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S.1 Technical Lemmas

Lemma 1 can help us understand the model-free property of ρ̂(Xk, Y | z).

Lemma 1. Under Condition (C1) - (C4),

1. (Consistency) ρ̂(Xk, Y | z)
p→ ρ(Xk, Y | z) for k ∈M;

2. (Distribution Free) nρ̂(Xk, Y | z)
d→ Nk for k ∈Mc, where Nk is some non-degenerate

random variable that does not depend on the distribution of Xk, Y and z.

This is a direct result of Theorem 3 in (Cai et al., 2022). Nk is actually an infinite sum

of weighted χ2, and the weights are real numbers associated with the distribution of U, V and

w. Since, when k ∈ Mc, U, V and w are mutually independent and all follow Uniform(0, 1)

distribution, we know that ρ̂(Xk, Y | z) is model-free in the sense that its distribution does not

depend on the distribution of Xk, Y and z.
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S.2 Proofs

We begin by introducing some notations. Let P be a probability measure. The Lr(P )-norm of a

function f is denoted as ‖f‖Lr(P ) =
(∫
|f |r dP

) 1
r . For simplicity, we denote ci, c, Ci, and C as

some positive constants that may take different values (independent of n and p) in each appearance

throughout this section.

Definition 1 (Covering Number). Let T be some subset of a metric space (T,D), where T is

a set and D is a metric on T . For ε > 0, the ε-covering number N(ε, T , D) of T is the minimum

number of balls with radius ε, needed to cover T . Specifically, it is the smallest value of N , such

that there exist t1, ..., tN in T , and for all s ∈ T .

min
j=1,...,N

D(s, tj) ≤ ε

Definition 2 (Envelope Function). An envelope F of a collection of functions F is any

function x 7→ F (x) such that |f(x)| ≤ F (x), for any x and f ∈ F .

Definition 3 (Graph). The graph of a real-valued function f on a set S is defined as the subset

{(s, t) : 0 ≤ t ≤ f(s) or f(s) ≤ t ≤ 0} of S ⊗ R, where ⊗ denotes product σ-field. The subgraph

of f is defined as the subset {(s, u) : f(s) ≥ u} of S ⊗ R.

Definition 4 (VC Class). Let F be a uniformly bounded collection of measurable functions on

a measurable space (S,S) and let F be an envelope of F . F is called a bounded measurable VC

class of functions if

1. (Bounded Measurable) the class F is separable or is image admissible Suslin (Dudley,

2014),

2. (VC Class) and there exist some positive numbers A and v such that

N(ε‖F‖L2(P ),F , L2(P )) ≤
(
A

ε

)v
(S1)
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for any probability measure P on (S,S) and any ε ∈ (0, 1). We refer to A and v as the VC

characteristics of the class F .

By the definition of ε-covering number, we assume in what follows that A ≥ 3
√
e and v ≥ 1

for the convenience of proof. Interested readers are referred to Giné and Guillou (2001); Giné and

Guillou (2002) for details.

S.2.1 Technical Lemmas

Lemma 2. (Hoeffding’s Lemma) If pr(a ≤ Y ≤ b) = 1, then

E [exp {s(Y − EY )}] ≤ exp
{
s2(b− a)2/8

}
, for all s > 0.

Lemma 3. Under (C1.1), the class of functions F =
{
x 7→ K (t− x) : t ∈ Rd

}
is a bounded

measurable VC class of functions.

Proof. The following proof is adapted from Giné and Guillou (2002) Page 911.

Let ρ denote a polynomial on Rd × R and ϕ denote a real measurable function. Then the

family of sets {{(s, u) : ρ((t − s)/h, u) ≥ ϕ(u)} : t ∈ Rd, h > 0} is contained in the family of

positivity sets (see definition in Dudley (2014) Section 4.2 Page 179) of a finite dimensional space

of functions. By Theorem 4.6 and 4.8 in Dudley (2014), F is a bounded VC class of measurable

functions.

And since the map (t,x) 7→ K(t − x) is jointly measurable, the class F is image admissible

Suslin, hence measurable. Thus F is a bounded measurable VC class of (measurable) functions.

Lemma 4. Under (C1.1), (C1.3) and (C3), consider f̂z̃(z), F̂z̃(z) and ĝ(z, x; X̃) defined in equa-

tion groups (7) and (8) with z ∈ Rd, z ∈ R and x ∈ R. For any fixed ε > 0, large enough n ∈ N,

dθ < 1/2, and some positive constants C1 and C2, we have

pr

{
sup
z

∣∣∣f̂z̃(z)− Ez̃

{
f̂z̃(z)

}∣∣∣ ≥ ε

}
≤ C1

(
n

1
2
−θdε

)C2

exp
(
−2M−2

K n1−2θdε2
)
, (S2)
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pr

{
sup
z

∣∣∣F̂z̃(z)− Ez̃
{
F̂z̃(z)

}∣∣∣ ≥ ε

}
≤ C1

(
n

1
2
−θε
)C2

exp
(
−2M−2

K n1−2θε2
)
, (S3)

pr

{
sup
z,x

∣∣∣ĝ(z, x; X̃)− Ez̃,X̃

{
ĝ(z, x; X̃)

}∣∣∣ ≥ ε

}
≤ C1

(
n

1
2
−θdε

)C2

exp
(
−2M−2

K n1−2θdε2
)
. (S4)

Proof. We first prove (S2). By Lemma 3 and Condition (C1.1), the class of functions F1 :=

{z 7→ Kh(ž − z) : ž ∈ Rd} is a uniformly bounded measurable VC class of functions with VC

characteristics A and v. Thus, the covering number of F1 satisfies condition (2.14.6) in Theorem

2.14.9 in van der Vaart and Wellner (1996). For all m1 ∈ F1, we have ‖m1‖∞ ≤ BU := h−dMK =

nθdMK by Condition (C1.3). Denote Pnm1 = n−1
∑n

i=1m1(z̃i) and Pm1 = Ez̃ {m1(z̃)}. Without

loss of generality, assume K(·) ≥ 0. We have

pr

{
sup
z

∣∣∣f̂z̃(z)− Ez̃

{
f̂z̃(z)

}∣∣∣ ≥ ε

}
= pr

{
sup
m1∈F1

|(Pn − P )m1| ≥ ε

}
= pr

{√
n sup
m1∈F1

∣∣∣∣(Pn − P )
m1

BU

∣∣∣∣ ≥ √n ε

BU

}
≤
(
C
√
nε√

vBU

)v
exp

(
−2

nε2

B2
U

)
=

(
C√
vMK

)v (
n

1
2
−θdε

)v
exp

(
− 2

M2
K

n1−2θdε2
)
,

where C depends on A and v only. The inequality holds due to Theorem 2.14.9 in van der Vaart

and Wellner (1996). Hence (S2) is proved.

