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Abstract

Supplementary material contained in this note includes proofs of the forward and
reverse mappings between the original parameters of the VAR model and the new
set of uncontrained parameters; additional plots, simulations and text illustrating
properties of the prior over the stationary region; full details of the modified param-
eterization of Roy et al. (2019) and its vague prior; a complete description of the
extension of the reparameterization and prior to VARMA models; and further details
on the application to macroeconomic data.
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S1 Proofs of mappings between the VARm(p) param-

eters and partial autocorrelations

S1.1 Definitions and preliminary results

Let Gs and gs (s = 1, . . . , p) be ms×ms and ms×m block matrices defined as

Gs =


Γ0 Γ T

1 · · · Γ T
s−1

Γ1 Γ0 · · · Γ T
s−2

...
...

. . .
...

Γs−1 Γs−2 · · · Γ0

 , gs =


Γ1

Γ2

...

Γs


with blockwise transposes denoted by

G∗s =


Γ0 Γ1 · · · Γs−1

Γ T
1 Γ0 · · · Γs−2
...

...
. . .

...

Γ T
s−1 Γ T

s−2 · · · Γ0

 , g∗s =


Γ T
1

Γ T
2

...

Γ T
s

 .

Now denote by g̃s and g̃∗s the reversed matrices

g̃s = Qgs =


Γs

Γs−1
...

Γ1

 , g̃∗s = Qg∗s =


Γ T
s

Γ T
s−1
...

Γ T
1


in which the ms×ms block matrix Q, defined by

Q =


0m · · · 0m Im

0m · · · Im 0m
...

. . .
...

...

Im · · · 0m 0m


is involutory (i.e. its own inverse), symmetric and hence orthogonal.
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Let yi:j = (yT
i , . . . ,y

T
j )T and

Φs =


φT
s1

...

φT
ss

 , Φs,−s =


φT
s1

...

φT
s,s−1

 .

Similarly, define

Φ∗s =


φ∗Ts1

...

φ∗Tss

 , Φ∗s,−s =


φ∗Ts1

...

φ∗Ts,s−1

 .

Using standard multivariate normal theory, the conditional mean of yt+1 given its s

predecessors yt:t−s+1 is

E(yt+1 | yt:t−s+1) = E(yt+1) + Cov(yt+1,yt:t−s+1)Var(yt:t−s+1)
−1 {yt:t−s+1 − E(yt:t−s+1)

}
= 0 + gT

sG
−1
s (yt:t−s+1 − 0)

= gT

sG
−1
s yt:t−s+1

= ΦT

syt:t−s+1 (s = 1, . . . , p).

Therefore

Φs = G−1s gs ⇐⇒ gs = GsΦs, (s = 1, . . . , p), (S1)

in which we refer to the equations on the right as the forward prediction equations. The

corresponding conditional variance is

Var(yt+1 | yt:t−s+1) = Var(yt+1)− Cov(yt+1,yt:t−s+1)Var(yt:t−s+1)
−1Cov(yt:t−s+1,yt+1)

= Γ0 − gT

sG
−1
s gs

= Γ0 − gT

sΦs

= Σs (s = 1, . . . , p).

By symmetry, this gives

Σs = Γ0 − ΦT

s gs, (s = 1, . . . , p). (S2)
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Similarly, the conditional mean of yt−s given its s successors y(t−s+1):t is

E(yt−s | y(t−s+1):t)

= E(yt−s) + Cov(yt−s,y(t−s+1):t)Var(y(t−s+1):t)
−1 {y(t−s+1):t − E(y(t−s+1):t)

}
= 0 + g∗Ts G∗−1s (y(t−s+1):t − 0)

= g∗Ts G∗−1s y(t−s+1):t

= Φ∗Ts y(t−s+1):t (s = 1, . . . , p).

Therefore

Φ∗s = G∗−1s g∗s ⇐⇒ g∗s = G∗sΦ
∗
s, (s = 1, . . . , p), (S3)

in which we refer to the equations on the right as the reverse prediction equations. The

corresponding conditional variance is

Var(yt−s | y(t−s+1):t) = Var(yt−s) + Cov(yt−s,y(t−s+1):t)Var(y(t−s+1):t)
−1Cov(y(t−s+1):t,yt−s)

= Γ0 − g∗Ts G∗−1s g∗s

= Γ0 − g∗Ts Φ∗s

= Σ∗s (s = 1, . . . , p).

By symmetry, this gives

Σ∗s = Γ0 − Φ∗Ts g∗s , (s = 1, . . . , p). (S4)

Before proceeding with the proofs of the forward and reverse mapping, we use the

properties of Q and the forward and reverse prediction equations to derive the following

preliminary results

QΦs = QG−1s gs = (QGsQ)−1Qgs = G∗−1s g̃s (s = 1, . . . , p). (S5)

Similarly,

QΦ∗s = QG∗−1s g∗s = (QG∗sQ)−1Qg∗s = G−1s g̃∗s (s = 1, . . . , p). (S6)
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S1.2 Forward mapping

For s = 1, the forward prediction equation simplifies to give

g1 = G1Φ1 ⇐⇒ Γ1 = Γ0φ
T

11

and so

φ11 = Γ T

1 Γ
−1
0 = Γ T

1 Σ
∗−1
0 . (S7)

Similarly, from the first reverse prediction equation, we arrive at

g∗1 = G∗1Φ
∗
1 ⇐⇒ Γ T

1 = Γ0φ
∗T
11

and so

φ∗11 = Γ1Γ
−1
0 = Γ1Σ

−1
0 . (S8)

We can partition the matrices in the forward prediction equation, GsΦs = gs (s =

2, . . . , p), as follows Gs−1 g̃∗s−1

g̃∗Ts−1 Γ0

Φs,−s
φT
ss

 =

gs−1
Γs


or, equivalently,

Gs−1Φs,−s + g̃∗s−1φ
T

ss = gs−1, (S9)

g̃∗Ts−1Φs,−s + Γ0φ
T

ss = Γs. (S10)

Similarly, we can partition the matrices in the backward prediction equation, G∗sΦ
∗
s = g∗s

(s = 2, . . . , p), as follows G∗s−1 g̃s−1

g̃T
s−1 Γ0

Φ∗s,−s
φ∗Tss

 =

g∗s−1
Γ T
s


or, equivalently,

G∗s−1Φ
∗
s,−s + g̃s−1φ

∗T
ss = g∗s−1, (S11)

g̃T

s−1Φ
∗
s,−s + Γ0φ

∗T
ss = Γ T

s . (S12)
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From (S9) we can write

Φs,−s = G−1s−1(gs−1 − g̃∗s−1φT

ss) = G−1s−1gs−1 −G−1s−1g̃∗s−1φT

ss

and then using (S1) and (S6) we have

Φs,−s = Φs−1 −QΦ∗s−1φT

ss. (S13)

So, blockwise, we have

φs,i = φs−1,i − φssφ∗s−1,s−i, (s = 2, . . . , p; i = 1, . . . , s− 1). (S14)

Similarly, from (S11) we can write

Φ∗s,−s = G∗−1s−1 (g∗s−1 − g̃s−1φ∗Tss ) = G∗−1s−1 g
∗
s−1 −G∗−1s−1 g̃s−1φ

∗T
ss

and then using (S3) and (S5) we have

Φ∗s,−s = Φ∗s−1 −QΦs−1φ∗Tss . (S15)

So, blockwise, we have

φ∗s,i = φ∗s−1,i − φ∗ssφs−1,s−i, (s = 2, . . . , p; i = 1, . . . , s− 1). (S16)

Equations (S14) and (S16) establish the results of step 2(b)(ii) in the forward mapping

from the Appendix in the paper.

Next, taking (S13) in (S10) and using properties of Q we can write

Γ0φ
T

ss = Γs − g̃∗Ts−1Φs,−s

= Γs − g̃∗Ts−1(Φs−1 −QΦ∗s−1φT

ss)

= Γs − g̃∗Ts−1Φs−1 + (Qg∗s−1)
TQΦ∗s−1φ

T

ss

= Γs − g̃∗Ts−1Φs−1 + g∗Ts−1Φ
∗
s−1φ

T

ss.

We therefore have

φss(Γ0 − Φ∗Ts−1g∗s−1) = Γ T

s − ΦT

s−1g̃
∗
s−1
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which, from (S4), is equal to

φssΣ
∗
s−1 = Γ T

s − ΦT

s−1g̃
∗
s−1. (S17)

Solving for φss, we can write

φss = (Γ T

s − ΦT

s−1g̃
∗
s−1)Σ

∗−1
s−1 = (Γ T

s − φs−1,1Γ T

s−1 − · · · − φs−1,s−1Γ T

1 )Σ∗−1s−1 , (S18)

for s = 1, . . . , p which encompasses (S7) as a special case in which ΦT
0 g̃
∗
0 ≡ 0.

