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Abstract

Supplementary material contained in this note includes proofs of the forward and
reverse mappings between the original parameters of the VAR model and the new
set of uncontrained parameters; additional plots, simulations and text illustrating
properties of the prior over the stationary region; full details of the modified param-
eterization of Roy et al. (2019) and its vague prior; a complete description of the
extension of the reparameterization and prior to VARMA models; and further details
on the application to macroeconomic data.



S1 Proofs of mappings between the VAR,,(p) param-

eters and partial autocorrelations

S1.1 Definitions and preliminary results

Let G5 and g5 (s =1,...,p) be ms x ms and ms x m block matrices defined as
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with blockwise transposes denoted by
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is involutory (i.e. its own inverse), symmetric and hence orthogonal.
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Using standard multivariate normal theory, the conditional mean of y,,; given its s

predecessors y,., ., is

E(Yi1 | Yii—s1) = E(Wi1) + Cov(yyq, yt:tfs+1)var(yt:tfs+1)_1 {yt:tferl - E<yt:t75+1>}
=0+ g, G (Ypy—sp1 — 0)
= Q;FGglyt:t—s+1
=P Yy 51 (s=1,...,p).

Therefore

@S = G;lgs <~ gs = Gs@sa (S - 17 v 7p>7 (Sl>

in which we refer to the equations on the right as the forward prediction equations. The

corresponding conditional variance is
Var(y, 1 | Ypesi1) = Var(y,) — Cov(y,,y, yt:tfs+1)var(yt:tfs+1)_1COV<yt:tfs+17 Yii1)
=TIy —9.G.gs
= FO - gg@s
=Y, (s=1,...,p).
By symmetry, this gives

Yo=To—P.gs, (s=1,...,p).



Similarly, the conditional mean of y,_, given its s successors y_ 1y, 18

E(Ys | Ypu—si1)t)
= E(y,—s) + Cov(Yy_ s, Yusiy) VAT (Yg—sin) ™ {Yamssrye = EW i)}
=0+ g "G (Ysr1yr — 0)
_gsTG* 'y Yi—st+1):t

= gp:Ty(tf.s#l):t (S = 17 s ap)'

Therefore
:szlg: = =GP (s=1,...,p), (S3)
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in which we refer to the equations on the right as the reverse prediction equations. The

corresponding conditional variance is

Var(y,_ | Y(t—s+1): +) = Var(y,_,) + Cov(y,_ s Y- s+1)t)var( Y(t—s+1): 1) 1COV( Yu- s+1):t7yt78)
o FO _g*Tka 1
=Ty—g."®;
=27 (s=1,...,p).

By symmetry, this gives

=Ty -9 gt (s=1,...,p). (S4)

Before proceeding with the proofs of the forward and reverse mapping, we use the
properties of () and the forward and reverse prediction equations to derive the following

preliminary results

Q@s = QGglgs = (QGSQ)ings = G:71~s (S = 17 s 7p)' (S5>

Similarly,
QP; = QG g, = (QG;Q)'Qy; = GJ'g; (s=1,....p). (S6)



S1.2 Forward mapping

For s = 1, the forward prediction equation simplifies to give
g =GP <= Ii1=1Iy,

and so

ou=1I"T" =I5 (S7)
Similarly, from the first reverse prediction equation, we arrive at
g =G = I7 =Ly

and so

o, =0Ty =I5t (S8)

We can partition the matrices in the forward prediction equation, G®s = g5 (s =

2,...,p), as follows

Gs—l g:—l gps,—s . Gs—1
ngl FO gs FS
or, equivalently,
Gs—lgps,—s + g:—lgb; = gs—1, (S9>
nglqjs,—s + FOQb;Fs = TI. (SlO)

Similarly, we can partition the matrices in the backward prediction equation, Gi®: = g

(s =2,...,p), as follows

Git 9s P\ (9
gir o . Iy
or, equivalently,
P s = G, (S11)
Genr @i+ Dodsl =T (512)



From (S9) we can write

Dy o= Gs_—ll(gs—l - g:—lﬁgs) = Gs_—llgs—l - G;—11§:—1¢:s
and then using (S1) and (S6) we have

Dy s =051 — QP10 (S13)
So, blockwise, we have

Gsi = Gs—1,; — ¢ss¢:71,57¢7 (s=2,...,p;i=1,...,s—1). (S14)

Similarly, from (S11) we can write

@:,73 = G::11 (95-1— gs—l(b:sT) = GZifg;ll - G::llgs—lﬁb:g
and then using (S3) and (S5) we have

D, =Py — QP (S15)

S,—S$

So, blockwise, we have

oi = s 1i— PosPs—1,5-is (5=2,...,p;i=1,...,5—1). (516)

Equations (S14) and (S16) establish the results of step 2(b)(ii) in the forward mapping
from the Appendix in the paper.
Next, taking (S13) in (S10) and using properties of ) we can write

F0¢§s =TI, - g:TI@S,—S
= I = G5 (Pey — QPL_103,)
= I, — G Py + (Qut_,) " QD:_ 91,
=1, — g Py + e P 0L

We therefore have

Gss(Lo — 4):39:—1) FsT - gp;r—lg:—l



which, from (S4), is equal to

Gss2ig =17 — Do 1Gi - (517)
Solving for ¢, we can write
Gss = (I — Dy _1G51) 255 —— (IS = Gsral oy — o0 — bsmr sl ) 250 117 (518)
for s =1,...,p which encompasses (S7) as a special case in which ¢§g3 = 0.

Similarly, taking (S15) in (S12) and using properties of () we can write

F0¢:sT = FST _gs 145: —s
= FST gs 1( Q@S 1¢ )
=1y —ge 1P+ (Qgs—l)TQ¢5—1¢:g

= F Qs 1Py +9371¢)s—1¢:sT-
We therefore have
¢:s(F0 - ¢§—1gs—l) F Qs lgS 1

which, from (S2) is equal to

IR P AR (S19)

Solving for ¢%,, we can write
(b - (F (ps 15— 1>E;11 = (Fs - (b:fl,l[’s*l - ¢:fl,sflrl)2;}17 (82())
for s = 1,...,p which encompasses (S8) as a special case in which #;7gy = 0. Equa-

tions (S18) and (S20) establish the results in step 2(b)(i) of the forward mapping.

The recursion for the matrices of autoregressive coefficients in the sth forward and
reverse prediction equations involve the conditional variances Xs_; and X* , (s =1,...,p—
1) and so we need to define a recursion for their computation. Post-multiplying both sides

of the left-hand equation in (1) by y/,, and taking expectations yields

S S

E(yt+1y1tT+1) = Z ¢siE(yt—i+1ytT+1> + E(€S,t+1ytT+1) — Iy= Z Gsili + X

i=1 i=1



and so
Zs:FO_¢31F1_"'¢53F87 (3:17"'7p>' (S21)
Similarly, post-multiplying both sides of the right-hand equation in (1) by y; , and taking
expectations yields
E(ytfsy;r—s) = Z ¢:iE<ytfs+iy;F—s) + E(ez,t—syg—s) — FO = Z ¢:7,FZT + Z:
i=1 =1
and so
Xi=Ty—ouIy —-- i IS, (s=1,...,p). (522)
Equations (S21) and (522) establish the results of step 2(b)(iv) in the forward mapping.
Recall that we define the partial autocorrelation matrices Pi,..., P, as Py =