Next, we prove (S3). By Lemma 2.6.16 in van der Vaart and Wellner (1996), the class of

functions F2 := {z 7→ 1(z ≤ ž) : ž ∈ R} is a uniformly bounded measurable VC class of functions.

Repeating the proof for (S2) will show that (S3) holds.

Finally, we prove (S4). By the proof of Lemma 3 and Section 5 in Nolan and Pollard (1987),

the subgraph of any m1 ∈ F1, {(z, u) : m1(z) ≥ u, u ∈ R}, is a polynomial class (Pollard, 2012,

Definition II.13). Similarly, the subgraph of any m2 ∈ F2, {(x, u) : m2(x) ≥ u, u ∈ R} is also a

polynomial class. Consider the class of functions F3 := {(z, x) 7→ Kh(ž− z)1(x ≤ x̌) : ž ∈ Rd, x̌ ∈

R} = F1 · F2 = {m1 ·m2 : m1 ∈ F1,m2 ∈ F2}. The subgraph of any m3 ∈ F3 can be represented
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as

{(z, x, t) : m1(z)m2(x) ≥ t, t ∈ R}

= ({(z, x, t) : m1(z) ≥ t, x ∈ R, t > 0} ∩ {(z, x, t) : m2(x) = 1, z ∈ R, t > 0})

∪ ({(z, x, t) : m1(z) ≥ t, x ∈ R, t ≤ 0} ∩ {(z, x, t) : m2(x) = 1, z ∈ R, t ≤ 0})

∪{(z, x, t) : m2(x) = 0, z ∈ R, t ≤ 0},

which is a finite number of Boolean operations among sets of polynomial class. By Lemma 18 in

Nolan and Pollard (1987), {(z, x, t) : m1(z)m2(x) ≥ t, t ∈ R} is also a polynomial class, so F3 is a

uniformly bounded measurable VC class of functions. Repeating the proof for (S2) will show that

(S4) holds.

Lemma 5. Suppose that Condition (C1) to (C4) are fulfilled. Consider f̂z̃(z), F̂z̃(z) and ĝ(z, x; X̃)

defined in Lemma 4. Then, for any 0 < γ + dθ ≤ 1/2 and 0 < γ ≤ 2θ, we have

pr

{
sup
z,x

∣∣∣ĝ(z, x; X̃)− g(z, x; X̃)
∣∣∣ ≥ τn−γ

}
≤ C3n

C4(1−2γ−2θd)exp
(
−Cn1−2γ−2θd) , (S5)

pr

{
sup
z

∣∣∣f̂z̃(z)− fz̃(z)
∣∣∣ ≥ τn−γ

}
≤ C3n

C4(1−2γ−2θd)exp
(
−Cn1−2γ−2θd) , (S6)

pr

{
sup
z

∣∣∣F̂z̃(z)− Fz̃(z)
∣∣∣ ≥ τn−γ

}
≤ C3n

C4(1−2γ−2θ)exp
(
−Cn1−2γ−2θ) , (S7)

for some positive constants τ, C3, C4 and C.

Proof. It suffices to prove (S5) since (S6) and (S7) can be proved similarly. The proof consists

of two steps:

Step 1. We prove that, for 0 < γ ≤ 2θ, there exists some τ > 0 such that

sup
z,x

∣∣∣Ez̃,X̃

{
ĝ(z, x; X̃)

}
− g(z, x; X̃)

∣∣∣ ≤ τn−γ/2 (S8)

Note that

Ez̃,X̃

{
ĝ(z, x; X̃)

}
= Ez̃,X̃

{
Kh(z− z̃)1(X̃ < x)

}
= Ez̃

[
Ez̃,X̃

{
Kh(z− z̃)1(X̃ < x) | z̃

}]
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= Ez̃

[
Kh(z− z̃)Ez̃,X̃

{
1(X̃ < x) | z̃

}]
=

∫
Rd

Kh(z− u)EX̃|z̃
{
1(X̃ < x) | z̃ = u

}
fz̃(u) du.

Expanding g(z, x; X̃) with respect to z in a Taylor series (Chacón and Duong, 2018, Equation

(2.5)) using Condition (C1.2) and (C4) gives that

sup
z,x

∣∣∣Ez̃,X̃

{
ĝ(z, x; X̃)

}
− g(z, x; X̃)

∣∣∣
= sup

z,x

∣∣∣∣∫
Rd

Kh(z− u)
[
EX̃|z̃

{
1(X̃ < x) | z̃ = u

}
fz̃(u)− EX̃|z̃

{
1(X̃ < x) | z̃ = z

}
fz̃(z)

]
du

∣∣∣∣
= sup

z,x

∣∣∣∣∫
Rd

K(t)
[
EX̃|z̃

{
1(X̃ < x) | z̃ = z + ht

}
fz̃(z + ht)− EX̃|z̃

{
1(X̃ < x) | z̃ = z

}
fz̃(z)

]
dt

∣∣∣∣
= sup

z,x

∣∣∣∣∫
Rd

K(t)
{
FX̃|z̃(x | z + ht)fz̃(z + ht)− FX̃|z̃(x | z)fz̃(z)

}
dt

∣∣∣∣
= sup

z,x

∣∣∣∣∫
Rd

K(t)
{
g(z + ht, x; X̃)− g(z, x; X̃)

}
dt

∣∣∣∣
≤ ακh2 = ακn−2θ

holds for some constant α > 0, where t = (u−z)/h. Then for 0 < γ ≤ 2θ, there exists some τ > 0

such that

sup
z,x

∣∣∣Ez̃,X̃

{
ĝ(z, x; X̃)

}
− g(z, x; X̃)

∣∣∣ ≤ τn−γ/2.

Step 2. By (S8) and Lemma 4, we have

pr

{
sup
z,x

∣∣∣ĝ(z, x; X̃)− g(z, x; X̃)
∣∣∣ ≥ τn−γ

}
≤ pr

{
sup
z,x

∣∣∣ĝ(z, x; X̃)− Ez̃,X̃

{
ĝ(z, x; X̃)

}∣∣∣ ≥ τn−γ/2

}
≤ C3n

C4(1−2γ−2θd)exp
(
−Cn1−2γ−2θd)

for some positive constants τ, C3, C4 and C. This is because we can set the ε in the LHS of (S4)

as τn−γ/2 and plug ε into the RHS of (S4). Hence (S5) is proved.
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Lemma 6. Suppose the conditions in Lemma 5 hold, we have

pr

{
sup
z,x

∣∣∣∣∣ ĝ(z, x; X̃)

f̂z̃(z)
− g(z, x; X̃)

fz̃(z)

∣∣∣∣∣ ≥ τn−γ

}
≤ C5n

C6(1−2γ−2θd)exp
(
−Cn1−2γ−2dθ)

for some positive constants τ, C5, C6 and C.