Similarly, taking (S15) in (S12) and using properties of Q we can write

Γ0φ
∗T
ss = Γ T

s − g̃T

s−1Φ
∗
s,−s

= Γ T

s − g̃T

s−1(Φ
∗
s−1 −QΦs−1φ∗Tss )

= Γ T

s − g̃T

s−1Φ
∗
s−1 + (Qgs−1)

TQΦs−1φ
∗T
ss

= Γ T

s − g̃T

s−1Φ
∗
s−1 + gT

s−1Φs−1φ
∗T
ss .

We therefore have

φ∗ss(Γ0 − ΦT

s−1gs−1) = Γs − Φ∗Ts−1g̃s−1

which, from (S2) is equal to

φ∗ssΣs−1 = Γs − Φ∗Ts−1g̃s−1. (S19)

Solving for φ∗ss, we can write

φ∗ss = (Γs − Φ∗Ts−1g̃s−1)Σ−1s−1 = (Γs − φ∗s−1,1Γs−1 − · · · − φ∗s−1,s−1Γ1)Σ
−1
s−1, (S20)

for s = 1, . . . , p which encompasses (S8) as a special case in which Φ∗T0 g̃0 ≡ 0. Equa-

tions (S18) and (S20) establish the results in step 2(b)(i) of the forward mapping.

The recursion for the matrices of autoregressive coefficients in the sth forward and

reverse prediction equations involve the conditional variances Σs−1 and Σ∗s−1 (s = 1, . . . , p−

1) and so we need to define a recursion for their computation. Post-multiplying both sides

of the left-hand equation in (1) by yT
t+1 and taking expectations yields

E(yt+1y
T

t+1) =
s∑
i=1

φsiE(yt−i+1y
T

t+1) + E(εs,t+1y
T

t+1) ⇐⇒ Γ0 =
s∑
i=1

φsiΓi +Σs
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and so

Σs = Γ0 − φs1Γ1 − · · ·φssΓs, (s = 1, . . . , p). (S21)

Similarly, post-multiplying both sides of the right-hand equation in (1) by yT
t−s and taking

expectations yields

E(yt−sy
T

t−s) =
s∑
i=1

φ∗siE(yt−s+iy
T

t−s) + E(ε∗s,t−sy
T

t−s) ⇐⇒ Γ0 =
s∑
i=1

φ∗siΓ
T

i +Σ∗s

and so

Σ∗s = Γ0 − φ∗s1Γ T

1 − · · ·φ∗ssΓ T

s , (s = 1, . . . , p). (S22)

Equations (S21) and (S22) establish the results of step 2(b)(iv) in the forward mapping.

Recall that we define the partial autocorrelation matrices P1, . . . , Pp as Ps+1 =

Cov(zs,t+1, z
∗
s,t−s) (s = 0, . . . , p− 1). For s = 0, we can write this as

P1 = Cov(S−10 yt+1 , S
∗−1
0 yt) = S−10 Cov(yt+1,yt)(S

∗T
0 )−1 = S−10 Γ T

1 (S∗T0 )−1

which, using (S7), can be expressed as

P1 = S−10 φ11Σ
∗
0(S∗T0 )−1 = S−10 φ11S

∗
0S
∗T
0 (S∗T0 )−1 = S−10 φ11S

∗
0 . (S23)

Now, for s = 1, . . . , p− 1 we have

Ps+1 = Cov(S−1s εs,t+1 , S
∗−1
s ε∗s,t−s) = S−1s Cov(εs,t+1, ε

∗
s,t−s)(S

∗T
s )−1.

We can write the inner covariance as

Cov(εs,t+1, ε
∗
s,t−s) = Cov(yt+1 − ΦT

syt:t−s+1 , yt−s − Φ∗Ts yt−s+1:t)

= Cov(yt+1,yt−s)− Cov(yt+1,yt−s+1:t)Φ
∗
s

− ΦT

sCov(yt:t−s+1,yt−s) + ΦT

sCov(yt:t−s+1,yt−s+1:t)Φ
∗
s

= Cov(yt+1,yt−s)− Cov(yt+1, Qyt:t−s+1)Φ
∗
s

− ΦT

sCov(yt:t−s+1,yt−s) + ΦT

sCov(yt:t−s+1, Qyt:t−s+1)Φ
∗
s

= Γ T

s+1 − gT

sQΦ
∗
s − ΦT

s g̃
∗
s + ΦT

sGsQΦ
∗
s.

Using (S6), this can be written as

Cov(εs,t+1, ε
∗
s,t−s) = Γ T

s+1 − gT

sG
−1
s g̃∗s − ΦT

s g̃
∗
s + ΦT

sGsG
−1
s g̃∗s

8



which, using (S1), gives

Cov(εs,t+1, ε
∗
s,t−s) = Γ T

s+1 − ΦT

s g̃
∗
s .

Finally, from (S17) we obtain

Cov(εs,t+1, ε
∗
s,t−s) = φs+1,s+1Σ

∗
s .

It follows that

Ps+1 = S−1s φs+1,s+1Σ
∗
s (S

∗T
s )−1 = S−1s φs+1,s+1S

∗
sS
∗T
s (S∗Ts )−1.

Therefore, also taking account of (S23), we have

Ps+1 = S−1s φs+1,s+1S
∗
s , (s = 0, . . . , p− 1). (S24)

To obtain an alternative representation of the partial autocorrelation matrices, it is

instructive to construct P T
s+1 (s = 0, . . . , p− 1). For s = 0 we can write

P T

1 = Cov(S∗−10 yt , S
−1
0 yt+1) = S∗−10 Cov(yt,yt+1)(S

T
0 )−1 = S∗−10 Γ1(S

T
0 )−1

which, using (S8), can be expressed as

P T

1 = S∗−10 φ∗11Σ0(S
T
0 )−1 = S∗−10 φ∗11S0S

T

0 (ST0 )−1 = S∗−10 φ∗11S0

and so

P1 = (S∗−10 φ∗11S0)
T. (S25)

Now, for s = 1, . . . , p− 1 we can write

P T

s+1 = Cov(S∗−1s ε∗s,t−s , S
−1
s εs,t+1) = S∗−1s Cov(ε∗s,t−s, εs,t+1)(S

T

s )−1.

The inner covariance can be expressed as

Cov(ε∗s,t−s, εs,t+1) = Cov(yt−s − Φ∗Ts yt−s+1:t , yt+1 − ΦT

syt:t−s+1)

= Cov(yt−s,yt+1)− Cov(yt−s,yt:t−s+1)Φs

− Φ∗Ts Cov(yt−s+1:t,yt+1) + Φ∗Ts Cov(yt−s+1:t,yt:t−s+1)Φs

= Cov(yt−s,yt+1)− Cov(yt−s, Qyt−s+1:t)Φs

− Φ∗Ts Cov(yt−s+1:t,yt+1) + Φ∗Ts Cov(yt−s+1:t, Qyt−s+1:t)Φs

= Γs+1 − g∗Ts QΦs − Φ∗Ts g̃s + Φ∗Ts G∗sQΦs.
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Using (S5), this can be written as

Cov(ε∗s,t−s, εs,t+1) = Γs+1 − g∗Ts G∗−1s g̃s − Φ∗Ts g̃s + Φ∗Ts G∗sG
∗−1
s g̃s

which, using (S3), gives

Cov(ε∗s,t−s, εs,t+1) = Γs+1 − Φ∗Ts g̃s.

Finally, from (S19) we obtain

Cov(ε∗s,t−s, εs,t+1) = φ∗s+1,s+1Σs.

It follows that

P T

s+1 = S∗−1s φ∗s+1,s+1Σs(S
T

s )−1 = S∗−1s φ∗s+1,s+1SsS
T

s (ST

s )−1 = S∗−1s φ∗s+1,s+1Ss.

Therefore, also taking account of (S25), we can write the partial autocorrelation matrices

as

Ps+1 = (S∗−1s φ∗s+1,s+1Ss)
T, (s = 0, . . . , p− 1). (S26)

Equations (S24) and (S26) establish the results of step 2(b)(iii) in the forward mapping.

It is also clear that

Cov(yt+1,yt) = Cov(yt,yt+1)
T ⇐⇒ φ11Σ

∗
0 = (φ∗11Σ0)

T

and, for s = 1, . . . , p− 1, that

Cov(εs,t+1, ε
∗
s,t−s) = Cov(ε∗s,t−s, εs,t+1)

T ⇐⇒ φs+1,s+1Σ
∗
s = (φ∗s+1,s+1Σs)

T.