Cov(zs41,2%4 ) (5=0,...,p—1). For s = 0, we can write this as
P = COV(SO_lytH ;S Ty = Sglcov(ytﬂ, y,)(SoT) 7 =S5 (S T)

which, using (S7), can be expressed as

Py= Sy o 5T = 55 oSSy T (SeT) T = S5 e Sg (523)
Now, for s =1,...,p — 1 we have
Py = Cov(S; tegurr, Silel, ) = S; ' Cov(e€g i1, e:,t—s)(S:T)_l‘

We can write the inner covariance as

Cov(€s,i1, Gﬁ,t_s) = COV(yt+1 - @;Fyt:t—s+1 » Yr—s — Q:Tyt—s—&-l:t)

= Cov(Yps1, Yi—s) = CoV(Yyp1s Ysosr1:) D,
— D, CoV(Yps—st1, Yios) + PiCOV(Yppi1: Yimsi10) Py

= Cov(Yy41,Yi—s) — Cov(Ypi1, QUpe—s41) P,
= P,CoV(Yp—si1, Yis) T P CoV(Ypy_ g, QYp—s11) D5

=10 —9,QP; — 0.7, + P;G,QP;.

Using (S6), this can be written as
Cov(€s,it1, e:,t—s) = sT+1 - 9§G§1§§ — & gs + ¢§GSG8_1g:
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which, using (S1), gives
Cov(€s 11, ei,t_s) = FsT+1 — & gs.

Finally, from (S17) we obtain

Cov(€s i1, €54 ) = Pst1,5412% -

It follows that
Popr = 8. 010 Z0(S7) 7 = 87 a0 508 T (ST) 7
Therefore, also taking account of (S23), we have
Py = 87 ber151155, (s=0,...,p—1). (524)

To obtain an alternative representation of the partial autocorrelation matrices, it is

instructive to construct P}, (s =0,...,p—1). For s = 0 we can write
P = Cov(S; 'y, 0_1yt+1) = S5~ Cov(y,, yt+1>(sg)_l = Sg_lpl (Sg>_1
which, using (S8), can be expressed as
Pl = 857011 Z0(S5) ™ = S5 719118055 (S5) 7 = S5 T é11So
and so
Py = (S5 ¢11%)". (525)
Now, for s =1,...,p — 1 we can write

Pl = Cov(S; el S €)= ST Cov(el, , €5441)(S7)

The inner covariance can be expressed as

COV(GZ,tfsa €st41) = Cov(y,_, — @:Tyt—sﬂ:ta Y — @;Fyt:t—s+1)
= Cov(Y;_s, Yrr1) = CoV(Y_s, Ypt—ss1)Ps
— B CV(Yy 1o Yurr) + DT COVY, 15 Ypvms1) s
= Cov(Ys—s, Yir1) — Cov(Yy_y, QY si1.4)Ds

- @:TCOV(yt—S—FI:U yt+1) + @:TCOV(yt—s—FI:U Qyt—s—i-l:t)@s
= Lst1 — g:Tngs - ¢:T~s + @:TG:Q@S



Using (S5), this can be written as
COV(GZ,t—sa €s7t+1) =1Tg1— Q:TG:_lgs - ¢:T~s + ¢:TG202_1~5
which, using (S3), gives
Cov(e;t_s, €st+1) = L5411 — @;Tgs.
Finally, from (S19) we obtain
COV(GZ,t—sv €s111) = ¢:+1,s+128'
It follows that

PsT+1 = S:_1¢:+1,s+128(sg)_1 = S:_1¢Z+1,s+1sssg(sg)_l = S*_1¢:+1,s+183‘

s

Therefore, also taking account of (S25), we can write the partial autocorrelation matrices

as
Py1 = (87 0541,6115)", (s=0,...,p—1). (526)

Equations (S24) and (S26) establish the results of step 2(b)(iii) in the forward mapping.

It is also clear that
Cov(y,1,4) = Cov(y, Yua)” == dudp = (61, 20)"
and, for s=1,...,p — 1, that
Cov(es i1, € ) = Cov(er, o €si11)" = darrsr1 s = (Do 012s) -
Therefore we have

¢s+1,s+12: = (¢Z+1,s+1ZS)T7 (S = O, Y 2 1) (S27>

S1.3 Reverse mapping

In the reverse mapping, the results in step 2(b)(i) from the Appendix of the paper follow

from trivial rearrangement of the results in step 2(b)(iii) in the forward mapping. The
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equations in step 2(b)(ii) are unchanged from those in step 2(b)(ii) of the forward mapping
and the equation in step 2(b)(iv) follows from direct rearrangement of the first equation in
step 2(b)(i) of the forward mapping.

We can partition the matrices in the expression for the conditional variance, Y1 =

Iy =P 19541 (s=0,...,p—1), as follows

s
Es+1 = Iy — <(p3‘+17,(8+1) ¢5+1,5+1>
s+1

T
- FO - 5+1,_(5+1)gs - ¢s+1,s+1F8+1

which, using (513), yields

Y1 =1Ip— (@3 - ¢s+1,s+1g§:TQ>gs - ¢s+1,s+1Fs+1

= FO - QB:QS - ¢s+1,s+1<rs+1 - @:Tgs)

and then using (S2) and (S19) gives

Zs+1 =2, - ¢s+l,s+1¢:+1,s+128' (828)
Finally, from (S27) we have
Es—i—l =X — ¢5+1,s+122¢§+1,5+1a (S =0,... P — 1) (829)

We can partition the matrices in the expression for the conditional variance, X5 , =

Iy—2:hgi, (s=0,....,p—1), as follows

gs

T
Fs—i—l

* — _ * T *
ZSH I <¢s+1,—(s+1) s+1,s+1>

_ *xT * * T
- FO - @s+1,—(s+1)gs - ¢s+1,s+1rs+1

which, using (S15), yields

Z:-s—l =1y — (QEZT - ¢Z+1,8+1¢§Q)9§ - ¢:+1,s+1FsT+1

=1y — QPZTQ: - ¢:+1,s+1<‘l—’§+1 - 45:557:)
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and then using (S4) and (S17) gives

* % * *
Es+1 - Z‘s - ¢s+1,s+1¢s+l,s+123‘

Finally, from (S27) we have

Y =2 — ¢:+1,s+125¢£1,s+1= (s=0,...,p—1). (S30)

Equations (S29) and (S30) establish the results of step 2(b)(iii) in the reverse mapping,.
Finally, using the result in step 2(b)(i) of the reverse mapping we can write (S28) as

Y1 =25 — ¢s+1,s+1¢:+1,s+128
= 558, = (SsPsr18; ) (S; Pt S5 1)Ss Sy
= 8,5 — SP 1 P S,
= Ss(Im — Pen1 Ply)S;, (s=0,...,p—1), (S31)
in which I,,, — Pyy1 P}, is positive semi-definite (Ansley and Kohn, 1986). Equation (S31)
establishes the result in step 1(b) of the reverse mapping.