Proof. Under Condition (C3), there exists some constant δ0 ∈ (0, 1) such that Mf := ML−δ0 > 0.

We have

pr

{
sup
z,x

∣∣∣∣∣ ĝ(z, x; X̃)

f̂z̃(z)
− g(z, x; X̃)

fz̃(z)

∣∣∣∣∣ ≥ τn−γ

}

= pr

{
sup
z,x

∣∣∣∣∣ ĝ(z, x; X̃)− g(z, x; X̃)

f̂z̃(z)
+ g(z, x; X̃)

(
1

f̂z̃(z)
− 1

fz̃(z)

)∣∣∣∣∣ ≥ τn−γ

}

≤ pr

{
sup
z,x

∣∣∣∣∣ ĝ(z, x; X̃)− g(z, x; X̃)

f̂z̃(z)

∣∣∣∣∣ ≥ τn−γ/2,
∣∣∣f̂z̃(z)

∣∣∣ ≥Mf

}
+

pr

sup
z,x

∣∣∣g(z, x; X̃)
∣∣∣
∣∣∣f̂z̃(z)− fz̃(z)

∣∣∣∣∣∣f̂z̃(z)
∣∣∣ |fz̃(z)|

≥ τn−γ/2,
∣∣∣f̂z̃(z)

∣∣∣ ≥Mf

+

pr
{∣∣∣f̂z̃(z)

∣∣∣ < Mf

}
. (S9)

For the first term of the RHS of (S9), by Lemma 5, for some positive constants C ′5, C
′
6 and C ′,

pr

{
sup
z,x

∣∣∣∣∣ ĝ(z, x; X̃)− g(z, x; X̃)

f̂z̃(z)

∣∣∣∣∣ ≥ τn−γ/2,
∣∣∣f̂z̃(z)

∣∣∣ ≥Mf

}

≤ pr

{
sup
z,x

∣∣∣ĝ(z, x; X̃)− g(z, x; X̃)
∣∣∣ ≥ τMfn

−γ/2

}
≤ C ′5n

C′6(1−2γ−2θd)exp
(
−C ′n1−2γ−2θd) .

For the second term of the RHS of (S9), by Lemma 5, for some positive constants C ′′5 , C
′′
6 and C ′′,

pr

sup
z,x

∣∣∣g(z, x; X̃)
∣∣∣
∣∣∣f̂z̃(z)− fz̃(z)

∣∣∣∣∣∣f̂z̃(z)
∣∣∣ |fz̃(z)|

≥ τn−γ/2,
∣∣∣f̂z̃(z)

∣∣∣ ≥Mf


≤ pr

{
sup
z,x

∣∣∣f̂z̃(z)− fz̃(z)
∣∣∣ ≥ τMfMLM

−1
U n−γ/2

}
≤ C ′′5n

C′′6 (1−2γ−2θd)exp
(
−C ′′n1−2γ−2θd) .

7



For the third term of the RHS of (S9), we have

pr
{∣∣∣f̂z̃(z)

∣∣∣ < Mf

}
= pr

{∣∣∣fz̃(z) + f̂z̃(z)− fz̃(z)
∣∣∣ < Mf

}
≤ pr

{
|fz̃(z)| −

∣∣∣f̂z̃(z)− fz̃(z)
∣∣∣ < ML − δ0

}
≤ pr

{∣∣∣f̂z̃(z)− fz̃(z)
∣∣∣ > δ0

}
,

then by Lemma 5, for some positive constants C ′′′5 , C
′′′
6 and C ′′′, choose δ0 = τn−γ for some proper

τ and γ,

pr
{∣∣∣f̂z̃(z)

∣∣∣ < Mf

}
≤ pr

{∣∣∣f̂z̃(z)− fz̃(z)
∣∣∣ > τn−γ

}
≤ C ′′′5 n

C′′′6 (1−2γ−2θd)exp
(
−C ′′′n1−2γ−2θd) .

Hence we have

pr

{
sup
z,x

∣∣∣∣∣ ĝ(z, x; X̃)

f̂z̃(z)
− g(z, x; X̃)

fz̃(z)

∣∣∣∣∣ ≥ τn−γ

}
≤ C5n

C6(1−2γ−2θd)exp
(
−Cn1−2γ−2θd)

for some positive constants C5, C6 and C.

Lemma 7. Suppose that A(u) and B(u) are functions of vector u ∈ U. They satisfy

sup
u∈U
|A(u)| ≤MA <∞, sup

u∈U
|B(u)| ≤MB <∞.

sup
u∈U

∣∣∣Â(u)
∣∣∣ ≤MÂ <∞, sup

u∈U

∣∣∣B̂(u)
∣∣∣ ≤MB̂ <∞.

Suppose we have

sup
u∈U

pr
{∣∣∣Â(u)− A(u)

∣∣∣ ≥ τn−γ
}
≤ C ′7n

C′8(1−η)exp
(
−C ′n1−η) ,

sup
u∈U

pr
{∣∣∣B̂(u)−B(u)

∣∣∣ ≥ τn−γ
}
≤ C ′′7n

C′′8 (1−η)exp
(
−C ′′n1−η) ,

where τ, γ, C ′7, C
′′
7 , C

′
8, C

′′
8 and η < 1 are positive constants. Then we have

sup
u∈U

pr
{∣∣∣Â(u)B̂(u)− A(u)B(u)

∣∣∣ ≥ τn−γ
}
≤ C7n

C8(1−η)exp
(
−Cn1−η)

for some positive constants C7, C8 and C.
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Proof. For some proper constants C9, C
′
9, C10, C

′
10, C11 and C ′11,

sup
u∈U

pr
{∣∣∣Â(u)B̂(u)− A(u)B(u)

∣∣∣ ≥ τn−γ
}

= sup
u∈U

pr
{∣∣∣Â(u)B̂(u)− Â(u)B(u) + Â(u)B(u)− A(u)B(u)

∣∣∣ ≥ τn−γ
}

≤ sup
u∈U

pr
{∣∣∣Â(u)

∣∣∣ ∣∣∣B̂(u)−B(u)
∣∣∣ ≥ τn−γ/2

}
+ sup

u∈U
pr
{
|B(u)|

∣∣∣Â(u)− A(u)
∣∣∣ ≥ τn−γ/2

}
≤ sup

u∈U
pr
{∣∣∣B̂(u)−B(u)

∣∣∣ ≥ τM−1
Â
n−γ/2

}
+ sup

u∈U
pr
{∣∣∣Â(u)− A(u)

∣∣∣ ≥ τM−1
B n−γ/2

}
≤ C9n

C10(1−η)exp
(
−C11n

1−η)+ C ′9n
C′10(1−η)exp

(
−C ′11n1−η)

≤ C7n
C8(1−η)exp

(
−Cn1−η) ,

where C7, C8 and C are some proper positive constants.