Therefore we have

φs+1,s+1Σ
∗
s = (φ∗s+1,s+1Σs)

T, (s = 0, . . . , p− 1). (S27)

S1.3 Reverse mapping

In the reverse mapping, the results in step 2(b)(i) from the Appendix of the paper follow

from trivial rearrangement of the results in step 2(b)(iii) in the forward mapping. The
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equations in step 2(b)(ii) are unchanged from those in step 2(b)(ii) of the forward mapping

and the equation in step 2(b)(iv) follows from direct rearrangement of the first equation in

step 2(b)(i) of the forward mapping.

We can partition the matrices in the expression for the conditional variance, Σs+1 =

Γ0 − ΦT
s+1gs+1 (s = 0, . . . , p− 1), as follows

Σs+1 = Γ0 −
(
ΦT

s+1,−(s+1) φs+1,s+1

) gs

Γs+1


= Γ0 − ΦT

s+1,−(s+1)gs − φs+1,s+1Γs+1

which, using (S13), yields

Σs+1 = Γ0 − (ΦT

s − φs+1,s+1Φ
∗T
s Q)gs − φs+1,s+1Γs+1

= Γ0 − ΦT

s gs − φs+1,s+1(Γs+1 − Φ∗Ts g̃s)

and then using (S2) and (S19) gives

Σs+1 = Σs − φs+1,s+1φ
∗
s+1,s+1Σs. (S28)

Finally, from (S27) we have

Σs+1 = Σs − φs+1,s+1Σ
∗
sφ

T

s+1,s+1, (s = 0, . . . , p− 1). (S29)

We can partition the matrices in the expression for the conditional variance, Σ∗s+1 =

Γ0 − Φ∗ Ts+1g
∗
s+1 (s = 0, . . . , p− 1 ), as follows

Σ∗s+1 = Γ0 −
(
Φ∗ Ts+1,−(s+1) φ∗s+1,s+1

) g∗s

Γ T
s+1


= Γ0 − Φ∗Ts+1,−(s+1)g

∗
s − φ∗s+1,s+1Γ

T

s+1

which, using (S15), yields

Σ∗s+1 = Γ0 − (Φ∗Ts − φ∗s+1,s+1Φ
T

sQ)g∗s − φ∗s+1,s+1Γ
T

s+1

= Γ0 − Φ∗Ts g∗s − φ∗s+1,s+1(Γ
T

s+1 − ΦT

s g̃
∗
s)
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and then using (S4) and (S17) gives

Σ∗s+1 = Σ∗s − φ∗s+1,s+1φs+1,s+1Σ
∗
s .

Finally, from (S27) we have

Σ∗s+1 = Σ∗s − φ∗s+1,s+1Σsφ
∗T
s+1,s+1, (s = 0, . . . , p− 1). (S30)

Equations (S29) and (S30) establish the results of step 2(b)(iii) in the reverse mapping.

Finally, using the result in step 2(b)(i) of the reverse mapping we can write (S28) as

Σs+1 = Σs − φs+1,s+1φ
∗
s+1,s+1Σs

= SsS
T

s − (SsPs+1S
∗−1
s )(S∗sP

T

s+1S
−1
s )SsS

T

s

= SsS
T

s − SsPs+1P
T

s+1S
T

s

= Ss(Im − Ps+1P
T

s+1)S
T

s , (s = 0, . . . , p− 1), (S31)

in which Im − Ps+1P
T
s+1 is positive semi-definite (Ansley and Kohn, 1986). Equation (S31)

establishes the result in step 1(b) of the reverse mapping.

If Ss is the lower triangular Cholesky factor of Σs, then we decompose (Im−Ps+1P
T
s+1)

according to its Cholesky decomposition which we write as

Im − Ps+1P
T

s+1 = B−1s+1B
−1T
s+1 ,

where B−1s+1 is lower triangular, and then solve (S31) for Ss through

Ss = Ss+1Bs+1.

If Ss is the symmetric matrix-square-root of Σs, then we denote by B−1s+1 the symmetric

matrix-square-root of (Im − Ps+1P
T
s+1) and then solve (S31) for Ss through

Ss = Bs+1(B
−1
s+1Σs+1B

−1
s+1)

1/2Bs+1.

S2 Invariance to orthogonal transformation

Assume that symmetric matrix-square-roots are used in both parts of the reparameteriza-

tion of a stationary VARm(p) model for yt (t = 1, 2, . . .). In Section 3.2 of the manuscript
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we stated that for any m × m orthogonal matrix H, the parameters of the stationary

VARm(p) model for ỹt = Hyt are Σ̃ = HΣHT and Ãs = HAsH
T (s = 1, . . . , p). In this

section, we show why this is the case.

The multivariate normal distribution is closed under linear transformation and deter-

mined completely by its first two moments. Consider a permutation, rotation or any other

orthogonal transformation of the observation vectors, that is ỹt = Hyt, where H is an

m × m orthogonal matrix. It follows that ỹ1, ỹ2, . . . will follow a stationary VARm(p)

process characterized by parameters

{Σ̃, (φ̃1, . . . , φ̃p)} ∈ S+
m × Cp,m (S32)

in which Σ̃ = HΣHT and φ̃s = HφsH
T (s = 1, . . . , p). Moreover, because H is orthogonal,

the symmetric square-roots of Σ̃ = HΣHT and Σ are similar, with Σ̃1/2 = HΣ1/2HT. Cor-

respondingly, in equation (1) of the manuscript, the coefficients in the conditional expecta-

tions for the transformed process in the forward and reverse autoregressions on s ≤ p terms

are φ̃si = HφsiH
T and φ̃∗si = Hφ∗siH

T (s = 1, . . . , p; i = 1, . . . , s) and the matrix-square-

roots of the conditional variance matrices are Σ̃
1/2
s = HΣ

1/2
s HT and Σ̃

∗ 1/2
s = HΣ

∗ 1/2
s HT

(s = 0, . . . , p). The matrix triples (Σ̃
−1/2
s , φ̃s+1,s+1, Σ̃

∗ 1/2
s ) and (Σ

−1/2
s , φs+1,s+1, Σ

∗ 1/2
s ) are

therefore simultaneously similar. Hence, using symmetric matrix-square-roots in (S24), the

(s+ 1)th partial autocorrelation for the transformed process is

P̃s+1 = Σ̃−1/2s φ̃s+1,s+1Σ̃
∗ 1/2
s

= HΣ−1/2s HTHφs+1,s+1H
THΣ∗ 1/2s HT

= HPs+1H
T (s = 0, . . . , p− 1).

It then follows trivially from equation (2) in the manuscript that in the unconstrained

parameterization, Ãs+1 = HAs+1H
T (s = 0, . . . , p − 1). Hence the parameters (S32) map

to {Σ̃, (P̃1, . . . , P̃p)} ∈ S+
m × Vpm or, equivalently, {Σ̃, (Ã1, . . . , Ãp)} ∈ S+

m × Mm×m(R)p

where P̃s = HPsH
T and Ãs = HAsH

T (s = 1, . . . , p). It is important to note that if

Cholesky factors are used in the first or second part of the reparameterization, the partial

autocorrelation matrices P̃s and their real-valued transformations Ãs are not similarity

13



transformations of Ps and As. This was one reason for choosing symmetric square-roots,

rather than Cholesky factors, in our mappings.

S3 The parameterization of Roy et al. (2019)

S3.1 A parameterization in terms of orthogonal and symmetric

positive definite matrices

As discussed in Section 3.5 of the manuscript, based on a characterization of the process

in terms of positive definite block Toeplitz matrices, Roy et al. (2019) establish a bijective

mapping between the parameters of a stationary VARm(p) process (Σ,Φ) ∈ S+
m × Cp,m

and the parameter set {Σ, (V1, . . . , Vp), (Q1, . . . , Qp)} ∈ S+
m × S+ p

m × O(m)p for any fixed

choice of a pseudo error variance matrix M ∈ S+
m. Unfortunately, for general M , parameter

interpretation is difficult. In the special case when M = Σ, it is straightforward to show

that the Vs (s = 1, . . . , p) are differences between conditional variances Vs = Σs−1 − Σs,

whilst the Qs satisfy Qs = (Σs−1 −Σs)
−1/2Σ

1/2
s−1Ps, whence P T

s Σ
1/2
s−1 = QT

s (Σs−1 −Σs)
1/2 =

QT
sV

1/2
s . As such, QT

s is the orthogonal matrix arising from the polar decomposition of

P T
s Σ

1/2
s−1. The Vs, or at least their diagonal elements, have a clear interpretation as the

reduction in residual variance when adding m covariates (the lag-s terms) to a multiple

linear regression model. However, even for this special case, interpretation of the orthogonal

matrices Qs is much less clear, which is a significant impediment to prior specification under

this parameterization. From a computational perspective, as explained in the manuscript,

designing a MCMC scheme that is capable of sampling directly from the space of orthogonal

matrices also presents a challenge.

