/ 2>
i j

< blnbg(l—Q'y—QGs)eXp (_b3n1—2'y—295) )

Since |e™* —e7Y| < |r — y| for > 0 and y > 0, we have

pr (max ’e|ﬁ’“_ﬁk1| — elUki_Ukj|
i7j

> an”)
> an"’)

IN

pr (max ‘ ‘Uki — Uy
Z?]

< blnb2(1—27—293)exp (_b3n1—2'y—293) )

> cm_”)

< b4nb5{1—2’y—293}exp {_b6n1—2’y—295} ’

— |Usi — Ul

Similarly, for some positive constants by, b5 and bg,

VieVi| _ o IVi-vil

pr (max ‘e_

i,J

12
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and for some positive constants by, bg and by,

pr (maX ‘e_HWi—Wjul _ e—”Wi_WjHl‘ > Cm—v)
Z7j

< b7nb8{1—2'y—29(s—1)}exp {_b9n1—2'y—20(s—1)} ] <S14)

By Lemma 7, (S12), (S13) and (S14), for some positive constants ¢, ¢; and ¢}, we have

> an‘”)

)€|l7ki—(7kj|e—|‘7i—‘7j‘e—\lv7/i—v7/jll1 _ 6|Ukz‘—Ukj|e—\Vz‘—Vj|e—HWi—Wj||1

pr (max

1/7]

< Clncl{17277295}exp {_C/1n17277295} ]
Now we have

pr(|ger — grr| > an™7)
= pr { iz Z Z <€mifﬁkj|ef > cm_”}
n

i=1 j=1
1 n n =N N =N =N
< pr = E E ‘6|Uki*Ukj|e* Ver|e—HWi—Wj||1 _ 6|UkrUkj|€—|Vi—V}|€—HWi—WjH1 > an "
n= < -
i=1 j=1

Vi Vj| = I1%i=511 _ G\Uki—Ukj!e—\vi—vj\e—uwz-—wj-nl)

< pr (max ol Oki=Uki | = [VimVi| o= I9i=5l1 _ o[Uki=Uss| o= IVi=Vil g~ Iwimwills | > (m—v)
ihj -
< Clncl{l—Qw—QGS}eXp {_Cllnl—Z'y—?@s} )

Repeating the above scheme can give us results similar to (S11):

pr([Gia — Gro| > an™) < @ Wb exp {—chn! 201
pr([is — Gusl = an™) < egn® U2 Bbexp [ dplBr-2e)
Pr([Gra — gral = an™7) < C4ng4{1*27’295}exp{—Cﬁmlfzvfzes},
pr([Gis — Gis| = an™) < en® U Wsbexp [yl 20s1
(s~ el 2 1) < BBl { ).
ox(o — i > an™) < epi-H Wl (o)
pr((Gis — sl 2 an™) < can®UD Bohexy {_cpi--20s)
pr(|Gro — Gro| > an™) < @726 Dhexp L pl== 2=

13



where {¢;}?_,,{¢i}}_, and {c}}}_, are some positive constants. Then for some positive constants
¢, ¢ and ¢ we have
pr(|pk — o > an™7)
= r{I@i — 1) — @iz — o) + €3G — Gis) + Gos — Gs) — (e — o)

+c5(Gke — Gre) + c6(Grr — Grr) — c6(Grs — Grs) + 56 (Tro — Gro)| > anﬂ}

IA

pr <’§k1 — g1l > gn_’y) + pr <|§k2 — Jk2| > gn_ﬁ) +pr { |Gks — Grs| > in—7
-9 -9 ~ 9cy

i~ i a - = A, @ - i~ 3. @ -
+pr ( |[Gka — Gra| > §n +pr (|[Gks — grs| > §n +pr { |Gk — Gre| > 9771
5

N P a _
(|9k7 — k7| > —n 7) +pr (|gk8 Jks| > —n W) + pr (|gk9 — Gro| > . 7)
CrCq

< cnc{l—Qv—Q@s}eXp{ n 1—2y— 295}

Y

and hence

pr (in?}]dpk _ pk| > an 7) < Can{l—Qv—Qes}eXp{ Int—2— 295} (815)
S

for some proper positive constants a, ¢, ¢ and ¢

Step 2. We deal with the second term of the RHS of (S10), i.e., we prove that

pr (glzﬁ |k — pi| > an‘”) < ¢p exp (—bn'?)
(S

for some proper a > 0, b > 0 and ¢ > 0.

By Condition (C2), Uy = Fxz(Xe | Z), V = Fyiz(Y | Z), Wy = Fy(Z),...W, =
Frz0...2..(-| Z1,..., Zs_1) are all one to one transformation, so instead of seeing p, as a function
of X;,Y and z, we consider it as a function of U,V and w.