S.2.2 Proof of Theorem 1(i)

Denote ρ(Xk, Y |Z) as ρk and ρ̂(Xk, Y |Z) as ρ̂k. Define

ρ̃k = ρ̃(Xk, Y | z) = n−2
n∑
i=1

n∑
j=1

{(
e−|Uki−Ukj | + e−Uki + eUki−1 + e−Ukj + eUkj−1 + 2e−1 − 4

)
(
e−|Vi−Vj | + e−Vi + eVi−1 + e−Vj + eVj−1 + 2e−1 − 4

)
e−‖wi−wj‖1

}
.

We have

pr

(
max
k∈[p]
|ρ̂k − ρk| ≥ an−γ

)
≤ pr

(
max
k∈[p]
|ρ̂k − ρ̃k| > an−γ/2

)
+ pr

(
max
k∈[p]
|ρ̃k − ρk| ≥ an−γ/2

)
. (S10)

We decompose ρk as

ρk = gk1 + gk2 + c7gk3 + gk4 + gk5 + c7gk6 + c7gk7 + c7gk8 + c27gk9,

where

gk1 = E
(
e−|Uk1−Uk2|e−|V1−V2|e−‖w1−w2‖1

)
,
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gk2 = E

[
e−|Uk1−Uk2|

{
2∑
i=1

(
e−Vi + eVi−1

)}
e−‖w1−w2‖1

]
,

gk3 = E
(
e−|Uk1−Uk2|e−‖w1−w2‖1

)
,

gk4 = E

[{
2∑
i=1

(
e−Uki + eUki−1

)}
e−|V1−V2|e−‖w1−w2‖1

]
,

gk5 = E

[{
2∑
i=1

(
e−Uki + eUki−1

)}{ 2∑
i=1

(
e−Vi + eVi−1

)}
e−‖w1−w2‖1

]
,

gk6 = E

[{
2∑
i=1

(
e−Uki + eUki−1

)}
e−‖w1−w2‖1

]
,

gk7 = E
(
e−|V1−V2|e−‖w1−w2‖1

)
,

gk8 = E

[{
2∑
i=1

(
e−Vi + eVi−1

)}
e−‖w1−w2‖1

]
,

gk9 = E
(
e−‖w1−w2‖1

)
c7 = 2e−1 − 4.

ρ̃k can be correspondingly decomposed as

ρ̃k = g̃k1 + g̃k2 + c7g̃k3 + g̃k4 + g̃k5 + c7g̃k6 + c7g̃k7 + c7g̃k8 + c27g̃k9,

where

g̃k1 =
1

n2

n∑
i=1

n∑
j=1

(
e−|Uki−Ukj|e−|Vi−Vj |e−‖wi−wj‖1

)
,

g̃k2 =
1

n2

n∑
i=1

n∑
j=1

{
e−|Uki−Ukj| (e−Vi + eVi−1 + e−Vj + eVj−1

)
e−‖wi−wj‖1

}
,

g̃k3 =
1

n2

n∑
i=1

n∑
j=1

(
e−|Uki−Ukj|e−‖wi−wj‖1

)
,

g̃k4 =
1

n2

n∑
i=1

n∑
j=1

{(
e−Uki + eUki−1 + e−Ukj + eUkj−1

)
e−|Vi−Vj |e−‖wi−wj‖1

}
,

g̃k5 =
1

n2

n∑
i=1

n∑
j=1

{(
e−Uki + eUki−1 + e−Ukj + eUkj−1

) (
e−Vi + eVi−1 + e−Vj + eVj−1

)
e−‖wi−wj‖1

}
,
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g̃k6 =
1

n2

n∑
i=1

n∑
j=1

{(
e−Uki + eUki−1 + e−Ukj + eUkj−1

)
e−‖wi−wj‖1

}
,

g̃k7 =
1

n2

n∑
i=1

n∑
j=1

(
e−|Vi−Vj |e−‖wi−wj‖1

)
,

g̃k8 =
1

n2

n∑
i=1

n∑
j=1

{(
e−Vi + eVi−1 + e−Vj + eVj−1

)
e−‖wi−wj‖1

}
,

g̃k9 =
1

n2

n∑
i=1

n∑
j=1

(
e−‖wi−wj‖1

)
.

ρ̂k can be decomposed in the same way as

ρ̂k = ĝk1 + ĝk2 + c7ĝk3 + ĝk4 + ĝk5 + c7ĝk6 + c7ĝk7 + c7ĝk8 + c27ĝk9,

where

ĝk1 =
1

n2

n∑
i=1

n∑
j=1

(
e−|Ûki−Ûkj|e−|V̂i−V̂j|e−‖ŵi−ŵj‖1

)
,

ĝk2 =
1

n2

n∑
i=1

n∑
j=1

{
e−|Ûki−Ûkj|

(
e−V̂i + eV̂i−1 + e−V̂j + eV̂j−1

)
e−‖ŵi−ŵj‖1

}
,

ĝk3 =
1

n2

n∑
i=1

n∑
j=1

(
e−|Ûki−Ûkj|e−‖ŵi−ŵj‖1

)
,

ĝk4 =
1

n2

n∑
i=1

n∑
j=1

{(
e−Ûki + eÛki−1 + e−Ûkj + eÛkj−1

)
e−|V̂i−V̂j|e−‖ŵi−ŵj‖1

}
,

ĝk5 =
1

n2

n∑
i=1

n∑
j=1

{(
e−Ûki + eÛki−1 + e−Ûkj + eÛkj−1

)(
e−V̂i + eV̂i−1 + e−V̂j + eV̂j−1

)
e−‖ŵi−ŵj‖1

}
,

ĝk6 =
1

n2

n∑
i=1

n∑
j=1

[{
e−Ûki + eÛki−1 + e−Ûkj + eÛkj−1

}
e−‖ŵi−ŵj‖1

]
,

ĝk7 =
1

n2

n∑
i=1

n∑
j=1

(
e−|V̂i−V̂j|e−‖ŵi−ŵj‖1

)
,

ĝk8 =
1

n2

n∑
i=1

n∑
j=1

[(
e−V̂i + eV̂i−1 + e−V̂j + eV̂j−1

)
e−‖ŵi−ŵj‖1

]
,

ĝk9 =
1

n2

n∑
i=1

n∑
j=1

(
e−‖ŵi−ŵj‖1

)
.