If S, is the lower triangular Cholesky factor of X, then we decompose (I, — Ps11 P} ,)

according to its Cholesky decomposition which we write as

T —1 —-1T
Ly — Psy1 Py = Bo By,

where B, is lower triangular, and then solve (S31) for S, through
Ss = Ss+lBs+1-

If S is the symmetric matrix-square-root of s, then we denote by B;rll the symmetric

matrix-square-root of (I, — Ps;1 P}, ) and then solve (S31) for S, through

Ss = Bsi1 (Bs_—i-llgs—&—lBs_-&l)l/QBs—&-l‘

S2 Invariance to orthogonal transformation

Assume that symmetric matrix-square-roots are used in both parts of the reparameteriza-

tion of a stationary VAR,,(p) model for y, (t = 1,2,...). In Section 3.2 of the manuscript

12



we stated that for any m x m orthogonal matrix H, the parameters of the stationary
VAR,,(p) model for §, = Hy, are ¥ = HXH" and A, = HA,H" (s = 1,...,p). In this
section, we show why this is the case.

The multivariate normal distribution is closed under linear transformation and deter-
mined completely by its first two moments. Consider a permutation, rotation or any other
orthogonal transformation of the observation vectors, that is y, = Hy,, where H is an
m X m orthogonal matrix. It follows that y,,y,,... will follow a stationary VAR,,(p)

process characterized by parameters

{2, B1 . 60)} € 4 X Com (532)

in which ¥ = HYH™ and ¢, = Hp,H™ (s =1,... ,p). Moreover, because H is orthogonal,
the symmetric square-roots of ¥ = HYXH™ and X are similar, with £/2 = HXY2HT. Cor-
respondingly, in equation (1) of the manuscript, the coefficients in the conditional expecta-
tions for the transformed process in the forward and reverse autoregressions on s < p terms
are ¢, = Hpi;H™ and é; =H¢H" (s=1,...,p; i =1,...,s) and the matrix-square-
roots of the conditional variance matrices are L2/* = HXY?H™ and £;'* = HX: Y2 H?
(s =0,...,p). The matrix triples (ZN'S_UQ, Bot1.541, ZNJ;kl/Q) and (23_1/2, Gst1,54+1 2;1/2) are
therefore simultaneously similar. Hence, using symmetric matrix-square-roots in (S24), the

(s + 1)th partial autocorrelation for the transformed process is

Py = 2;1/2(554-1,34—12:1/2
= HY YVPH Hpyyy o HTHS V2 HT

=HP,.,1H" (s=0,...,p—1).

It then follows trivially from equation (2) in the manuscript that in the unconstrained
parameterization, A,y = HA,  H" (s =0,...,p — 1). Hence the parameters (S32) map
to {X,(P,,...,P,)} € S& x VP or, equivalently, {¥,(A;,...,A)} € St X Myxm(R)?
where P, = HP,H™ and A, = HA,H" (s = 1,...,p). It is important to note that if
Cholesky factors are used in the first or second part of the reparameterization, the partial

autocorrelation matrices P; and their real-valued transformations A, are not similarity
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transformations of P, and A,. This was one reason for choosing symmetric square-roots,

rather than Cholesky factors, in our mappings.

S3 The parameterization of Roy et al. (2019)

S3.1 A parameterization in terms of orthogonal and symmetric

positive definite matrices

As discussed in Section 3.5 of the manuscript, based on a characterization of the process
in terms of positive definite block Toeplitz matrices, Roy et al. (2019) establish a bijective
mapping between the parameters of a stationary VAR,,(p) process (X, ®) € S,F x Cpm,
and the parameter set {X, (Vi,...,V,), (Q1,...,Qp)} € S x §iP x O(m)? for any fixed
choice of a pseudo error variance matrix M € S;7. Unfortunately, for general M, parameter
interpretation is difficult. In the special case when M = Y it is straightforward to show
that the V; (s = 1,...,p) are differences between conditional variances Vy, = X, 1 — X,
whilst the Q, satisfy Q, = (Xs_1 — £,)" 252 P, whence PTXY2 = Q7(X,_, — X,)V/2 =
Q;FVSI/ 2 As such, QT is the orthogonal matrix arising from the polar decomposition of
P! Z];i 21 The Vi, or at least their diagonal elements, have a clear interpretation as the
reduction in residual variance when adding m covariates (the lag-s terms) to a multiple
linear regression model. However, even for this special case, interpretation of the orthogonal
matrices ()5 is much less clear, which is a significant impediment to prior specification under
this parameterization. From a computational perspective, as explained in the manuscript,
designing a MCMC scheme that is capable of sampling directly from the space of orthogonal
matrices also presents a challenge.

Notwithstanding the problems of interpretation, Roy et al. (2019) attempt to
get around the sampling issue through a second reparameterization which maps
{2, (V1,..., V), (Q1,...,Qp)} to unconstrained Euclidean space. They call this a modified
Cayley transform. Though the authors claim the mapping is bijective, it can readily be veri-
fied that this is not the case, and this significantly impairs the performance of computational

inference by MCMC. Section S3.2 explains and illustrates these points through a series of ex-
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amples. Section S3.3 then shows how a bijective mapping of {X, (Vi,...,V,),(Q1,...,@Qp)}
to uncontrained Euclidean space is available and that a particular choice of distribution
for the new parameters provides what might be regarded as a vague prior distribution over

the stationary region.

S3.2 The modified Cayley transform is not bijective

In order to avoid designing a MCMC scheme that samples directly from the space of
orthogonal matrices, Roy et al. (2019) use a modified Cayley transform to map each @Q; €
O(m) to a set of unconstrained real-valued parameters s; € R™™~1/2 which comprise the
below diagonal elements of a skew-symmetric matrix S;, and a binary parameter §; € {0, 1}.
The symmetric positive definite matrices V; € S} are similarly mapped to Euclidean space
through a square-root-free Cholesky factorization (Lindstrom and Bates, 1988). Dropping
the lag-j subscript for clarity and denoting e; = (1,0, ...,0)", the mapping that determines
@ from (s,9) is given by

Q= Es {(In — 8)(In + S) 7'} = E;R, (S33)

in which Es = I,,, — 2de e is a Householder reflection whose role is to map Q € O(m)
to R = {(I,, — S)(I, + S)™'}* € SO(m), where SO(m) denotes the special orthogonal
group, and then R = {(I,, — S)(I,, + S)*l}2 parameterizes the special orthogonal group.
The inverse mapping that calculates (s,d) from @ is described in Section 3.1 of the Sup-
plementary Materials to Roy et al. (2019). First, since R cannot have an odd number of
negative one eigenvalues, ¢ is determined as 0 if () has an even number of negative one
eigenvalues and 1 otherwise, yielding R = Es(). By computing a real square root of R that
lies in SO(m) and does not admit negative one as an eigenvalue, S can then be determined
through
S=2(L,+R") " —1,

by using properties of the Cayley transform. The authors claim that this transformation is

bijective. However, because a general R € SO(m) does not have a unique square root with
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these properties, it can readily be verified that this is not the case. For example, consider

R cos(f)  sin(f) c 50(2).
—sin(f) cos(f)

where 6 € (—m, 7). Then both

RZ/Q _ cos(0/2) sin(0/2) i R}Bﬂ —cos(0/2) —sin(6/2)
—sin(0/2) cos(0/2) sin(0/2)  —cos(0/2)

are real square roots of R that lie in SO(2) and do not admit negative one as an eigenvalue.

It can readily be verified that each square root gives a different value of S both of which,

when coupled with 4, give the same value of @ through (S33). The mapping from reals to

orthogonals is not, therefore, injective.