We first deal with gi,. Define gz, = (n(n — 1))~ 35, (e*|Uki*U’w'|e—‘Vz‘—Vj|e_HWi_WJ‘||1>, which

is a U-statistic. g, can be rewritten as

1 n—1_, 1
Gt = { 9k1+zz<€ |Uki— Uk]|e Vi=Vjl o= llwi— w;ll1>} =— gk1+ﬁ'

=1 j=1
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For any given € > 0, there is a large enough n such that € > 2(1 — gx1)/(n + 1). Then, we have

9

o~ Okl + — |1 — gr1| > €>

n—1

1
(Gr1 — 9r1) + —(1 — Gk1)

pr([gs —gm| =€) = pr{

(5

- €
< pr <|9k1 — 91| > §> : (516)

To prove the uniform consistency of g1, it suffices to show the uniform consistency of g;;.

By Markov’s inequality, for any ¢ > 0,

Pr (gr1 — gr1 =€) = pr[exp {t(gpy — gr1)} = exp (te)] < exp (—te) exp (—tgr1) E {exp (tg;,)} -
(S17)
Denote the kernel of giy as hy(Uk, Vi, wi; Ugj, Vi, wy) = ¢ |Uki=Uks| o= ViVl g=lwi=willi  Since
U-statistic can be represented as an average of averages of i.i.d. random variables, we can
rewrite g5y as g5, = (nD) 71> Q1 (Ukiy, Viys Wiy oo Ugin s Vi, Wi, ), where >~ denotes the summa-
tion over all n! permutations (iy,...,i,) of (1,...,n), and each Q4 (Ui, Viy, Wiy;-oo; Ugi, Vi, , Wi,))
is an average of m = [n/2], ie, m 3" hi(Ukis 1 Visr 1y Wise 13 Ukiiays Vigns Wiy, ). Denote

. (r) ‘a3 3
P (Ukigy 15 Vi 1s Wisy 13 Ukiines Viays Wiy, ) s hy . By Jensen’s inequality,

E{exp@:l)}:xa{exp( S zh“)}

wfo(:5)

_Em {exp %h )} (S18)

Combining (S17) and (S18), since A" € [e=2¢*2) 1], then by Lemma 2,

~% m 4 r
pr(ge; — g1 =€) < exp(—te)E {eXp {E (h§ ) gl) H

o{o-ro)

_—2(s+2))2
< exp{—t6+t2(1 c ) }

8m

m

< exp (—te)
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By Chernoft’s method, when t = 4me (1 — 6*2(3”))_2, we have

@ S0 < —2me?
Pr{gyg; — grk1 = €) = €xXp (1 ~ 672(%2))2 :

Then by the symmetry of U-statistic,

(15 — g = ©) <2 —2me
r (19 = gl 2 €) < 200 7 S (-

Choose € = an™" and some proper b; > 0 and ¢ > 0, by (S16) we have

pr (|Gs — gra| > an™7) < cexp (—bin' ™). (519)
Similarly, we have results like (S19) for gxa, ..., gro that hold for some proper b; > 0 and ¢ > 0:
pr (|§kl — | > (m"y) < cexp (—bmkh) ., 1=2,..,9. (520)
Then we have
pr (|px — pr| > an™)
= pr{|(§k1 — gk1) — (Gr2 — gr2) + c5(gk3 — Gka) + (Gra — gra) — (Grs — Gis)

+c¢5(gre — gre) + c6(grr — gr7) — C6(Grs — Grs) + ¢5¢6(gro — gro)| > (m—v}

IA

T — >g - oo — >g - _ >_ -
pr( |Gk 9k1|_9n + pr ( [gre 9k2|_9n +pr ( |gks — grs| n

~ a — ~ a — —~ a —
+pr <|gk4 — Gra| > §n ) + pr (|gk5 — Gks| > §n ) +pr | |gke — gre| > 9771
5

~ a — ~ a — — a —y
pr | gk — ge7| = —n"7 ) +pr | [grs — gks| > —n"7 | +pr | [gro — gro| > n
9¢q 9ce 9csce

< cexp (—bn1_27)

and hence

pr <rknz[ix |px — pr| > an™ > < cp exp (—bnlfz'y) (S21)
€

for some proper a > 0, b > 0 and ¢ > 0.

Step 3. By (S15) and (S21), we have

pr (max|pk — x| > an 7) < pr (max\pk — pr| = an 7/2> + pr <max|ﬁk — p| > an_7/2>
k€(p] k€(p] ke(p]
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< Cpn5{172'yf293}exp { c nl 2vy— 293}

for some proper positive constants a, ¢, ¢ and ¢’

S.2.3 Proof of Theorem 1(ii)

By assumption (10), M ¢ M implies that there exists some j € M such that p; < an™”, which

means |p; — p;| > an™7. So, we have

pr (M gﬂ) > 1—pr(|fo\j—pj| > an~ " for some j EM)

v

1 — | M| maxpr (155 = pjl = an™)
> 1—c M| ne{1=27=20s} oy {—03711_2”’_295}

for some proper positive constants ¢y, c2 and cs.