The following proof consists of three steps:
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Step 1. We deal with the first term of the RHS of (S10), i.e., we prove that

pr

(
max
k∈[p]
|ρ̂k − ρ̃k| ≥ an−γ

)
≤ cpnc̃{1−2γ−2θs}exp

{
−c′n1−2γ−2θs}

for some proper positive constants c, c̃ and c′.

We first deal with ĝk1 and g̃k1 with the goal to prove that

pr
(
|ĝk1 − g̃k1| ≥ an−γ

)
≤ cpnc̃{1−2γ−2θs}exp

{
−c′n1−2γ−2θs} . (S11)

By Lemma 6, for some positive constants b′1, b
′
2 and b′3, we have

pr
(

max
i

∣∣∣Ûki − Uki∣∣∣ ≥ an−γ
)

= pr

{
max
i

∣∣∣∣∣ ĝ(zi, Xki;Xk)

f̂z(zi)
− g(zi, Xki;Xk)

fz(zi)

∣∣∣∣∣ ≥ an−γ

}

≤ pr

{
sup
z,x

∣∣∣∣∣ ĝ(z, x;Xk)

f̂z(z)
− g(z, x;Xk)

fz(z)

∣∣∣∣∣ ≥ an−γ

}
≤ b′1n

b′2(1−2γ−2θs)exp
(
−b′3n1−2γ−2θs) .

Then for some positive constants b1, b2 and b3,

pr

(
max
i,j

∣∣∣∣ ∣∣∣Ûki − Ûkj∣∣∣− |Uki − Ukj| ∣∣∣∣ ≥ an−γ
)

≤ pr
(

max
i

∣∣∣Ûki − Uki∣∣∣ ≥ an−γ/2
)

+ pr

(
max
j

∣∣∣Ûkj − Ukj∣∣∣ ≥ an−γ/2

)
≤ b1n

b2(1−2γ−2θs)exp
(
−b3n1−2γ−2θs) .

Since |e−x − e−y| ≤ |x− y| for x > 0 and y > 0, we have

pr

(
max
i,j

∣∣∣e|Ûki−Ûkj| − e|Uki−Ukj|
∣∣∣ ≥ an−γ

)
≤ pr

(
max
i,j

∣∣∣∣∣∣Ûki − Ûkj∣∣∣− |Uki − Ukj|∣∣∣ ≥ an−γ
)

≤ b1n
b2(1−2γ−2θs)exp

(
−b3n1−2γ−2θs) . (S12)

Similarly, for some positive constants b4, b5 and b6,

pr

(
max
i,j

∣∣∣e−|V̂i−V̂j| − e−|Vi−Vj |∣∣∣ ≥ an−γ
)

≤ b4n
b5{1−2γ−2θs}exp

{
−b6n1−2γ−2θs} , (S13)
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and for some positive constants b7, b8 and b9,

pr

(
max
i,j

∣∣e−‖ŵi−ŵj‖1 − e−‖wi−wj‖1
∣∣ ≥ an−γ

)
≤ b7n

b8{1−2γ−2θ(s−1)}exp
{
−b9n1−2γ−2θ(s−1)} . (S14)

By Lemma 7, (S12), (S13) and (S14), for some positive constants c1, c̃1 and c′1, we have

pr

(
max
i,j

∣∣∣e|Ûki−Ûkj|e−|V̂i−V̂j|e−‖ŵi−ŵj‖1 − e|Uki−Ukj|e−|Vi−Vj |e−‖wi−wj‖1
∣∣∣ ≥ an−γ

)
≤ c1n

c̃1{1−2γ−2θs}exp
{
−c′1n1−2γ−2θs} .

Now we have

pr(|ĝk1 − g̃k1| ≥ an−γ)

= pr

{∣∣∣∣∣ 1

n2

n∑
i=1

n∑
j=1

(
e|Ûki−Ûkj|e−|V̂i−V̂j|e−‖ŵi−ŵj‖1 − e|Uki−Ukj|e−|Vi−Vj |e−‖wi−wj‖1

)∣∣∣∣∣ ≥ an−γ

}

≤ pr

(
1

n2

n∑
i=1

n∑
j=1

∣∣∣e|Ûki−Ûkj|e−|V̂i−V̂j|e−‖ŵi−ŵj‖1 − e|Uki−Ukj|e−|Vi−Vj |e−‖wi−wj‖1
∣∣∣ ≥ an−γ

)

≤ pr

(
max
i,j

∣∣∣e|Ûki−Ûkj|e−|V̂i−V̂j|e−‖ŵi−ŵj‖1 − e|Uki−Ukj|e−|Vi−Vj |e−‖wi−wj‖1
∣∣∣ ≥ an−γ

)
≤ c1n

c̃1{1−2γ−2θs}exp
{
−c′1n1−2γ−2θs} .

Repeating the above scheme can give us results similar to (S11):

pr(|ĝk2 − g̃k2| ≥ an−γ) ≤ c2n
c̃2{1−2γ−2θs}exp

{
−c′2n1−2γ−2θs} ,

pr(|ĝk3 − g̃k3| ≥ an−γ) ≤ c3n
c̃3{1−2γ−2θs}exp

{
−c′3n1−2γ−2θs} ,

pr(|ĝk4 − g̃k4| ≥ an−γ) ≤ c4n
c̃4{1−2γ−2θs}exp

{
−c′4n1−2γ−2θs} ,

pr(|ĝk5 − g̃k5| ≥ an−γ) ≤ c5n
c̃5{1−2γ−2θs}exp

{
−c′5n1−2γ−2θs} ,

pr(|ĝk6 − g̃k6| ≥ an−γ) ≤ c6n
c̃6{1−2γ−2θs}exp

{
−c′6n1−2γ−2θs} ,

pr(|ĝk7 − g̃k7| ≥ an−γ) ≤ c7n
c̃7{1−2γ−2θs}exp

{
−c′7n1−2γ−2θs} ,

pr(|ĝk8 − g̃k8| ≥ an−γ) ≤ c8n
c̃8{1−2γ−2θs}exp

{
−c′8n1−2γ−2θs} ,

pr(|ĝk9 − g̃k9| ≥ an−γ) ≤ c9n
c̃9{1−2γ−2θ(s−1)}exp

{
−c′9n1−2γ−2θ(s−1)} ,
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where {ci}9i=2, {c̃i}9i=2 and {c′i}9i=2 are some positive constants. Then for some positive constants

c, c̃ and c′ we have

pr(|ρ̂k − ρ̃k| ≥ an−γ)

= pr
{
|(ĝk1 − g̃k1)− (ĝk2 − g̃k2) + c5(ĝk3 − g̃k3) + (ĝk4 − g̃k4)− (ĝk5 − g̃k5)