Notwithstanding the problems of interpretation, Roy et al. (2019) attempt to

get around the sampling issue through a second reparameterization which maps

{Σ, (V1, . . . , Vp), (Q1, . . . , Qp)} to unconstrained Euclidean space. They call this a modified

Cayley transform. Though the authors claim the mapping is bijective, it can readily be veri-

fied that this is not the case, and this significantly impairs the performance of computational

inference by MCMC. Section S3.2 explains and illustrates these points through a series of ex-
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amples. Section S3.3 then shows how a bijective mapping of {Σ, (V1, . . . , Vp), (Q1, . . . , Qp)}

to uncontrained Euclidean space is available and that a particular choice of distribution

for the new parameters provides what might be regarded as a vague prior distribution over

the stationary region.

S3.2 The modified Cayley transform is not bijective

In order to avoid designing a MCMC scheme that samples directly from the space of

orthogonal matrices, Roy et al. (2019) use a modified Cayley transform to map each Qj ∈

O(m) to a set of unconstrained real-valued parameters sj ∈ Rm(m−1)/2 which comprise the

below diagonal elements of a skew-symmetric matrix Sj, and a binary parameter δj ∈ {0, 1}.

The symmetric positive definite matrices Vj ∈ S+
m are similarly mapped to Euclidean space

through a square-root-free Cholesky factorization (Lindstrom and Bates, 1988). Dropping

the lag-j subscript for clarity and denoting e1 = (1, 0, . . . , 0)T, the mapping that determines

Q from (s, δ) is given by

Q = Eδ
{

(Im − S)(Im + S)−1
}2

= EδR, (S33)

in which Eδ = Im − 2δe1e
T
1 is a Householder reflection whose role is to map Q ∈ O(m)

to R = {(Im − S)(Im + S)−1}2 ∈ SO(m), where SO(m) denotes the special orthogonal

group, and then R = {(Im − S)(Im + S)−1}2 parameterizes the special orthogonal group.

The inverse mapping that calculates (s, δ) from Q is described in Section 3.1 of the Sup-

plementary Materials to Roy et al. (2019). First, since R cannot have an odd number of

negative one eigenvalues, δ is determined as 0 if Q has an even number of negative one

eigenvalues and 1 otherwise, yielding R = EδQ. By computing a real square root of R that

lies in SO(m) and does not admit negative one as an eigenvalue, S can then be determined

through

S = 2
(
Im +R1/2

)−1 − Im
by using properties of the Cayley transform. The authors claim that this transformation is

bijective. However, because a general R ∈ SO(m) does not have a unique square root with
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these properties, it can readily be verified that this is not the case. For example, consider

R =

 cos(θ) sin(θ)

− sin(θ) cos(θ)

 ∈ SO(2),

where θ ∈ (−π, π). Then both

R
1/2
A =

 cos(θ/2) sin(θ/2)

− sin(θ/2) cos(θ/2)

 and R
1/2
B

− cos(θ/2) − sin(θ/2)

sin(θ/2) − cos(θ/2)


are real square roots of R that lie in SO(2) and do not admit negative one as an eigenvalue.

It can readily be verified that each square root gives a different value of S both of which,

when coupled with δ, give the same value of Q through (S33). The mapping from reals to

orthogonals is not, therefore, injective.

Suppose a distribution on Rm(m−1)/2×{0, 1} has been specified for (s, δ). Although it is

many-to-one, the above mapping from reals to orthogonals still induces a valid distribution

for Q onO(m). In theory, MCMC methods can therefore be used to draw from the posterior

for (s, δ) and these samples can be transformed through (S33) to give draws from the

posterior for Q. In practice, however, the posterior for (s, δ) will be multimodal which can

be a serious impediment to the convergence and mixing of the sampler. Specifically, if the

chain is unable to move efficiently between modes, it cannot accurately apportion posterior

mass between them. If, in turn, these modes differ in prior support, the approximation of

the posterior for Q will not average the likelihood for Q correctly over its prior.

To illustrate the problem, consider the following toy example. Suppose a single obser-

vation is to be made on a binomial random variable, Y |ρ ∼ Bin(n, ρ) where ρ ∈ (0, 1) and

n = 10. Suppose further that the model is reparameterized in terms of α = ±√ρ ∈ (−1, 1)

and that α is assigned a prior by taking α = ζ(1 + ζ2)−1/2 where ζ ∼ N(m, s2). The prior

densities induced for α and ρ are

πα(α) =
1

{2πs2(1− α2)3}1/2
exp

[
− 1

2s2
{
α(1− α2)−1/2 −m

}2]
, −1 < α < 1,

and

πρ(ρ) =
1

2
√
ρ
{πα(−√ρ) + πα(

√
ρ)} , 0 ≤ ρ < 1.
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Under two choices for the hyperparameters, (m = 0, s =
√

3/3) and (m = 1/4, s =
√

3/3),

the prior densities for α and ρ are illustrated in Figure S1. Figure S1(b) also shows the

densities for ρ when the distribution for α from which it is generated is truncated at zero

on the right and left. The hyperparameter s is chosen to be
√

3/3 because when m = 0,

the density for α becomes u-shaped when s >
√

3/3.
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Figure S1: Prior density for (a) α ∈ (−1, 1) and (b) ρ = α2 ∈ [0, 1) when m = 0 ( ) and

m = 0.25 ( ). Also shown in (b) are the prior densities when the distribution for α is

truncated to α ∈ (−1, 0] ( ) and α ∈ [0, 1) ( ).

Suppose we go on to observe Y = y where y ∈ {0, 1, . . . , 10}. Irrespective of the value

of y, Pr(Y = y|ρ = α2) = Pr{Y = y|ρ = (−α)2} and so the likelihood for α will be bimodal

and symmetric about 0. Taking y = 2 for illustration and then calculating the marginal

likelihoods by numerical integration, the posteriors for α under the two different choices for

(m, s) are shown in Figure S2(a). The posterior density clearly inherits the multimodality

of the likelihood but it is only symmetric about 0 when the prior is symmetric about 0, that

is, when m = 0. It is noticeable that for both values of m, the two modes are separated by

a region of low posterior density around zero. The corresponding posterior densities for ρ

are unimodal and shown in Figure S2(b).
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Figure S2: Posterior density for (a) α ∈ (−1, 1) and (b) ρ = α2 ∈ [0, 1) when m = 0

( ) and m = 0.25 ( ). Also shown in (b) are the posterior densities when the prior

distribution for α is truncated to α ∈ (−1, 0] ( ) and α ∈ [0, 1) ( ).

If a MCMC sampler was set up to target the posterior for α, it may get stuck in either

the negative mode or the positive mode. In this example, the marked separation of the

modes is such that a sampler stuck in the negative mode essentially draws α, and hence ρ,

from the posterior that would be obtained if the prior for α was truncated on the right at

0. Similarly, a sampler stuck in the positive mode is essentially drawing from the posterior

for α, and hence ρ, that would result from truncating the prior for α on the left at 0. These

pseudo-posterior densities for ρ are overlaid on the plots in Figure S2(b). When the prior

does not offer equal weight to the two values of α that map to the same value of ρ, in this

case α = ±√ρ, it is clear that the pseudo-posterior distributions differ from the posterior

distribution. Even if the sampler is able to jump between modes in the posterior for α,

unless it moves frequently enough to accurately approximate the mass of each mode, the

approximation of the posterior for ρ will still be biased.