Suppose a distribution on R™™~1/2 x {0, 1} has been specified for (s, §). Although it is
many-to-one, the above mapping from reals to orthogonals still induces a valid distribution
for @ on O(m). In theory, MCMC methods can therefore be used to draw from the posterior
for (s,d) and these samples can be transformed through (S33) to give draws from the
posterior for (). In practice, however, the posterior for (s,d) will be multimodal which can
be a serious impediment to the convergence and mixing of the sampler. Specifically, if the
chain is unable to move efficiently between modes, it cannot accurately apportion posterior
mass between them. If, in turn, these modes differ in prior support, the approximation of
the posterior for () will not average the likelihood for @) correctly over its prior.

To illustrate the problem, consider the following toy example. Suppose a single obser-
vation is to be made on a binomial random variable, Y|p ~ Bin(n, p) where p € (0,1) and
n = 10. Suppose further that the model is reparameterized in terms of o = ,/p € (—1,1)
and that « is assigned a prior by taking a = (1 + ¢2)~'/2 where ( ~ N(m, s?). The prior

densities induced for o and p are

1 1 oN—1/9 2
o) = ors(1 = a?)jie exp | =55 {a(l—a?) /2 _ m}|, —-l<a<l,
and
m,(p) = % [ma(—VB) + Ty}, 0<p<l.
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Under two choices for the hyperparameters, (m = 0,s = 1/3/3) and (m = 1/4,s = v/3/3),
the prior densities for a and p are illustrated in Figure S1. Figure S1(b) also shows the
densities for p when the distribution for o from which it is generated is truncated at zero
on the right and left. The hyperparameter s is chosen to be v/3/3 because when m = 0,
the density for a becomes u-shaped when s > /3 /3.

15-
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Figure S1: Prior density for (a) o € (—=1,1) and (b) p=a? € [0,1) when m =0 () and
m = 0.25 (—). Also shown in (b) are the prior densities when the distribution for « is

truncated to o € (—1,0] (---) and o € [0, 1) (---).

Suppose we go on to observe Y = y where y € {0,1,...,10}. Irrespective of the value
of y, Pr(Y = ylp = o*) = Pr{Y = y|p = (—a)?} and so the likelihood for o will be bimodal
and symmetric about 0. Taking y = 2 for illustration and then calculating the marginal
likelihoods by numerical integration, the posteriors for a under the two different choices for
(m, s) are shown in Figure S2(a). The posterior density clearly inherits the multimodality
of the likelihood but it is only symmetric about 0 when the prior is symmetric about 0, that
is, when m = 0. It is noticeable that for both values of m, the two modes are separated by
a region of low posterior density around zero. The corresponding posterior densities for p

are unimodal and shown in Figure S2(b).
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Figure S2: Posterior density for (a) @ € (=1,1) and (b) p = o® € [0,1) when m = 0
(—) and m = 0.25 (—). Also shown in (b) are the posterior densities when the prior

distribution for « is truncated to o € (—1,0] (---) and o € [0, 1) (---).

If a MCMC sampler was set up to target the posterior for «, it may get stuck in either
the negative mode or the positive mode. In this example, the marked separation of the
modes is such that a sampler stuck in the negative mode essentially draws «, and hence p,
from the posterior that would be obtained if the prior for o was truncated on the right at
0. Similarly, a sampler stuck in the positive mode is essentially drawing from the posterior
for o, and hence p, that would result from truncating the prior for o on the left at 0. These
pseudo-posterior densities for p are overlaid on the plots in Figure S2(b). When the prior
does not offer equal weight to the two values of o that map to the same value of p, in this
case a = &,/p, it is clear that the pseudo-posterior distributions differ from the posterior
distribution. Even if the sampler is able to jump between modes in the posterior for «,
unless it moves frequently enough to accurately approximate the mass of each mode, the
approximation of the posterior for p will still be biased.

Unfortunately, these problems manifest clearly when stationary vector autoregressions

are reparameterized using the real-valued parameterization of Roy et al. (2019) for problems
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Figure S3: Trace plots obtained under two chains (—— and —) for two selected elements
in s5. The marginal posteriors are clearly multimodal but jumps between modes are infre-

quent.

of even moderate complexity. For example, consider the simplest application in Section 5
where m = 3 and p = 4. We take the prior specification recommended by the authors, which
comprises N(0,5) distributions for all continuous parameters and a Bern(0.5) distribution
for the reflection parameters. We also use the MCMC algorithm described by the authors,
composed of Gaussian random walks for all continuous parameters and an independence
sampler for the reflection parameters, with proposal equal to the prior. Two long chains,
initialised at different starting points, were run for 1.5M iterations. After omitting the first
500K as burn-in and thinning the remaining draws to retain every 1000th iterate, the trace
plots for two elements of the skew-symmetric matrices S; are shown in Figure S3. It is

clear that the posterior is multimodal but the modes are not symmetric about the mean
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of the prior (zero) and therefore attract different prior support. In order to accurately
approximate the posterior for the elements of the orthogonal matrices ); and hence the
autoregressive coefficient matrices ¢;, it is therefore necessary for the sampler to jump
frequently between the modes in the posterior for the S;. However, this does not happen,
and the two chains switch only occasionally between modes, meaning neither will provide
a very good approximation to the posterior for (X, ®). Not surprisingly, therefore, the
approximations of the marginal posteriors for the parameters of the vector autoregression
differ between the two chains; see Figure S4. Although it is possible that this problem
could be obviated by doing even longer MCMC runs, this solution is neither practical
nor scalable. Indeed, for the more complicated models in Section 5 of the manuscript,
when m = 10 and m = 20, the sampler simply did not converge. Therefore except for
simple cases, the unconstrained parameterization and prior of Roy et al. (2019) does not

provide a tenable solution to enforcing stationarity through the prior in Bayesian vector

autoregressions.
¢2,22 ¢2,32
4- 3-
3 -
2 27
2
o 2-
)
1 -
1 -
0- 0-
-0.6 -0.4 -0.2 0.0 0.0 0.2 0.4 0.6
Value

Figure S4: Marginal posterior distribution approximated under two chains (- and —) for
two selected elements in ¢5. The posterior densities do not overlap, suggesting a lack of

convergence in one or both chains.
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S3.3 A new reparameterization and vague prior

The unconstrained parameterization discussed in the previous section is problematic be-
cause the proposed mapping from reals to orthogonals is not injective. However, it is
possible to find a different mapping from {X, (V4,...,V}), (Q1,...,Q,)} to unconstrained
Fuclidean space that is a bijection.