+c5(ĝk6 − g̃k6) + c6(ĝk7 − g̃k7)− c6(ĝk8 − g̃k8) + c5c6(ĝk9 − g̃k9)| ≥ an−γ
}

≤ pr
(
|ĝk1 − g̃k1| ≥

a

9
n−γ
)

+ pr
(
|ĝk2 − g̃k2| ≥

a

9
n−γ
)

+ pr

(
|ĝk3 − g̃k3| ≥

a

9c5
n−γ
)

+pr
(
|ĝk4 − g̃k4| ≥

a

9
n−γ
)

+ pr
(
|ĝk5 − g̃k5| ≥

a

9
n−γ
)

+ pr

(
|ĝk6 − g̃k6| ≥

a

9c5
n−γ
)

+pr

(
|ĝk7 − g̃k7| ≥

a

9c6
n−γ
)

+ pr

(
|ĝk8 − g̃k8| ≥

a

9c6
n−γ
)

+ pr

(
|ĝk9 − g̃k9| ≥

a

9c5c6
n−γ
)

≤ cnc̃{1−2γ−2θs}exp
{
−c′n1−2γ−2θs} ,

and hence

pr

(
max
k∈[p]
|ρ̂k − ρ̃k| ≥ an−γ

)
≤ cpnc̃{1−2γ−2θs}exp

{
−c′n1−2γ−2θs} (S15)

for some proper positive constants a, c, c̃ and c′.

Step 2. We deal with the second term of the RHS of (S10), i.e., we prove that

pr

(
max
k∈[p]
|ρ̃k − ρk| ≥ an−γ

)
≤ cp exp

(
−bn1−2γ)

for some proper a > 0, b > 0 and c > 0.

By Condition (C2), Uk = FXk|Z(Xk | Z), V = FY |Z(Y | Z), W1 = FZ1(Z1), ...,Ws =

FZs|Z1,...,Zs−1(· | Z1, ..., Zs−1) are all one to one transformation, so instead of seeing ρk as a function

of Xk, Y and z, we consider it as a function of Uk, V and w.

We first deal with g̃k1. Define g̃∗k1 = (n(n− 1))−1
∑

i 6=j

(
e−|Uki−Ukj|e−|Vi−Vj |e−‖wi−wj‖1

)
, which

is a U-statistic. g̃k1 can be rewritten as

g̃k1 =
1

n2

{
n(n− 1)g̃∗k1 +

n∑
i=1

∑
j=i

(
e−|Uki−Ukj|e−|Vi−Vj |e−‖wi−wj‖1

)}
=
n− 1

n
g̃∗k1 +

1

n
.
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For any given ε > 0, there is a large enough n such that ε ≥ 2(1− gk1)/(n+ 1). Then, we have

pr (|g̃k1 − gk1| ≥ ε) = pr

{∣∣∣∣n− 1

n
(g̃∗k1 − gk1) +

1

n
(1− gk1)

∣∣∣∣ ≥ ε

}
≤ pr

(
n− 1

n
|g̃∗k1 − gk1|+

1

n
|1− gk1| ≥ ε

)
≤ pr

(
|g̃∗k1 − gk1| ≥

ε

2

)
. (S16)

To prove the uniform consistency of g̃k1, it suffices to show the uniform consistency of g̃∗k1.

By Markov’s inequality, for any t > 0,

pr (g̃∗k1 − gk1 ≥ ε) = pr [exp {t(g̃∗k1 − gk1)} ≥ exp (tε)] ≤ exp (−tε) exp (−tgk1)E {exp (tg̃∗k1)} .

(S17)

Denote the kernel of g̃∗k1 as h1(Uki, Vi,wi;Ukj, Vj,wj) = e−|Uki−Ukj|e−|Vi−Vj |e−‖wi−wj‖1 . Since

U-statistic can be represented as an average of averages of i.i.d. random variables, we can

rewrite g̃∗k1 as g̃∗k1 = (n!)−1
∑

n! Ω1(Uki1 , Vi1 ,wi1 ; ...;Ukin , Vin ,win), where
∑

n! denotes the summa-

tion over all n! permutations (i1, ..., in) of (1, ..., n), and each Ω1(Uki1 , Vi1 ,wi1 ; ...;Ukin , Vin ,win)

is an average of m = bn/2c, i.e., m−1
∑m

r=1 h1(Uk,i2r−1 , Vi2r−1 ,wi2r−1 ;Uk,i2r , Vi2r ,wi2r). Denote

h1(Uk,i2r−1 , Vi2r−1 ,wi2r−1 ;Uk,i2r , Vi2r ,wi2r) as h
(r)
1 . By Jensen’s inequality,

E {exp (tg̃∗k1)} = E

{
exp

(
t

1

n!

∑
n!

1

m

m∑
r=1

h
(r)
1

)}

≤ 1

n!

∑
n!

E

{
exp

(
t

m

m∑
r=1

h
(r)
1

)}

= Em
{

exp

(
t

m
h
(r)
1

)}
(S18)

Combining (S17) and (S18), since h
(r)
1 ∈ [e−2(s+2), 1], then by Lemma 2,

pr (g̃∗k1 − gk1 ≥ ε) ≤ exp (−tε)Em
[
exp

{
t

m

(
h
(r)
1 − g1

)}]
≤ exp (−tε)

[
exp

{(
t

m

)2 (
1− e−2(s+2)

)2
/8

}]m

≤ exp

{
−tε+ t2

(
1− e−2(s+2)

)2
8m

}
.
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By Chernoff’s method, when t = 4mε
(
1− e−2(s+2)

)−2
, we have

pr (g̃∗k1 − gk1 ≥ ε) ≤ exp

{
−2mε2

(1− e−2(s+2))
2

}
.

Then by the symmetry of U-statistic,

pr (|g̃∗k1 − gk1| ≥ ε) ≤ 2exp

{
−2mε2

(1− e−2(s+2))
2

}
.