Unfortunately, these problems manifest clearly when stationary vector autoregressions

are reparameterized using the real-valued parameterization of Roy et al. (2019) for problems
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Figure S3: Trace plots obtained under two chains ( and ) for two selected elements

in s2. The marginal posteriors are clearly multimodal but jumps between modes are infre-

quent.

of even moderate complexity. For example, consider the simplest application in Section 5

wherem = 3 and p = 4. We take the prior specification recommended by the authors, which

comprises N(0, 5) distributions for all continuous parameters and a Bern(0.5) distribution

for the reflection parameters. We also use the MCMC algorithm described by the authors,

composed of Gaussian random walks for all continuous parameters and an independence

sampler for the reflection parameters, with proposal equal to the prior. Two long chains,

initialised at different starting points, were run for 1.5M iterations. After omitting the first

500K as burn-in and thinning the remaining draws to retain every 1000th iterate, the trace

plots for two elements of the skew-symmetric matrices Sj are shown in Figure S3. It is

clear that the posterior is multimodal but the modes are not symmetric about the mean

19



of the prior (zero) and therefore attract different prior support. In order to accurately

approximate the posterior for the elements of the orthogonal matrices Qj and hence the

autoregressive coefficient matrices φj, it is therefore necessary for the sampler to jump

frequently between the modes in the posterior for the Sj. However, this does not happen,

and the two chains switch only occasionally between modes, meaning neither will provide

a very good approximation to the posterior for (Σ,Φ). Not surprisingly, therefore, the

approximations of the marginal posteriors for the parameters of the vector autoregression

differ between the two chains; see Figure S4. Although it is possible that this problem

could be obviated by doing even longer MCMC runs, this solution is neither practical

nor scalable. Indeed, for the more complicated models in Section 5 of the manuscript,

when m = 10 and m = 20, the sampler simply did not converge. Therefore except for

simple cases, the unconstrained parameterization and prior of Roy et al. (2019) does not

provide a tenable solution to enforcing stationarity through the prior in Bayesian vector

autoregressions.
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Figure S4: Marginal posterior distribution approximated under two chains ( and ) for

two selected elements in φ2. The posterior densities do not overlap, suggesting a lack of

convergence in one or both chains.
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S3.3 A new reparameterization and vague prior

The unconstrained parameterization discussed in the previous section is problematic be-

cause the proposed mapping from reals to orthogonals is not injective. However, it is

possible to find a different mapping from {Σ, (V1, . . . , Vp), (Q1, . . . , Qp)} to unconstrained

Euclidean space that is a bijection.

Recall from Section S3.1 that in the special case when M = Σ, the Vs (s = 1, . . . , p)

represent differences between conditional variances whilst the Qs satisfy Qs = (Σs−1 −

Σs)
−1/2Σ

1/2
s−1Ps so that

P T

s Σ
1/2
s−1 = QT

s (Σs−1 −Σs)
1/2 = QT

sV
1/2
s (S34)

and hence QT
s is the orthogonal matrix arising from the polar decomposition of P T

s Σ
1/2
s−1.

The polar decomposition is a unique representation of a full rank, real-valued matrix as

the product of an orthogonal matrix and a symmetric, positive definite matrix. Therefore

since the parameter space of QT
s is O(m) and that of Vs is S+

m, it follows from (S34)

that the parameter space of P T
s Σ

1/2
s−1 is Mm×m(R). Writing Cs = P T

s Σ
1/2
s−1 = QT

sV
1/2
s , we

therefore have another bijection between (Σ,Φ) ∈ S+
m × Cp,m and {Σ, (C1, . . . , Cp)} ∈

S+
m × Mm×m(R)p. Although the complex interpretation of the Cs precludes the kind of

structural prior specification available for the transformed partial autocorrelations, it is well

known (for example, see Jauch et al., 2021; Eaton, 1989, Chapter 5) that if Cs comprises

m2 independent standard normal random variables, then the joint distribution induced for

the components of its polar decomposition are such that Qs and Vs are independent, with

Qs uniformly distributed over O(m), and Vs Wishart distributed with m degrees of freedom

and identity scale. As a corollary to the results from Section 3.2, it is straightforward to

show that if an orthogonal transformation is applied to the observations vectors ỹt = Hyt,

then the new parameters that result from this transformation are C̃s = HCsH
T. As the

standard matrix normal distribution is rotatable (Dawid, 1981), the prior distribution for

the Cs will be unchanged by a permutation of the observations yt. It therefore serves as

a vague, stationary prior distribution that is additionally exchangeable, whilst allowing

the inferential problem to be cast in Euclidean space. This might be attractive to some

modellers as a default choice of prior.
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S4 Choice of prior variance for the unconstrained square

matrices

For the simplest vector autoregression, which is a VAR2(1) model, we consider two ver-

sions of the exchangeable, stationary prior presented in Section 3.2 of the manuscript.

Specifically, we consider the hierarchical prior expressed through equations (7)–(9), with

hyperparameters chosen as

Prior 1: esi = 0, fsi =
√

0.35, gsi = 1.05, hsi = 0.0075,

Prior 2: esi = 0, fsi =
√

3.5, gsi = 10.5, hsi = 14.25,

for s = p = 1 and i = 1, 2. This gives marginal prior means and correlations of E(a1,ii) =

E(a1,ij) = 0.0 and Cor(a1,11, a1,22) = Cor(a1,12, a1,21) = 0.7, and marginal prior standard

deviations of SD(a1,ii) = SD(a1,ij) = 0.5 or SD(a1,ii) = SD(a1,ij) = 5.0, respectively. For

comparative purposes, we also consider the vague, stationary prior based on the parameter-

ization of Roy et al. (2019) that was discussed in Section 3.5 of the paper and Section S3.3

above. We refer to this as Prior 3. Since prior beliefs are arguably most naturally expressed

in terms of the partial autocorrelation matrices, we visualize the distribution for the el-

ements of P1 in Figure S5 from which it is clear that in the priors with larger variance,

namely Priors 2 and 3, the marginal distributions for all elements are multimodal. The

corresponding plot for the elements of the autoregressive coefficient matrix φ1 is shown in

Figure S6 under the prior Σ ∼ IW(m+ 4, Im) for the error variance matrix. In addition to

displaying the complex geometry of the stationary region C1,2, this plot reveals that multi-

modality can also become a feature of the prior under the original (Φ,Σ)-parameterization

of the model when the prior variance for the As becomes too large. For most problems, a

multimodal prior for a partial autocorrelation matrix Ps (or an autoregressive coefficient

matrix φs) is unlikely to be representative of prior beliefs. To avoid this, care is clearly

needed in the choice of prior variance for the as,ij.

As explained in Section 2.2 of the manuscript, each unconstrained square matrix As

is related to the corresponding partial autocorrelation matrix Ps by a simple mapping

of the singular values from the positive real line to the unit interval. It is reasonable,
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Figure S5: Visualization of the prior induced for P1 in a VAR2(1) model: Priors 1 (�, );

2 (M, ); 3 (◦, ). All plots share a common x-scale. Diagonal plots depict marginal

densities and share a common y-scale (see the y-axis of the (1, 1) plot). Off-diagonal plots

depict bivariate densities and share a common y-scale (see the y-axis of the (j, 1) plots for

j = 2, 3, 4).

therefore, to conjecture that the multimodality that can occur in the prior for the partial

autocorrelations, but not in the multivariate normal prior for the unconstrained square

matrices, arises through this mapping of the singular values. Dropping the lag-s subscript

for brevity, we can gain insight into the behaviour of the prior induced for the singular

values, along with the right and left singular vectors, of P through a closed form expression

for their joint density in the special case when all the elements of A = (aij) are independent

and identically distributed a priori, with aij ∼ N(0, s2) (i, j = 1, . . . ,m).

Denote the singular value decomposition of A by A = UR̃V T where R̃ is a diagonal

matrix whose diagonal values are the singular values r̃1, . . . , r̃m of A and where U and

V are its left and right singular vectors, respectively. If the singular values are ordered,
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Figure S6: Visualization of the prior induced for φ1 in a VAR2(1) model: Priors 1 (�, );

2 (M, ); 3 (◦, ). All plots share a common x-scale. Diagonal plots depict marginal

densities and share a common y-scale (see the y-axis of the (1, 1) plot). Off-diagonal plots

depict bivariate densities and share a common y-scale (see the y-axis of the (j, 1) plots for

j = 2, 3, 4).

distinct and positive and we fix the sign of the m right (or left) singular vectors, then

this transformation is unique. Using the Jacobian of the singular value decomposition

(Edelman and Rao, 2005) it is straightforward to derive the prior distribution of U , V and

the r̃i under these conditions through

π(A)(dA) = (2π)−m
2/2s−m

2

exp

(
− 1

2s2

m∑
i=1

r̃2i

)
m−1∏
i=1

m∏
j=i+1

(r̃2i − r̃2j )(UTdU)(dR̃)(V TdV ).