Recall from Section S3.1 that in the special case when M = X the V; (s = 1,...,p)
represent differences between conditional variances whilst the @, satisfy Q, = (Xs_1 —

22512 P, so that

PESYE = QU (5, — X))V = TV (S34)

S S

and hence @) is the orthogonal matrix arising from the polar decomposition of Pf Eslf 21
The polar decomposition is a unique representation of a full rank, real-valued matrix as
the product of an orthogonal matrix and a symmetric, positive definite matrix. Therefore
since the parameter space of QI is O(m) and that of Vy is S, it follows from (S34)
that the parameter space of PTX2 is Myum(R). Writing C; = PSTE;ﬁ = Qr M2 we
therefore have another bijection between (X, ®) € S x Cp., and {2, (C4,...,C,)} €
St X Mywm(R)P. Although the complex interpretation of the C precludes the kind of
structural prior specification available for the transformed partial autocorrelations, it is well
known (for example, see Jauch et al., 2021; Eaton, 1989, Chapter 5) that if Cs comprises
m? independent standard normal random variables, then the joint distribution induced for
the components of its polar decomposition are such that (), and V, are independent, with
Qs uniformly distributed over O(m), and V; Wishart distributed with m degrees of freedom
and identity scale. As a corollary to the results from Section 3.2, it is straightforward to
show that if an orthogonal transformation is applied to the observations vectors y, = Hy,,
then the new parameters that result from this transformation are C, = HC,H". As the
standard matrix normal distribution is rotatable (Dawid, 1981), the prior distribution for
the Cs will be unchanged by a permutation of the observations y,. It therefore serves as
a vague, stationary prior distribution that is additionally exchangeable, whilst allowing

the inferential problem to be cast in Euclidean space. This might be attractive to some

modellers as a default choice of prior.
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S4 Choice of prior variance for the unconstrained square
matrices

For the simplest vector autoregression, which is a VAR(1) model, we consider two ver-
sions of the exchangeable, stationary prior presented in Section 3.2 of the manuscript.
Specifically, we consider the hierarchical prior expressed through equations (7)—(9), with

hyperparameters chosen as

Prior I: ey =0, fy=1/0.35, gs =1.05, hy = 0.0075,

Prior 2: ey =0, fu=+/35, ¢si=10.5, hg = 14.25,

for s =p=1and i = 1,2. This gives marginal prior means and correlations of E(ay ;) =
E(a1,5) = 0.0 and Cor(ay,11,a122) = Cor(ay2,a121) = 0.7, and marginal prior standard
deviations of SD(ay ;) = SD(ay,;) = 0.5 or SD(ay,;) = SD(ay,;) = 5.0, respectively. For
comparative purposes, we also consider the vague, stationary prior based on the parameter-
ization of Roy et al. (2019) that was discussed in Section 3.5 of the paper and Section S3.3
above. We refer to this as Prior 3. Since prior beliefs are arguably most naturally expressed
in terms of the partial autocorrelation matrices, we visualize the distribution for the el-
ements of P, in Figure S5 from which it is clear that in the priors with larger variance,
namely Priors 2 and 3, the marginal distributions for all elements are multimodal. The
corresponding plot for the elements of the autoregressive coefficient matrix ¢, is shown in
Figure S6 under the prior X' ~ IW(m+4, I,,,) for the error variance matrix. In addition to
displaying the complex geometry of the stationary region C; o, this plot reveals that multi-
modality can also become a feature of the prior under the original (@, X')-parameterization
of the model when the prior variance for the Ay becomes too large. For most problems, a
multimodal prior for a partial autocorrelation matrix Py (or an autoregressive coefficient
matrix ¢;) is unlikely to be representative of prior beliefs. To avoid this, care is clearly
needed in the choice of prior variance for the a;;.

As explained in Section 2.2 of the manuscript, each unconstrained square matrix A,
is related to the corresponding partial autocorrelation matrix P, by a simple mapping

of the singular values from the positive real line to the unit interval. It is reasonable,
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Figure S5: Visualization of the prior induced for P; in a VARy(1) model: Priors 1 (7, - );
2 (A, ——); 3 (o, —). All plots share a common x-scale. Diagonal plots depict marginal
densities and share a common y-scale (see the y-axis of the (1,1) plot). Off-diagonal plots
depict bivariate densities and share a common y-scale (see the y-axis of the (j, 1) plots for

j=2,3,4).

therefore, to conjecture that the multimodality that can occur in the prior for the partial
autocorrelations, but not in the multivariate normal prior for the unconstrained square
matrices, arises through this mapping of the singular values. Dropping the lag-s subscript
for brevity, we can gain insight into the behaviour of the prior induced for the singular
values, along with the right and left singular vectors, of P through a closed form expression
for their joint density in the special case when all the elements of A = (a;;) are independent
and identically distributed a priori, with a;; ~ N(0,s?) (7,7 =1,...,m).

Denote the singular value decomposition of A by A = URV™ where R is a diagonal
matrix whose diagonal values are the singular values 7,...,7,, of A and where U and

V are its left and right singular vectors, respectively. If the singular values are ordered,
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Figure S6: Visualization of the prior induced for ¢ in a VAR5 (1) model: Priors 1 (7, - );
2 (A, ——); 3 (o, —). All plots share a common x-scale. Diagonal plots depict marginal
densities and share a common y-scale (see the y-axis of the (1,1) plot). Off-diagonal plots

depict bivariate densities and share a common y-scale (see the y-axis of the (j,1) plots for

j=2,3,4).

distinct and positive and we fix the sign of the m right (or left) singular vectors, then
this transformation is unique. Using the Jacobian of the singular value decomposition
(Edelman and Rao, 2005) it is straightforward to derive the prior distribution of U, V' and

the 7; under these conditions through
1 m m—1 m ~
m(A)(dA) = (27) "™ /257 exp (—@ fo) II 11 ¢ - wrav)(dr)(vrav).
i=1 i=1 j=i+1
It follows that U, V and (7y,...,7,,) are independent @ priori and that the distributions

of U and V are normalized Haar measures, the latter restricted to one pattern of column

signs. Further, we can derive the marginal distribution of the singular values 7, ..., 7,, of
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A as

m?2/2

m m—1 m
7T(7‘1,...,7“m) — Qm(m_Q)/QSmQFm(m/Q)Q €xXp <_@ZT1> A H T —T

i=1

for 7y > Ty > «-+ > 7, > 0 where T)(z) = 7™M DA T{z — (i — 1)/2} is the
multivariate gamma function. The singular value decomposition of P is simply P = URV™
in which the diagonal matrix has ith diagonal entry r; = 7;(1+72)~Y/2 (i = 1,...,m). In the
prior induced for the singular values and vectors of P, the singular values therefore remain
independent of the singular vectors and the singular vectors remain distributed according
to independent normalized Haar measures. The Jacobian J of the transformation from the

singular values of A to those of P has determinant

m

I =TTa -2

=1

from which it follows that the joint density for the singular values of P is

_ nm/? 1~ 7 1 — 2 )-@m+1)/2
W(Tl"”’rm)_Qm(m_2)/23m2rm(m/2)2 P\ “5 21z ) (1)
m—1 m
y —(2m+1)/2 H (r2 —7”?),
i=1 Jj=i+1

for 1 >r;y >ry > .-+ >r, > 0, where it is understood that the products over i and j
evaluate to 1 when m = 1. In the univariate case, when m = 1, there is a scalar-valued
partial autocorrelation, p = urv, with u ~ U{—1,1} and v = 1. When the single singular
value r has a prior density with a local maximum at, say ro € (0,1), the prior density
for p = +r will clearly be bimodal with symmetric modes at p = —rg and p = ro. It is
therefore reasonable to posit that this behaviour will generalize to the multivariate case
when m > 1. In other words, multimodalities, like those seen in Figure S5, are induced
in the prior for P when the joint density of the singular values has a local maximum in
1>ry >ry > - >r, > 0. For the low-dimensional cases for which visualization of
the joint density is feasible, this conjecture is supported by simulation from the prior; see
Figures S7 and S8. At the very least, identifying the value of s at which a local maximum

first occurs serves as guide for making a principled choice of the variance in the prior for

A.
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Figure S7: Prior densities induced for the scalar partial autocorrelation p when m = 1
and: s> =1/6 (); s =1/3(—); s*=1/2(
s?2>1/3.