Choose ε = an−γ and some proper b1 > 0 and c > 0, by (S16) we have

pr
(
|g̃k1 − gk1| ≥ an−γ

)
≤ c exp

(
−b1n1−2γ) . (S19)

Similarly, we have results like (S19) for g̃k2, ..., g̃k9 that hold for some proper bl > 0 and c > 0:

pr
(
|g̃kl − gkl| ≥ an−γ

)
≤ c exp

(
−bln1−2γ) , l = 2, ..., 9. (S20)

Then we have

pr
(
|ρ̃k − ρk| ≥ an−γ

)
= pr

{
|(g̃k1 − gk1)− (g̃k2 − gk2) + c5(g̃k3 − gk3) + (g̃k4 − gk4)− (g̃k5 − gk5)

+c5(g̃k6 − gk6) + c6(g̃k7 − gk7)− c6(g̃k8 − gk8) + c5c6(g̃k9 − gk9)| ≥ an−γ
}

≤ pr
(
|g̃k1 − gk1| ≥

a

9
n−γ
)

+ pr
(
|g̃k2 − gk2| ≥

a

9
n−γ
)

+ pr

(
|g̃k3 − gk3| ≥

a

9c5
n−γ
)

+pr
(
|g̃k4 − gk4| ≥

a

9
n−γ
)

+ pr
(
|g̃k5 − gk5| ≥

a

9
n−γ
)

+ pr

(
|g̃k6 − gk6| ≥

a

9c5
n−γ
)

+pr

(
|g̃k7 − gk7| ≥

a

9c6
n−γ
)

+ pr

(
|g̃k8 − gk8| ≥

a

9c6
n−γ
)

+ pr

(
|g̃k9 − gk9| ≥

a

9c5c6
n−γ
)

≤ c exp
(
−bn1−2γ)

and hence

pr

(
max
k∈[p]
|ρ̃k − ρk| ≥ an−γ

)
≤ cp exp

(
−bn1−2γ) (S21)

for some proper a > 0, b > 0 and c > 0.

Step 3. By (S15) and (S21), we have

pr

(
max
k∈[p]
|ρ̂k − ρk| ≥ an−γ

)
≤ pr

(
max
k∈[p]
|ρ̂k − ρ̃k| ≥ an−γ/2

)
+ pr

(
max
k∈[p]
|ρ̃k − ρk| ≥ an−γ/2

)
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≤ cpnc̃{1−2γ−2θs}exp
{
−c′n1−2γ−2θs}

for some proper positive constants a, c, c̃ and c′.

S.2.3 Proof of Theorem 1(ii)

By assumption (10), M * M̂ implies that there exists some j ∈ M such that ρ̂j < an−γ, which

means |ρ̂j − ρj| ≥ an−γ. So, we have

pr
(
M⊆ M̂

)
≥ 1− pr

(
|ρ̂j − ρj| ≥ an−γ for some j ∈M

)
≥ 1− |M|max

j∈M
pr
(
|ρ̂j − ρj| ≥ an−γ

)
≥ 1− c1 |M|nc2{1−2γ−2θs}exp

{
−c3n1−2γ−2θs}

for some proper positive constants c1, c2 and c3.

S.2.4 Proof of Theorem 1(iii)

Under Condition (C5), there exists some δ1 = minj∈M ρj −maxj∈Mc ρj > 0. Thus

pr

(
min
j∈M

ρ̂j ≤ max
j∈Mc

ρ̂j

)
= pr

(
min
j∈M

ρ̂j −min
j∈M

ρj + δ1 ≤ max
j∈Mc

ρ̂j − max
j∈Mc

ρj

)
= pr

(
max
j∈Mc

ρ̂j − max
j∈Mc

ρj − (min
j∈M

ρ̂j −min
j∈M

ρj) ≥ δ1

)
≤ pr

(∣∣∣∣max
j∈Mc

ρ̂j − max
j∈Mc

ρj + (min
j∈M

ρj −min
j∈M

ρ̂j)

∣∣∣∣ ≥ δ1

)
≤ pr

(∣∣∣∣max
j∈Mc

ρ̂j − max
j∈Mc

ρj

∣∣∣∣ ≥ δ1/2

)
+ pr

(∣∣∣∣min
j∈M

ρ̂j −min
j∈M

ρj

∣∣∣∣ ≥ δ1/2

)
≤ 2pr

(
max
j∈[p]
|ρ̂j − ρj| ≥ δ1/2

)
.

For some a, γ and θ as defined in Theorem 1(iii), choose δ1/2 = an−γ, we have

pr

(
max
j∈Mc

ρ̂j < min
j∈M

ρ̂j

)
≥ 1− c4pnc5{1−2γ−2θs}exp

{
−c6n1−2γ−2θs}

for some proper positive constants c4, c5 and c6.
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S.2.5 Lemmas for Proof of Theorem 2

Lemma 8. Let {Xi}ni=1 be identically distributed as Bernoulli(p), and denote Sn = X1 + · · ·+Xn.

Then for any j ∈ {1, ..., n}, we have pr{Xj = 1 | Sn} = Sn/n.

Proof. For any j ∈ {1, ..., n}, since {Xi}ni=1 are identically distributed, we have

Sn = E(Sn | Sn) = E

(
n∑
i=1

Xi | Sn

)
=

n∑
i=1

E(Xi | Sn) = nE(Xj | Sn)

=⇒ pr{Xj = 1 | Sn} = E(Xj | Sn) =
Sn
n

Lemma 9. Consider two independent sequences of random variables {A1i}∞i=1 and {A2i}∞i=1 that

converge in distribution to the same random variable A. Then we have that sgn(A1i−A2i) converges

in distribution to Bernoulli(1/2).

Proof. Let ψ1n, ψ2n and ψ be the characteristic functions of A1n, A2n and A. Then we have,

for every t, ψ1n(t) → ψ(t) and ψ2n(t) → ψ(t) as n → ∞. Define A− = A1n − A2n and A− =

A2n−A1n, then the characteristic function of A− is ψn−(t) = ψ1n(t)ψ2n(−t)→ ψ(t)ψ(−t), and the

characteristic function of A− is ψ−n (t) = ψ2n(t)ψ1n(−t)→ ψ(−t)ψ(t). Define the random variable

that has characteristic function ψ(−t)ψ(t) as B.

Consider pr(A− ≥ 0) and pr(A− > 0). We have pr(A− ≥ 0) + pr(A− > 0) = 1, pr(A− ≥ 0)→

pr(B ≥ 0) and pr(A− > 0) → pr(B ≥ 0), so pr(A− ≥ 0) → 1/2 and pr(A− > 0) → 1/2, hence

pr{sgn(A1i − A2i) = +1} → 1/2 and pr{sgn(A1i − A2i) = −1} → 1/2.

Lemma 10. For any Bk defined in Theorem 2, we have that Bk converges in distribution to

Bernoulli(1/2).

Proof. By definition (11), the distribution of Bk is the same as the distribution of sgn(n1ρ̂k1 −

n2ρ̂k2). By Lemma 1.2, n1ρ̂k1 and n2ρ̂k2 has the same limiting distribution, so by Lemma 9, Bk

converges in distribution to Bernoulli(1/2).
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Lemma 11. Denote the index set of Mc as {1, ..., p0}. For {Sk}p0k=1 defined in Theorem 2, under

Condition (C6), we have Sp0/p0
p−→ 1/2 as (n, p0)→∞.