It follows that U , V and (r̃1, . . . , r̃m) are independent a priori and that the distributions

of U and V are normalized Haar measures, the latter restricted to one pattern of column

signs. Further, we can derive the marginal distribution of the singular values r̃1, . . . , r̃m of
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A as

π(r̃1, . . . , r̃m) =
πm

2/2

2m(m−2)/2sm2Γm(m/2)2
exp

(
− 1

2s2

m∑
i=1

r̃2i

)
m−1∏
i=1

m∏
j=i+1

(r̃2i − r̃2j ),

for r̃1 > r̃2 > · · · > r̃m > 0 where Γm(x) = πm(m−1)/4∏m
i=1 Γ{x − (i − 1)/2} is the

multivariate gamma function. The singular value decomposition of P is simply P = URV T

in which the diagonal matrix has ith diagonal entry ri = r̃i(1+r̃2i )
−1/2 (i = 1, . . . ,m). In the

prior induced for the singular values and vectors of P , the singular values therefore remain

independent of the singular vectors and the singular vectors remain distributed according

to independent normalized Haar measures. The Jacobian J of the transformation from the

singular values of A to those of P has determinant

|J | =
m∏
i=1

(1− r2i )−3/2,

from which it follows that the joint density for the singular values of P is

π(r1, . . . , rm) =
πm

2/2

2m(m−2)/2sm2Γm(m/2)2
exp

(
− 1

2s2

m∑
i=1

r2i
1− r2i

)
(1− r2m)−(2m+1)/2

×
m−1∏
i=1

(1− r2i )−(2m+1)/2

m∏
j=i+1

(r2i − r2j ),

for 1 > r1 > r2 > · · · > rm > 0, where it is understood that the products over i and j

evaluate to 1 when m = 1. In the univariate case, when m = 1, there is a scalar-valued

partial autocorrelation, p = urv, with u ∼ U{−1, 1} and v = 1. When the single singular

value r has a prior density with a local maximum at, say r0 ∈ (0, 1), the prior density

for p = ±r will clearly be bimodal with symmetric modes at p = −r0 and p = r0. It is

therefore reasonable to posit that this behaviour will generalize to the multivariate case

when m > 1. In other words, multimodalities, like those seen in Figure S5, are induced

in the prior for P when the joint density of the singular values has a local maximum in

1 > r1 > r2 > · · · > rm > 0. For the low-dimensional cases for which visualization of

the joint density is feasible, this conjecture is supported by simulation from the prior; see

Figures S7 and S8. At the very least, identifying the value of s at which a local maximum

first occurs serves as guide for making a principled choice of the variance in the prior for

A.
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Figure S7: Prior densities induced for the scalar partial autocorrelation p when m = 1

and: s2 = 1/6 ( ); s2 = 1/3 ( ); s2 = 1/2 ( ). The density becomes bimodal when

s2 > 1/3.

Denoting r = (r1, . . . , rm)T, the components of the gradient of the logarithm of the

prior density for r are given by

∂ log{π(r)}
∂ri

=
ri {(2m+ 1)s2(1− r2i )− 1}

∏
j 6=i(r

2
i − r2j ) + 2s2ri(1− r2i )2

∑
j 6=i
∏

k 6=i,j(r
2
i − r2k)

s2(1− r2i )2
∏

j 6=i(r
2
i − r2k)

,

for i = 1, . . . ,m, whilst the terms in the associated Hessian matrix are

∂2 log{π(r)}
∂r2i

=
(2m+ 1)(1 + r2i )

(1− r2i )2
− 1 + 3r2i
s2(1− r2i )3

− 2
∑
j 6=i

r2i + r2j
(r2i − r2j )2

, (i = 1, . . . ,m),

and
∂2 log{π(r)}

∂ri∂rj
=

4rirj
(r2i − r2j )2

, (i 6= j).

Finding stable points in the region 1 > r1 > r2 > · · · > rm > 0, if they exist, is therefore

tantamount to finding the real roots of the system of m polynomial equations

0 =
{

(2m+ 1)s2(1− r2i )− 1
}∏
j 6=i

(r2i − r2j ) + 2s2(1− r2i )2
∑
j 6=i

∏
k 6=i,j

(r2i − r2k), (i = 1, . . . ,m),

subject to this constraint. For any fixed value of the prior standard deviation s, these

equations can, in principle, be solved. In combination with application of the second

derivative test, this allows determination of the smallest value of s at which the distribution
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Figure S8: Pairwise densities between a pair of off-diagonal elements (left panels), a pair of

diagonal elements (middle panels) and a diagonal and off-diagonal element (right panels) in

the joint prior induced for the partial autocorrelation matrix P when m = 2 and s2 = 1/3

(top row); s2 = 1/2 (middle row); s2 = 2/3 (bottom row). The density appears to be

multimodal for s2 > 1/2.

has a local maximum in 1 > r1 > r2 > · · · > rm > 0. For m = 1 and m = 2, the roots can be

found by hand, along with the value of s at which a local maximum first occurs. For m = 3,

m = 4 and m = 5 the system can be solved with the help of symbolic computation software

such as Maple over a grid of values for s. This allows identification of the approximate

value for s where a local maximum first appears. The results are displayed in Table S1. The

number of possible solutions to an (unconstrained) system of polynomials, each of degree

d, grows exponentially with d and, in this case, is d = 2m. Although this can be reduced

to d = m by using the substitution wi = 1 − r2i , the search still becomes computationally

infeasible for m > 5. However, from Table S1 it seems that the value of s at which a local

maximum first appears grows with m, but at a decreasing rate, such that for m ≥ 5, a

value of s = 1 would be a reasonable choice. For smaller values of m, the choice of s can

be guided by Table S1.
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Table S1: The standard deviation s0 in the prior for the elements of A such that when

s > s0, the prior induced for the singular values r1, . . . , rm of P has a local maximum in

1 > rm > · · · > r1 > 0. Values for m ≤ 2 are exact; values for m > 2 lie in the stated open

interval.

m 1 2 3 4 5

s0 1/
√

3 1/
√

2 (0.81, 0.82) (0.90, 0.91) (0.98, 0.99)

S5 Effect of an ill-conditioned variance matrix on in-

ference

One of the features of the reparameterization for univariate autoregressive models that

is not preserved in the vector generalization is the independence of the error variance Σ

and partial autocorrelations P1, . . . , Pp. Indeed, in the vector case, P1, . . . , Pp and hence

the unconstrained square matrices A1, . . . , Ap, depend on Σ as well as the autoregressive

coefficient matrices φ1, . . . , φp. This suggests that if the likelihood is formulated in terms

of the new parameters, the dependence of A1, . . . , Ap on Σ may distort the shape of the

likelihood, thereby causing numerical problems in sampling from the posterior. This, in

turn, would cause numerical problems in the approximation of the posterior for φ1, . . . , φp.

If such a problem was to arise, it is likely that it would be exacerbated if Σ was close to

being singular. In order to investigate whether there is any evidence to substantiate these

concerns, we performed a series of simulation experiments. Six data sets of length 1,000

were sampled from a VAR3(2) model with error variance (and correlation) matrix

Σ =


1 r r

r 1 r

r r 1

 ,

where r ∈ {0.000, 0.500, 0.833, 0.955, 0.988, 0.997} to three decimal places. The condition

number for a matrix of this form is c = (1 + 2r)/(1− r) and so the matrices had condition

numbers c ∈ {1, 4, 16, 64, 256, 1024}. For each of the six data sets, common values for the
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autoregressive coefficient matrices φ1 and φ2 were used. This process was repeated three

times using three different pairs of matrices φ1 and φ2, as detailed in Table S2.

Table S2: Autoregressive coefficient matrices, φ1 and φ2, used to simulate the six data sets

in each of the three experiments. Also shown for each experiment is the minimum effective

sample size when analysing the data simulated using the error variance matrix Σ with each

of the six possible values of the condition number c.

Experiment φ1 φ2 Minimum Effective Sample Size by c

1 4 16 64 256 1024

1


−1.508 −0.495 −2.500

4.893 −0.975 0.895

1.123 0.613 2.475




1.393 0.063 1.477

4.170 0.204 3.261

−2.120 −0.031 −1.713

 3761 2762 2531 3102 2567 3313

2


0.226 0.509 0.083

0.499 −0.195 −0.929

1.720 1.353 −1.715




1.001 0.306 −0.360

0.395 0.399 −0.221

1.591 0.932 −0.810

 1954 2869 3140 2551 2279 1949

3


0.223 0.100 1.191

−0.344 −0.157 −1.627

0.531 −0.078 1.118



−0.502 0.340 −0.874

0.829 −0.346 0.790

0.000 −0.207 −0.446

 2874 1769 2196 2634 1952 2065

The unconstrained square matrices A1 and A2 and the error variance matrix Σ were

given the exchangeable, stationary prior referred to as Prior 1 in Section S4. In order to

fit a VAR3(2) model to each data set, we used Hamiltonian Monte Carlo, implemented

in Stan. In all cases we used the rstan interface to the Stan software to run four chains,

initialized at different starting points, for 5000 iterations, half of which were discarded as

burn-in. After pooling the output across chains, the minimum effective sample sizes from

each analysis are shown in Table S2. For a randomly chosen selection of parameters in φ1

and φ2, Figure S9 shows plots of the marginal posteriors based on data simulated in each

of the three experiments.