S.2.4 Proof of Theorem 1(iii)
Under Condition (C5), there exists some d; = minjepq pj — max;eae p; > 0. Thus
pr <nel}\1/11 pj < ;2/%4}% p]) = pr (mln pPj — §n1n p; + 0 < maX pj - Jng/z\i/t)i p])

max p; — max p; — (min p; — min p;) > 51)

max p; —maxp
Jeme J . J

(]GMC JEMC JEM JEM
< max p; — max p,; + (min min p;)| > 6
- (geMc Pi eM“p] (eij j€ pj) - 1)
S (

> 51/2) + pr (‘mlnp] - mlnp] > 51/2>
je

< 2 pi—pil >61/2).
< 2pr (rjréaﬁ;f P = pil 2 01/ )
For some a,~ and 6 as defined in Theorem 1(iii), choose d;/2 = an™7, we have

pr (]ng/%[)i i < ?lln pg) >1— C4pn05{172’yf293}exp {_Cﬁn17277293}

for some proper positive constants ¢y, c5 and cg.
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S.2.5 Lemmas for Proof of Theorem 2

Lemma 8. Let {X;}, be identically distributed as Bernoulli(p), and denote S, = X1+ ---+ X,,.
Then for any j € {1,...,n}, we have pr{X; =1|S,} = S,/n.

Proof. For any j € {1,...,n}, since {X;}, are identically distributed, we have

S, =E(S,|S,) =E (Z X | sn> = E(X;|S.) =nE(X; | S,)
=1 =1
Sn
= pr{X; = 1|5} =E(X; [ 5) = —

]

Lemma 9. Consider two independent sequences of random variables {Ay;}32, and {Ay;}52, that
converge in distribution to the same random variable A. Then we have that sgn(A1;— As;) converges

in distribution to Bernoulli(1/2).

Proof. Let 11,12, and ¥ be the characteristic functions of Ay,, As, and A. Then we have,
for every t, ¥1,(t) — ¥(t) and 9,(t) — ¥(t) as n — oo. Define A = Ay, — Ay, and A~ =
Ay, — Aip, then the characteristic function of A_ is ¢, (t) = Y1, (t) V2, (—t) = ¥(t)(—t), and the
characteristic function of A~ is ¢, (t) = o, (t)t1,(—t) — ¥(—t)1(t). Define the random variable
that has characteristic function ¢(—t)y(t) as B.

Consider pr(A_ > 0) and pr(A~ > 0). We have pr(A_ > 0) +pr(4- >0) =1, pr(A_ > 0) —
pr(B > 0) and pr(A~ > 0) — pr(B > 0), so pr(A- > 0) — 1/2 and pr(A~ > 0) — 1/2, hence
pr{sgn(Ay; — As;) = +1} — 1/2 and pr{sgn(A;; — Ay;) = -1} — 1/2. O

Lemma 10. For any By defined in Theorem 2, we have that By converges in distribution to

Bernoulli(1/2).

Proof. By definition (11), the distribution of By, is the same as the distribution of sgn(npg —
napre). By Lemma 1.2, nypy; and nopye has the same limiting distribution, so by Lemma 9, By

converges in distribution to Bernoulli(1/2). O
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Lemma 11. Denote the index set of M as {1,...,po}. For {Si}i>, defined in Theorem 2, under

Condition (C6), we have Sy, /po 2> 1/2 as (n, po) — 0o.

Proof. By Markov’s inequality, given the constant A defined in Condition (C6), we have

2
pr{% 1 ché}gcn]@<%_l>
Po 2

2 2
— e, E(%— Si) +E( %—1) +2EK%_E%>< %_lﬂ
Po Po Po 2 Po Po po 2

Do 2
= Cp (Al —|— A2 + A3)

= ey (A + Ay). (S22)

The last equation holds since A3 = 0. We prove (S22) — 0 as (n,py) — 00 in two steps:

Step 1. We prove that ¢, A; — 0 as (n,pg) — 0.