Proof. By Markov’s inequality, given the constant λ defined in Condition (C6), we have

pr

{∣∣∣∣Sp0p0 − 1

2

∣∣∣∣ ≥ c
− 1

2
n

}
≤ cnE

(
Sp0
p0
− 1

2

)2

= cn

{
E
(
Sp0
p0
− E

Sp0
p0

)2

+ E
(
E
Sp0
p0
− 1

2

)2

+ 2E
[(

Sp0
p0
− E

Sp0
p0

)(
E
Sp0
p0
− 1

2

)]}
= cn (A1 + A2 + A3)

= cn (A1 + A2) . (S22)

The last equation holds since A3 = 0. We prove (S22) → 0 as (n, p0)→∞ in two steps:

Step 1. We prove that cnA1 → 0 as (n, p0)→ 0.

Let {B′k}
p0
k=1 be a copy of {Bk}p0k=1, such that B′k ⊥⊥ B′j for all k 6= j and B′k

iid∼ Bk. Denote

S ′p0 = B′1 + · · · + B′p0 , E takes expectation with respect to {Bk}p0k=1 and E′ takes expectation

with respect to {B′k}
p0
k=1. Let {εk}p0k=1 be i.i.d. random variables with pr(εk = ±1) = 1/2 for

k = 1, . . . , p0, i.e., a sequence with Rademacher distribution, and Eε takes expectation with

respect to {εk}p0k=1. Then we have

cnA1 =
cn
p20
E (Sp0 − ESp0)

2 =
cn
p20
E
(
Sp0 − E′S ′p0

)2
=
cn
p20
E
(
E′
(
Sp0 − S ′p0

))2
≤ cn

p20
EE′

(
Sp0 − S ′p0

)2
(S23)

=
cn
p20
EE′

(
p0∑
k=1

(Bk −B′k)

)2

=
cn
p20
EE′Eε

(
p0∑
k=1

εk(Bk −B′k)

)2

(S24)

=
cn
p20
EE′

Eε

(
p0∑
k=1

εkBk

)2

+ Eε

(
p0∑
k=1

εkB
′
k

)2

− 2Eε

(
p0∑
k=1

εkBk

)(
p0∑
k=1

εkB
′
k

)
≤ cn

p20
EE′

Eε

(
p0∑
k=1

εkBk

)2

+ Eε

(
p0∑
k=1

εkB
′
k

)2
 (S25)
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= 2
cn
p20
EEε

(
p0∑
k=1

εkBk

)2

≤ 2
cn
p20
E

(
p0∑
k=1

B2
k

)
(S26)

= 2
cn
p0
EB2

k

≤ 2
cn
p0

(S27)

→ 0 as (n, p0)→∞. (S28)

(S23) is by Jensen’s inequality. (S24) is because Bk−B′k and εk(Bk−B′k) have the same distribution

for k = 1, ..., p0. (S25) is because

Eε

(
p0∑
k=1

εkBk

)(
p0∑
k=1

εkB
′
k

)
= Eε

(
p0∑
k=1

ε2kBkB
′
k

)
=

p0∑
k=1

BkB
′
k ≥ 0.

(S26) is by Khintchine inequality. (S27) is because Bk ∈ {0, 1}. (S28) holds by Condition (C6.2).

Step 2. We prove that cnA2 → 0 as (n, p0)→ 0.

cnA2 = cn

(
E
Sp0
p0
− 1

2

)2

= cn

(
EBk −

1

2

)2

= cn
{
o
(
c−1n
)}2

= o
{
c−1n
}
.

The third equation holds by Condition (C6.1), and cn → ∞ as n → ∞ gives cnA2 → 0 as

(n, p0)→ 0.

By Step 1 and 2, we have (S22) → 0 as (n, p0)→ 0, thus Sp0/p0
p−→ 1/2 as (n, p0)→∞.

S.3 Extensions to Discrete Data

In this section, we discuss how to extend the proposed method to the discrete data setting. To

begin with, we assume that X, Y and Z are discrete random variables. Define FX|Z(x | z) =

P (X ≤ x | Z = z), FX|Z(x− | z) = P (X < x | Z = z), FY |Z(y | z) = P (Y ≤ y | Z = z), and

FY |Z(y− | z) = P (Y < y | Z = z). We further let UX and UY be two independent and identically

distributed U(0, 1) random variables, and apply the transformations

U = (1− UX)FX|Z(X− | Z) + UXFX|Z(X | Z), (S29)
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V = (1− UY )FY |Z(Y− | Z) + UY FY |Z(Y | Z). (S30)

According to Brockwell (2007), both U and V are uniformly distributed on (0, 1). In addition,

U⊥⊥Z and V⊥⊥Z. In the following proposition, we establish the equivalence between conditional

independence and mutual independence. The following proposition is adapted from Theorem 8 of

Cai et al. (2022).

Proposition 1. For discrete random variables X, Y and Z, X⊥⊥Y | Z if and only if U, V and Z

are mutually independent.

We summarize all the cases of X, Y , and Z in the following table. One can also follow the

proof of Theorem 8 in Cai et al. (2022) and show that X⊥⊥Y | Z if and only if U, V and W are

mutually independent.

U
X is continuous, X is discrete,
U = FX|Z(X | Z). U = (1− UX)FX|Z(X− | Z) + UXFX|Z(X | Z).

V
Y is continuous, Y is discrete,
V = FY |Z(X | Z). V = (1− VX)FY |Z(Y− | Z) + UY FY |Z(Y | Z).

W
Z is continuous, Z is discrete,
W = FZ(Z). W = Z.

Note that for discrete data, the conditional cumulative distribution function is a step-wise

function that does not require kernel estimations. After estimating Û , V̂ , and Ŵ , we can estimate

the marginal screening utility by V -statistics similar to (6) in the main paper.

S.4 FDR Control Performance of ISIS-SCAD

Table S1 reports the average number of selected predictors, the selection probability of true vari-

ables, the empirical FDR and the F1 score of ISIS-SCAD for Example 3.

As shown in Table 1, although the ISIS-SCAD has a higher probability of choosing the true

variables, this comes at the expense of a high FDR rate and low F1 score. It shows that the

proposed CIS-REDS is a better choice if researchers want to control the false discoveries.
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Table S1: FDR control of ISIS-SCAD for Example 3. Seven true active predictors {Xk}9k=3 are

to be identified.
∣∣∣M̂∣∣∣ is the average number of selected predictors, Pk, k = 3, ..., 9 report the

probability that the active predictor Xk is selected, Pa stands for the probability that all active
predictors are selected.

Model
∣∣∣M̂∣∣∣ P2 P3 P4 P5 P6 P7 P8 Pa F̂DR F1 Score

7 37.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.811 0.318
8 37.000 0.990 0.990 0.990 0.990 0.990 1.000 0.990 0.990 0.812 0.318
9 37.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.811 0.318
10 37.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.811 0.318
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