In all the panels of Figure S9, the posteriors are roughly centred at the value used to

simulate the data, though it is interesting to note that under some values for φ1 and φ2, such
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Figure S9: Marginal posterior distributions for four randomly selected parameters in φ1

and φ2 for the data simulated under each of the six values for Σ in Experiments (a) 1; (b)

2; (c) 3. The values of the parameters used to simulate the data are indicated by solid

vertical lines. The condition numbers of the six values for Σ are 1 ( ); 4 ( ); 16 ( );

64 ( ); 256 ( ); 1024 ( ).
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as those used in Experiments 2 and 3, the posterior for φ1 and φ2 becomes more diffuse as the

condition number of Σ increases. Crucially, the usual graphical and numerical diagnostics

gave no evidence of any lack of convergence and from Table S2, there does not seem to be

any deterioration in mixing performance as Σ approaches a singular matrix. Therefore, on

the basis of this simulation experiment, there is no evidence that the intertwining of the two

parameter sets, (A1, . . . , Ap) and Σ, causes any problems in the numerical approximation

of the posterior.

S6 Further details of the application

S6.1 Data

Table S3 indicates which variables in the macroeconomic time series analysed in the

manuscript were used in the VAR3(4), VAR10(4) and VAR20(4) models.

S6.2 Prior specification

In the exchangeable, stationary prior used in the application, we use the guidelines from

Section S4 to choose the hyperparameters in equations (7)–(9) from the manuscript as

m = 3: esi = 0, fsi =
√

0.455, gsi = 1.365, hsi = 0.071,

m = 10, 20: esi = 0, fsi =
√

0.700, gsi = 2.100, hsi = 0.333,

for s = 1, . . . , 4 and i = 1, 2. This gives marginal prior means and correlations of E(as,ii) =

E(as,ij) = 0.000 and Cor(as,ii, as,jj) = Cor(as,ij, as,i′j′) = 0.700, and marginal prior stan-

dard deviations of SD(as,ii) = SD(as,ij) = 0.806 (m = 3) or SD(a1,ii) = SD(a1,ij) = 1.000

(m = 10 and m = 20).

In the Minnesota and semi-conjugate priors used in the application, the prior means

in uk2 and uk3 (k = 1, . . . , p), were chosen to be zero in all analyses and every element

of Φ was taken to be independent, so that the prior variance matrices Wk2 and Wk3 were

diagonal. The diagonal elements in Wk2 and Wk3 were chosen according to the default

choices from the model-fitting software provided with the monograph of Koop and Korobilis
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Table S3: The variables in the macroeconomic time series and the models (m) in which

they were used.

Variable m

Real GDP: quantity index (2000 = 100) 3, 10, 20

CPI: all items 3, 10, 20

Interest rate: federal funds (e ective) (percentage per annum) 3, 10, 20

Real spot market price index: all commodities 10, 20

Depository institution reserves: nonborrowed (millions of dollars) 10, 20

Depository institution reserves: total (millions of dollars) 10, 20

Money stock: M2 (billions of dollars) 10, 20

Real Personal Consumption Expenditures: quantity index 10, 20

Industrial production index: total 10, 20

Capacity utilization: manufacturing (SIC) 10, 20

Unemployment rate: all workers, 16 and over (percentage) 20

Housing starts: total (thousands) 20

Producer price index: finished goods 20

Personal Consumption Expenditures: price index 20

Real average hourly earnings: non-farm production workers 20

Money stock: M1 (billions of dollars) 20

S&P’s common stock price index: industrials 20

Interest rate: US treasury constant maturity, 10-year 20

US effective exchange rate: index number 20

Employees, non-farm: total private 20
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(2009) where the same data are analysed using vector autoregressive models. Specifically,

in the semi-conjugate prior, Wk3 = 10Im2 (k = 1, . . . , p) and in the Minnesota prior, the

diagonal elements in the prior variance matrix Var{vec(φk)} = Wk2 were chosen such that

Var(φk,ii) = c/k2 (i = 1, . . . ,m) and Var(φk,ij) = ds2i /(k
2s2j) (i 6= j) with c = d = 1/2.

In these expressions, s2i is the ordinary least squares estimate of the error variance in the

(univariate) autoregression for variable i. The idea is that the prior variance decreases with

lag to encourage shrinkage of the autocovariance matrices at higher lag towards zero.

S6.3 Assessment of forecasting performance

In Section 5 of the manuscript, the strategy for assessing forecasting performance is ex-

plained. In brief, the posterior (or maximum likelihood estimates) for the model parameters

were obtained using the data up to time n = 156, y1, . . . ,yn, and then forecasting perfor-

mance was assessed using the remaining 40 hold-out observations, yn+1, . . . ,yn+40. For a

variety of horizons, h = 1, 2, 4, 8, the h-step ahead forecasts arising from the four model-

prior combinations, along with the model fitted using maximum likelihood, were compared

using the MSFE and a number of proper scoring rules.

Given data, y1:n, the h-step ahead MSFE for variable k is defined by

MSFEh,k(y(n+1):(n+40), Φ) =
1

40− h+ 1

n+40∑
t=n+h

[
ytk − E

{
Ytk|y1:(t−h), Φ

}]2
For each value of h ∈ {1, 2, 4, 8} and m ∈ {3, 10, 20} and each variable of interest k ∈

{1, 2, 3}, the posterior distribution for log MSFEh,k(y(n+1):(n+40), Φ) for the four Bayesian

analyses is summarized in Figure S10 through its mean and credible intervals which extend

to two posterior standard deviations either side of the mean. For the maximum likelihood

analysis, we present the maximum likelihood estimate (MLE) for log MSFEh,k(y(n+1):(n+40), Φ),

namely log MSFEh,k(y(n+1):(n+40), Φ̂) where Φ̂ is the MLE of Φ which can be computed from

the MLEs (Â1, . . . , Âp, Σ̂) of the parameters in the fitted model. Uncertainty in the value of

the estimator is quantified by applying the delta method to an asymptotic approximation

to the standard error of the MSFE obtained using the approach of Harvey et al. (1997).

Proper scoring rules assign a numerical score S(F, y) by comparing a forecast distribu-
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Figure S10: For each value of m, each forecast horizon h, and each prior: posterior mean

(with arrows extending to plus or minus two posterior standard deviations) for the loga-

rithm of the empirical MSFE for each variable of interest k. The priors are: exchangeable

and stationary (•); Minnesota (•); semi-conjugate (•); vague and stationary (•). Also

shown are analogous summaries based on the stationary MLE (Ansley and Kohn, 1986)

(•).

tion function F (or density function f) with the observation y that arises. For assessing

individual forecasts of the three variables of interest we considered two popular scoring

rules: the continuous rank probability score (CRPS) and the logarithmic score. Given

data, y1:n, the h-step ahead CRPS for variable k at time t = n + h, . . . , n + 40 is defined

through

CRPS(Fh,tk, ytk) =

∫
{Fh,tk(z)− I(ytk ≤ z)}2dz = E|Ytk − ytk| −

1

2
E|Ytk − Y ′tk|.

Here I(x) denotes the indicator function, which is equal to 1 if x is true and 0 otherwise, and
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Ytk, Y
′
tk are independent and identically distributed random variables whose h-step ahead

predictive distribution function is Fh,tk. The logarithmic score is defined through

logS(Fh,tk, ytk) = − log fh,tk(ytk),

in which fh,tk is the density function associated with Fh,tk.

We additionally compared the model-prior combinations in terms of their ability to

produce joint forecasts by computing the energy score (ES), which is a multivariate gener-

alization of the CRPS. In its most widely used form, the h-step ahead ES is

ES(Fh,t,yt) = E‖Y t − yt‖ −
1

2
E‖Y t − Y ′t‖, t = n+ h, . . . , n+ 40

in which Y t,Y
′
t are independent and identically distributed random vectors whose h-step

ahead joint predictive distribution is Fh,t. We calculated the energy score for a three-

dimensional vector containing the variables of interest.