Let {B;};2, be a copy of {B.}}2,, such that B, 1L B for all k # j and B, “ By.. Denote
Sy = B+ + B,

> & takes expectation with respect to {By};2, and E’ takes expectation

with respect to {Bj}7>,. Let {ex}{>, be i.i.d. random variables with pr(ey = £1) = 1/2 for
k= 1,...,p, ie., a sequence with Rademacher distribution, and E,. takes expectation with

respect to {ex}t~,. Then we have

Cn Cn 2 Cn 2
cnAr = SE(Sp, —ESy)? = SE (S —E'S)) = SE (E' (Sp — S,))

Po 0 Do

< ZEE (S, -9, (823)
Po
c Ppo 2

= —2EE (Z(Bk - B,Q))
Py k=1
c Po 2

= ZEE'E. (Z ex(By, — B,Q)) (524)
Po —1
c Po 2 PO 2 Po Po

= —2EE'{E. (Z ngk> +E. (Z akB,g> — 2E, (Z 5k3k) (Z 5kB,;>
Po 1 k=1 k=1 k=1
c Po 2 Po 2

< JEEJE. (Z 5kBk> +E. (Z er B, (S25)
Py k=1 k=1
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k=1
c Ppo
< 25E() B (S26)
Po k=1
— 2OER?
Po
C
< 22 S27
<z (527)
— 0 as (n,py) — oc. (528)

(S23) is by Jensen’s inequality. (S24) is because By — B, and e (B — Bj,) have the same distribution

for k =1,...,po. (S25) is because
Po Po Po Po
E. (Z gk3k> (Z ng,;> —E. (Z ngkB,g> => BB, > 0.
k=1 k=1 k=1 k=1
(526) is by Khintchine inequality. (S27) is because By € {0,1}. (S28) holds by Condition (C6.2).

Step 2. We prove that ¢, 43 — 0 as (n,py) — 0.
Spo

ey = e ( S _ %)2 e, (]EBk— %)2 e o ()} = o{cl}.

Po
The third equation holds by Condition (C6.1), and ¢, — oo as n — oo gives ¢, A; — 0 as

(na pO) — 0.

By Step 1 and 2, we have (S22) — 0 as (n,pg) — 0, thus S,,/po = 1/2 as (n, pg) — oo. O

S.3 Extensions to Discrete Data

In this section, we discuss how to extend the proposed method to the discrete data setting. To
begin with, we assume that X, Y and Z are discrete random variables. Define Fxz(z | 2) =
PX<z|Z=2),Fxzla— | 2) =P X <z |Z=2), Fy;z(y| 2) =PY <y | Z = z), and
Fyiz(y— | 2) = P(Y <y | Z = z). We further let Ux and Uy be two independent and identically

distributed U(0, 1) random variables, and apply the transformations

U = (1—Ux)Fxz(X—| Z)+ UxFxz(X | 2), (S29)
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According to Brockwell (2007), both U and V' are uniformly distributed on (0,1). In addition,
UllZ and V1L Z. In the following proposition, we establish the equivalence between conditional

independence and mutual independence. The following proposition is adapted from Theorem 8 of

Cai et al. (2022).

Proposition 1. For discrete random variables X, Y and Z, X 1LY | Z if and only if U,V and Z

are mutually independent.

We summarize all the cases of X, Y, and Z in the following table. One can also follow the
proof of Theorem 8 in Cai et al. (2022) and show that X 1LY | Z if and only if U,V and W are

mutually independent.

U X is continuous, X is discrete,
U=Fxz(X|Z2). |U=(1-Ux)Fxiz(X—|Z)+ UxFx;z2(X | Z).
v Y is continuous, Y is discrete,
V=Fyz(X|2).| V=Q0-Vx)Fyiz(Y—|2Z)+ Uy Fyiz(Y | Z).
W Z is continuous, Z is discrete,
W =Fz(Z). W =12

Note that for discrete data, the conditional cumulative distribution function is a step-wise
function that does not require kernel estimations. After estimating U , ‘A/, and /W, we can estimate

the marginal screening utility by V-statistics similar to (6) in the main paper.

S.4 FDR Control Performance of ISIS-SCAD

Table S1 reports the average number of selected predictors, the selection probability of true vari-
ables, the empirical FDR and the F1 score of ISIS-SCAD for Example 3.

As shown in Table 1, although the ISIS-SCAD has a higher probability of choosing the true
variables, this comes at the expense of a high FDR rate and low F1 score. It shows that the

proposed CIS-REDS is a better choice if researchers want to control the false discoveries.
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Table S1: FDR control of ISIS-SCAD for Example 3. Seven true active predictors { X}, };_; are
to be identified. ‘M\ ‘ is the average number of selected predictors, P,k = 3,...,9 report the

probability that the active predictor X is selected, P, stands for the probability that all active
predictors are selected.

Model (/\7‘ p, P P P P, P. P, P, FDR F1 Score

7 37.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.811 0.318
8 37.000 0.990 0.990 0.990 0.990 0.990 1.000 0.990 0.990 0.812 0.318
9 37.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.811 0.318
10 37.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.811 0.318
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