). The density becomes bimodal when

Denoting © = (ry,...,7,)", the components of the gradient of the logarithm of the

prior density for r are given by

dlog{m(r)} _ T {(2m+1)s*(1 —r?) — 1} ]_[].;M(ri2 —77) 4+ 25%r(1 = 17)? Dk Hk#’j(r? —72)

or; s2(1—77)? Hj;éi(rzz —77)
for i =1,...,m, whilst the terms in the associated Hessian matrix are
9?1 2m +1)(1 4 r? 14 3r? i+
Og{/;‘-(r)} — ( m+ )(2+rz)_ + 747,2 _22 S é] ’ (Z.:]_,...7m),
or; (1—r7)? s2(1—r7)? gy (ri — Tj)Z
and

O*log{m(r)}  drir; o
oror;  (r? — r3)?’ (£ 7 3)-

Finding stable points in the region 1 > r; > ry > --- > r,, > 0, if they exist, is therefore

tantamount to finding the real roots of the system of m polynomial equations

0={@m+1)s*(1—r}) =1} [JO7 =) +25° (=)D J[ 7 =70, (G=1,....,m),
J# JFL k]
subject to this constraint. For any fixed value of the prior standard deviation s, these

equations can, in principle, be solved. In combination with application of the second

derivative test, this allows determination of the smallest value of s at which the distribution
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Figure S8: Pairwise densities between a pair of off-diagonal elements (left panels), a pair of
diagonal elements (middle panels) and a diagonal and off-diagonal element (right panels) in
the joint prior induced for the partial autocorrelation matrix P when m = 2 and s* = 1/3
(top row); s> = 1/2 (middle row); s* = 2/3 (bottom row). The density appears to be

multimodal for s* > 1/2.

has a local maximumin1l > ry >ry > --- > r,, > 0. Form = 1 and m = 2, the roots can be
found by hand, along with the value of s at which a local maximum first occurs. For m = 3,
m = 4 and m = 5 the system can be solved with the help of symbolic computation software
such as Maple over a grid of values for s. This allows identification of the approximate
value for s where a local maximum first appears. The results are displayed in Table S1. The
number of possible solutions to an (unconstrained) system of polynomials, each of degree
d, grows exponentially with d and, in this case, is d = 2m. Although this can be reduced
to d = m by using the substitution w; = 1 — r2, the search still becomes computationally
infeasible for m > 5. However, from Table S1 it seems that the value of s at which a local
maximum first appears grows with m, but at a decreasing rate, such that for m > 5, a

value of s = 1 would be a reasonable choice. For smaller values of m, the choice of s can

be guided by Table S1.
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Table S1: The standard deviation sy in the prior for the elements of A such that when

s > sg, the prior induced for the singular values ry,...,r,, of P has a local maximum in
1>7r,>--->r >0. Values for m < 2 are exact; values for m > 2 lie in the stated open
interval.

m 1 2 3 4 5

so 1/v/3 1/v/2 (0.81,0.82) (0.90,0.91) (0.98,0.99)

S5 Effect of an ill-conditioned variance matrix on in-
ference

One of the features of the reparameterization for univariate autoregressive models that

is not preserved in the vector generalization is the independence of the error variance Y

and partial autocorrelations P, ..., FP,. Indeed, in the vector case, P, ..., P, and hence
the unconstrained square matrices Ay, ..., A,, depend on X as well as the autoregressive
coefficient matrices ¢1, ..., ¢,. This suggests that if the likelihood is formulated in terms

of the new parameters, the dependence of A;,..., A, on X may distort the shape of the
likelihood, thereby causing numerical problems in sampling from the posterior. This, in
turn, would cause numerical problems in the approximation of the posterior for ¢, ..., @,.

If such a problem was to arise, it is likely that it would be exacerbated if Y was close to
being singular. In order to investigate whether there is any evidence to substantiate these
concerns, we performed a series of simulation experiments. Six data sets of length 1,000

were sampled from a VAR;3(2) model with error variance (and correlation) matrix

1 rr
Y=1r 1 r|,
ror 1
where r € {0.000, 0.500,0.833,0.955,0.988,0.997} to three decimal places. The condition
number for a matrix of this form is ¢ = (1+2r)/(1 — r) and so the matrices had condition

numbers ¢ € {1,4, 16,64, 256, 1024}. For each of the six data sets, common values for the
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autoregressive coefficient matrices ¢; and ¢, were used. This process was repeated three

times using three different pairs of matrices ¢; and ¢,, as detailed in Table S2.

Table S2: Autoregressive coefficient matrices, ¢; and ¢,, used to simulate the six data sets
in each of the three experiments. Also shown for each experiment is the minimum effective
sample size when analysing the data simulated using the error variance matrix X' with each

of the six possible values of the condition number c.

Experiment 01 o3 Minimum Effective Sample Size by ¢

1 4 16 64 256 1024

~1.508 —0.495 —2.500 1393 0.063 1477

1 4893 —0.975 0.895 4170 0204 3.261 | 3761 2762 2531 3102 2567 3313
1123 0.613 2475 2120 —0.031 —1.713
0226 0509 0.083 1.001 0.306 —0.360

2 0499 —0.195 —0.929 0.395 0.399 —0.221 1954 2869 3140 2551 2279 1949
1720 1353 —L1.715 1.591 0.932 —0.810
0223 0100 1.191 —0.502 0340 —0.874

3 —0.344 —0.157 —1.627 0.820 —0.346 0790 | 2874 1769 2196 2634 1952 2065
0531 —0.078 1.118 0.000 —0.207 —0.446

The unconstrained square matrices A; and A, and the error variance matrix X were
given the exchangeable, stationary prior referred to as Prior 1 in Section S4. In order to
fit a VAR;3(2) model to each data set, we used Hamiltonian Monte Carlo, implemented
in Stan. In all cases we used the rstan interface to the Stan software to run four chains,
initialized at different starting points, for 5000 iterations, half of which were discarded as
burn-in. After pooling the output across chains, the minimum effective sample sizes from
each analysis are shown in Table S2. For a randomly chosen selection of parameters in ¢,
and ¢, Figure S9 shows plots of the marginal posteriors based on data simulated in each
of the three experiments.

In all the panels of Figure S9, the posteriors are roughly centred at the value used to

simulate the data, though it is interesting to note that under some values for ¢; and ¢, such

29



¢1,11 ¢1,12 ¢2,11 ¢2,21

20- 25- 5- 5-
15+ 20- 4- 4-
2 15- 3- 3-
% 10-
& 10- 2- 2-
57 5- 1- 1-
0- 1 1 1 1 1 0- 1 1 1 1 O- 1 1 1 O-I 1 1 1 1
-1.60-1.55-1.50-1.45-1.40 -0.55 —0.50 -0.45 -0.40 12 14 16 1.8 38 40 42 44 46
Value
(a)
¢1.23 ¢1,33 ¢2,12 ¢2.31
20- 20-
15- 15-
=
g 10- 10-
(]
a
5- 5-
0- 1 1 1 1 0- 1 1 1 1 1 1 1 1
12 -10 -08 -06 -21 -1.9 -1.7 -15 0.1 0.2 0.3 0.4 05 14 16 1.8
Value
(b)
¢1 12 ¢1 31 ¢2 21 ¢2 32
.é‘
2 10-
[]
o)
—02 00 02 04 05 06 07 -03 -02 -01 00
Value
(c)

Figure S9: Marginal posterior distributions for four randomly selected parameters in ¢,
and ¢ for the data simulated under each of the six values for X' in Experiments (a) 1; (b)
2; (c) 3. The values of the parameters used to simulate the data are indicated by solid
vertical lines. The condition numbers of the six values for X are 1 (—); 4 (—); 16 (—);

64 (—); 256 (—); 1024 ().
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as those used in Experiments 2 and 3, the posterior for ¢; and ¢, becomes more diffuse as the
condition number of Y increases. Crucially, the usual graphical and numerical diagnostics
gave no evidence of any lack of convergence and from Table S2, there does not seem to be
any deterioration in mixing performance as X' approaches a singular matrix. Therefore, on
the basis of this simulation experiment, there is no evidence that the intertwining of the two
parameter sets, (A;,...,A,) and X, causes any problems in the numerical approximation

of the posterior.