To approximate the scoring rules at each time point t, we used the scoringRules

package in R (Jordan et al., 2019). This package allows efficient computation of the scoring

rules on the basis of samples from the relevant predictive distribution. The results are

presented in Figures S11–S13 for each value of h ∈ {1, 2, 4, 8} and m ∈ {3, 10, 20} and

for every model-prior combination as well as the frequentist analysis. Each score was

calculated as an average across the 40− h+ 1 time points at which it was evaluated. The

posterior predictive distributions can readily be sampled for the four Bayesian analyses.

For the maximum likelihood analysis, estimation of the forecast distributions, either by

simulation or numerical methods, is much more difficult. The (asymptotic) variance of the

forecast errors can, in principle, be computed using a recursive algorithm that allows for

epistemic uncertainty in the parameter values (see, for example Tsay, 2014, Chapter 2).

However, the algorithm requires a value for the asymptotic variance of the estimator Φ̂.

An approximation to the variance matrix of {vec(Â1), . . . , vec(Âp), vech(Σ̂)}T is available

as the negative Hessian matrix evaluated at the MLE; this is a by-product of the Quasi-

Newton Raphson algorithm used to minimize the negative log-likelihood function. However,

converting it to a variance matrix for Φ̂ requires the Jacobian of the transformation between

parameter sets, analytic computation of which is prohibitively difficult. We therefore follow
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Figure S11: For each value of m, each forecast horizon h, and each prior: CRPS for each

variable of interest k. The priors are: exchangeable and stationary (•); Minnesota (•);

semi-conjugate (•); vague and stationary (•). Also shown are analogous scores based on

forecast distributions evaluated at the stationary MLE (Ansley and Kohn, 1986) (•).

common practice in the frequentist time series literature (the so-called “plug-in” method,

Pourahmadi, 2001, Chapter 2) and ignore the epistemic uncertainty when constructing h-

step ahead forecast distributions. At time t, this yields a multivariate normal distribution

with mean and variance equal to E(Y t|y1:(t−h), Φ̂) and Var(Y t|y1:(t−h), Φ̂, Σ̂) both of which

can be computed recursively (see, for example Lütkepohl, 2005, Chapter 2). The difficulty

in allowing for parameter uncertainty in the forecast distributions is, of course, a substantial

drawback to the maximum likelihood approach.

A discussion of the results from Figures S10–S13 can be found in Section 5 of the

manuscript.
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Figure S12: For each value of m, each forecast horizon h, and each prior: logarithmic score

for each variable of interest k. The priors are: exchangeable and stationary (•); Minnesota

(•); semi-conjugate (•); vague and stationary (•). Also shown are analogous scores based

on forecast distributions evaluated at the stationary MLE (Ansley and Kohn, 1986) (•).

S7 Inference for VARMA models

As discussed in Section 6 of the manuscript, the ideas behind the symmetric partial auto-

correlation parameterization and its associated prior, can be extended for VARMA models

in order to constrain inference to the invertible, as well as stationary, region. Consider the

VARMAm(p,q) model

θ(B)εt = φ(B)yt,

where φ(B) = Im− φ1B − · · · − φpBp, θ(B) = Im + θ1B + · · ·+ θqB
q and εt ∼ Nm(0, Σ) is

a white noise sequence. The stationarity condition (φ1, . . . , φp) ∈ Cp,m is handled as previ-

ously, by reparameterizing in terms of partial autocorrelation matrices (P1, . . . , Pp) ∈ Vpm.
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Figure S13: The energy score (ES) for each value of m, each forecast horizon h, and each

prior. The priors are: exchangeable and stationary (•); Minnesota (•); semi-conjugate (•);

vague and stationary (•). Also shown are analogous scores based on forecast distributions

evaluated at the stationary MLE (Ansley and Kohn, 1986) (•).

Similarly, the invertibility condition (θ1, . . . , θq) ∈ Cq,m is handled by reparameterizing in

terms of an analogous set of matrices (R1, . . . , Rq) ∈ Vqm. The recursions described in the

Appendix of the manuscript are applied twice; once as if we had a pure VARm(p) model

with coefficients φ1, . . . , φp and variance Σ to get P1, . . . , Pp, and again as if we had a pure

VARm(q) model with coefficients −θ1, . . . ,−θq and variance Σ to get R1, . . . , Rq. Unfor-

tunately, compared with VAR processes, the parameters are more difficult to interpret.

For example, the matrices Γs (s = 0, 1, 2, . . .) computed as a bi-product of the forward or

reverse mappings for each set of parameters do not represent the autocovariance function

of the VARMA process. More importantly, the Ps do not represent the partial autocorrela-

tion matrices of the VARMA process; instead, they represent the partial autocorrelations

of a model with the same autoregressive operator φ(B), but with q = 0. Similarly, the Rs

represent a multivariate analogue of the inverse partial autocorrelation function (Bhansali,

1983) for a model with the same moving average operator θ(B), but with p = 0. In

each case, the second transformation from Section 2.2 of the manuscript can be used to

map the parameter set to unconstrained Euclidean space, A1, . . . , Ap ∈ Mm×m(R)p and

D1, . . . , Dq ∈Mm×m(R)q. We can then assign a prior of the form

π(Σ,A1, . . . , Ap, D1, . . . , Dq) = π(Σ)

p∏
s=1

π{vec(AT

s )}
q∏
s=1

π{vec(DT

s )}
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with the As and Ds assigned multivariate normal priors of the form discussed in Section 3

of the manuscript.

In order to calculate the likelihood for a VARMA model, it is convenient to introduce

latent variables y0, . . . ,y1−p and ε0, . . . , ε1−q to initialize the process. The joint density of

(yT
0 , . . . ,y

T
1−p, ε

T
0 , . . . , ε

T
1−q)

T can be deduced from the representation of the VARMAm(p,q)

process as a VARm(p+q)(1) model; see, for example, Chapter 11 of Lütkepohl (2005). Under

this representation, the role of the observation vector is played by (yT
t , . . . ,y

T
t−p, ε

T
t , . . . , ε

T
t−q)

T

and the single autoregressive coefficient matrix is a block matrix defined by

φ̃ =



φ1 . . . φp−1 φp θ1 . . . θq−1 θq

Im . . . 0m 0m 0m . . . 0m 0m
...

. . .
...

...
...

. . .
...

...

0m . . . Im 0m 0m . . . 0m 0m

0m . . . 0m 0m 0m . . . 0m 0m

0m . . . 0m 0m Im . . . 0m 0m
...

. . .
...

...
...

. . .
...

...

0m . . . 0m 0m 0m . . . Im 0m



.

Similarly, the error variance matrix is a block matrix defined by

Σ̃ =



Σ 0m . . . 0m Σ 0m . . . 0m

0m 0m . . . 0m 0m 0m . . . 0m
...

...
. . .

...
...

...
. . .

...

0m 0m . . . 0m 0m 0m . . . 0m

Σ 0m . . . 0m Σ 0m . . . 0m

0m 0m . . . 0m 0m 0m . . . 0m
...

...
. . .

...
...

...
. . .

...

0m 0m . . . 0m 0m 0m . . . 0m



.

For a zero-mean VARMA process, the stationary mean of (yT
t , . . . ,y

T
t−p, ε

T
t , . . . , ε

T
t−q)

T is

clearly a length-m(p + q) vector of zeros and the stationary variance Γ̃0 can be calculated

by solving the discrete Lyapunov equation

Γ̃0 = φ̃Γ̃0φ̃
T + Σ̃
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using vectorization and Kronecker product operators. Therefore we take

(yT

0 , . . . ,y
T

1−p, ε
T

0 , . . . , ε
T

1−q)
T ∼ Nm(p+q)(0, Γ̃0).

For further details, see Chapter 2 of Lütkepohl (2005).

Conditional on the model parameters, the joint conditional density of (y1, . . . ,yn) given

(y0, . . . ,y1−p, ε0, . . . , ε1−q) is then

p(y1:n | y(1−p):0, ε(1−q):0) =
n∏
t=1

φm(yt | µt, Σ),

where φm(y | µ, Σ) denotes the density of a multivariate normal Nm(µ, Σ) distribution

evaluated at y, and where the µt are defined in a forward recursion through

µt =



p∑
i=1

φiyt−i +

q∑
i=1

θiεt−i, for t = 1,

p∑
i=1

φiyt−i +
t−1∑
i=1

θi(yt−i − µt−i) +

q∑
i=t

θiεt−i, for t = 2, . . . , q,

p∑
i=1

φiyt−i +

q∑
i=1

θi(yt−i − µt−i), for t = q + 1, . . . , n.

A Stan program for fitting a zero-mean VARMAm(p,q) model is given online in another

supplementary file.
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