S6 Further details of the application

S6.1 Data

Table S3 indicates which variables in the macroeconomic time series analysed in the

manuscript were used in the VAR;3(4), VAR ¢(4) and VAR4y(4) models.

S6.2 Prior specification

In the exchangeable, stationary prior used in the application, we use the guidelines from

Section S4 to choose the hyperparameters in equations (7)—(9) from the manuscript as

m = 3: esi =0, fo =+/0.455, gy = 1.365, hy = 0.07L,

m=10,20: ey =0, fg=1+/0.700, gs =2.100, hg = 0.333,

fors =1,...,4 and ¢ = 1,2. This gives marginal prior means and correlations of E(as ;) =
E(as;j) = 0.000 and Cor(as i, as ;) = Cor(as,;j, as;) = 0.700, and marginal prior stan-
dard deviations of SD(as;;) = SD(as,;) = 0.806 (m = 3) or SD(ay,;) = SD(a1,;) = 1.000
(m =10 and m = 20).

In the Minnesota and semi-conjugate priors used in the application, the prior means
in ugy and ugz (K = 1,...,p), were chosen to be zero in all analyses and every element
of @ was taken to be independent, so that the prior variance matrices Wy, and Wy3 were
diagonal. The diagonal elements in Wy, and Wy3 were chosen according to the default

choices from the model-fitting software provided with the monograph of Koop and Korobilis
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Table S3: The variables in the macroeconomic time series and the models (m) in which

they were used.

Variable m
Real GDP: quantity index (2000 = 100) 3,10,20
CPI: all items 3,10, 20
Interest rate: federal funds (e_ective) (percentage per annum) 3,10,20
Real spot market price index: all commodities 10, 20
Depository institution reserves: nonborrowed (millions of dollars) 10, 20
Depository institution reserves: total (millions of dollars) 10,20
Money stock: M2 (billions of dollars) 10,20
Real Personal Consumption Expenditures: quantity index 10,20
Industrial production index: total 10,20
Capacity utilization: manufacturing (SIC) 10,20
Unemployment rate: all workers, 16 and over (percentage) 20
Housing starts: total (thousands) 20
Producer price index: finished goods 20
Personal Consumption Expenditures: price index 20
Real average hourly earnings: non-farm production workers 20
Money stock: M1 (billions of dollars) 20
S&P’s common stock price index: industrials 20
Interest rate: US treasury constant maturity, 10-year 20
US effective exchange rate: index number 20
Employees, non-farm: total private 20
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(2009) where the same data are analysed using vector autoregressive models. Specifically,
in the semi-conjugate prior, Wy3 = 10,2 (k = 1,...,p) and in the Minnesota prior, the
diagonal elements in the prior variance matrix Var{vec(¢y)} = Wio were chosen such that
Var(dr) = ¢/k* (i = 1,...,m) and Var(¢y,;) = ds7/(k*s7) (i # j) with ¢ = d = 1/2.
In these expressions, s? is the ordinary least squares estimate of the error variance in the
(univariate) autoregression for variable 7. The idea is that the prior variance decreases with

lag to encourage shrinkage of the autocovariance matrices at higher lag towards zero.

S6.3 Assessment of forecasting performance

In Section 5 of the manuscript, the strategy for assessing forecasting performance is ex-
plained. In brief, the posterior (or maximum likelihood estimates) for the model parameters
were obtained using the data up to time n = 156, y,,...,y,, and then forecasting perfor-
mance was assessed using the remaining 40 hold-out observations, ¥, . 1,..., ¥y, 4. For a
variety of horizons, h = 1,2,4,8, the h-step ahead forecasts arising from the four model-
prior combinations, along with the model fitted using maximum likelihood, were compared
using the MSFE and a number of proper scoring rules.

Given data, y,.,, the h-step ahead MSFE for variable k is defined by

1 n—+40 )
MSFEp (Y (n41):(nra0), P) = 0 hal > v — E{Yuly1ny Y]
t=n-+h

For each value of h € {1,2,4,8} and m € {3,10,20} and each variable of interest k €
{1,2,3}, the posterior distribution for log MSFE, (Y ,11):(n+40), @) for the four Bayesian
analyses is summarized in Figure S10 through its mean and credible intervals which extend
to two posterior standard deviations either side of the mean. For the maximum likelihood
analysis, we present the maximum likelihood estimate (MLE) for log MSFE, £ (Y (,41.(n+40): ®),
namely log MSFEL (Y (41):(n+40) @) where & is the MLE of & which can be computed from
the MLEs (fll, ce Ap, f)) of the parameters in the fitted model. Uncertainty in the value of
the estimator is quantified by applying the delta method to an asymptotic approximation
to the standard error of the MSFE obtained using the approach of Harvey et al. (1997).

Proper scoring rules assign a numerical score S(F,y) by comparing a forecast distribu-

33



Value

Figure S10: For each value of m, each forecast horizon h, and each prior: posterior mean
(with arrows extending to plus or minus two posterior standard deviations) for the loga-
rithm of the empirical MSFE for each variable of interest k. The priors are: exchangeable
and stationary (e); Minnesota (e); semi-conjugate (e); vague and stationary (e). Also

shown are analogous summaries based on the stationary MLE (Ansley and Kohn, 1986)

OF

tion function F' (or density function f) with the observation y that arises. For assessing
individual forecasts of the three variables of interest we considered two popular scoring
rules: the continuous rank probability score (CRPS) and the logarithmic score. Given
data, y,.,, the h-step ahead CRPS for variable £ at time ¢t = n + h,...,n + 40 is defined
through

1
CRPS(Fh ik, Yix) = /{thk(z) — Wy < 2)}2dz = E|Yy, — yu| — §E|Ytk - Yl

Here [(z) denotes the indicator function, which is equal to 1 if x is true and 0 otherwise, and
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Yir, Y}, are independent and identically distributed random variables whose h-step ahead

predictive distribution function is F}, 4. The logarithmic score is defined through

logS(Fhtks Yx) = — 108 frn (Vi)

in which fj, 4 is the density function associated with F}, 4.
We additionally compared the model-prior combinations in terms of their ability to
produce joint forecasts by computing the energy score (ES), which is a multivariate gener-

alization of the CRPS. In its most widely used form, the h-step ahead ES is
1
ES(Fhﬂg,yt) = EHYt — yt“ — §E|’Yt — Y;H, t=n+ h, o, + 40

in which Y, Y}, are independent and identically distributed random vectors whose h-step
ahead joint predictive distribution is Fj,;. We calculated the energy score for a three-
dimensional vector containing the variables of interest.

To approximate the scoring rules at each time point ¢, we used the scoringRules
package in R (Jordan et al., 2019). This package allows efficient computation of the scoring
rules on the basis of samples from the relevant predictive distribution. The results are
presented in Figures S11-S13 for each value of h € {1,2,4,8} and m € {3,10,20} and
for every model-prior combination as well as the frequentist analysis. Each score was
calculated as an average across the 40 — h + 1 time points at which it was evaluated. The
posterior predictive distributions can readily be sampled for the four Bayesian analyses.
For the maximum likelihood analysis, estimation of the forecast distributions, either by
simulation or numerical methods, is much more difficult. The (asymptotic) variance of the
forecast errors can, in principle, be computed using a recursive algorithm that allows for
epistemic uncertainty in the parameter values (see, for example Tsay, 2014, Chapter 2).
However, the algorithm requires a value for the asymptotic variance of the estimator "3
An approximation to the variance matrix of {vec(A,), ..., vec(A,), vech(2)}" is available
as the negative Hessian matrix evaluated at the MLE; this is a by-product of the Quasi-
Newton Raphson algorithm used to minimize the negative log-likelihood function. However,
converting it to a variance matrix for & requires the Jacobian of the transformation between

parameter sets, analytic computation of which is prohibitively difficult. We therefore follow
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Figure S11: For each value of m, each forecast horizon h, and each prior: CRPS for each
variable of interest k. The priors are: exchangeable and stationary (e); Minnesota (e);
semi-conjugate (e); vague and stationary (e). Also shown are analogous scores based on

forecast distributions evaluated at the stationary MLE (Ansley and Kohn, 1986) (e).

common practice in the frequentist time series literature (the so-called “plug-in” method,
Pourahmadi, 2001, Chapter 2) and ignore the epistemic uncertainty when constructing h-
step ahead forecast distributions. At time ¢, this yields a multivariate normal distribution
with mean and variance equal to E(Y ¢[yy.;_p), @) and Var(Y ¢|y1.—n) @, 3)) both of which
can be computed recursively (see, for example Liitkepohl, 2005, Chapter 2). The difficulty
in allowing for parameter uncertainty in the forecast distributions is, of course, a substantial
drawback to the maximum likelihood approach.

A discussion of the results from Figures S10-S13 can be found in Section 5 of the

manuscript.
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Figure S12: For each value of m, each forecast horizon h, and each prior: logarithmic score
for each variable of interest k. The priors are: exchangeable and stationary (e); Minnesota
(e); semi-conjugate (e); vague and stationary (e). Also shown are analogous scores based

on forecast distributions evaluated at the stationary MLE (Ansley and Kohn, 1986) ().

S7 Inference for VARMA models

As discussed in Section 6 of the manuscript, the ideas behind the symmetric partial auto-
correlation parameterization and its associated prior, can be extended for VARMA models
in order to constrain inference to the invertible, as well as stationary, region. Consider the
VARMA,,(p,q) model

0(B)e: = ¢(B)y,

where ¢(B) = I, —¢1B—---—¢,B?, 0(B) =L, + 0B+ ---+6,B7 and €, ~ N,,,(0,X) is
a white noise sequence. The stationarity condition (¢, ..., ¢,) € Cp,, is handled as previ-

ously, by reparameterizing in terms of partial autocorrelation matrices (Py,...,P,) € V.
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Figure S13: The energy score (ES) for each value of m, each forecast horizon h, and each
prior. The priors are: exchangeable and stationary (e); Minnesota (e); semi-conjugate (e);
vague and stationary (e). Also shown are analogous scores based on forecast distributions

evaluated at the stationary MLE (Ansley and Kohn, 1986) ().

Similarly, the invertibility condition (6,...,6,) € C,., is handled by reparameterizing in
terms of an analogous set of matrices (Ry,...,R,) € V4. The recursions described in the
Appendix of the manuscript are applied twice; once as if we had a pure VAR, (p) model
with coefficients ¢1, ..., ¢, and variance X' to get Py, ..., P,, and again as if we had a pure
VAR,,(¢) model with coeflicients —#0y, ..., —6, and variance X to get Ry,...,R,. Unfor-
tunately, compared with VAR processes, the parameters are more difficult to interpret.
For example, the matrices I'y; (s = 0,1,2,...) computed as a bi-product of the forward or
reverse mappings for each set of parameters do not represent the autocovariance function
of the VARMA process. More importantly, the P, do not represent the partial autocorrela-
tion matrices of the VARMA process; instead, they represent the partial autocorrelations
of a model with the same autoregressive operator ¢(B), but with ¢ = 0. Similarly, the Rj
represent a multivariate analogue of the inverse partial autocorrelation function (Bhansali,
1983) for a model with the same moving average operator #(B), but with p = 0. In
each case, the second transformation from Section 2.2 of the manuscript can be used to
map the parameter set to unconstrained Euclidean space, Ai,..., A4, € My xn(R)? and

Dy, ..., Dy € Mym(R)?. We can then assign a prior of the form
p q
7(X, A1, Ay Dy, Dy) = w(2) [ [ w{vec(AD)} [ [ w{vec(DI)}
s=1 s=1
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with the A, and D, assigned multivariate normal priors of the form discussed in Section 3
of the manuscript.

In order to calculate the likelihood for a VARMA model, it is convenient to introduce
latent variables yy,...,y;_, and €o, ..., €4 to initialize the process. The joint density of
(Yo, Yl pr €55 -, €1_,)" can be deduced from the representation of the VARMA,,(p,q)
process as a VAR,,,(,4¢) (1) model; see, for example, Chapter 11 of Liitkepohl (2005). Under
this representation, the role of the observation vector is played by (y7, ...,y ,, €, .., etT_q)T

and the single autoregressive coefficient matrix is a block matrix defined by

b1 . p1 Gy | O .. 01 6,
~ O I, 0, |0 O Om
¢ =
Om, O O | Oy O Oy
Om Om Om ]m Om Om
O, Om Om | Oy I, O,

Similarly, the error variance matrix is a block matrix defined by

X 0p oo O0p| X 0pn ... O
Om Opn ... 0|0y O, ... O
3
Om  Op Om | Oy Oy Om
Om Opm ... 0n|0pm Opn ... Op
For a zero-mean VARMA process, the stationary mean of (yy,...,y; . €,...,€ )" is

clearly a length-m(p + ¢) vector of zeros and the stationary variance Iy can be calculated

by solving the discrete Lyapunov equation
Iy=¢l"+ 2
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using vectorization and Kronecker product operators. Therefore we take

T

(y()? cee 7yrlrfp7 637 LI e’fiq)T ~ Nm(p+q)<07 FO)

For further details, see Chapter 2 of Liitkepohl (2005).

Conditional on the model parameters, the joint conditional density of (y,,...,y,,) given

(Yo> -+ Y1_p» €0, - - -, €1_¢) is then

PY1n | Ypyo €0-0) = [ [ om(s | 11, 2),
t=1

where ¢,,(y | @, X) denotes the density of a multivariate normal N,,(u, X') distribution

evaluated at y, and where the pu, are defined in a forward recursion through
(P q

Z OiYy—i + Z Oi€r—i, fort =1,

i=1 i=1

P t—1 q
Ky = Z oYy i + Z 0i(y,—i — i) + Z Oi€—i, fort=2,...,4q,
i=1 i=1 i=t

p q
Z@yt%%—Z@i(ytii—utii), fort=q+1,...,n.
i=1

\ =1

A Stan program for fitting a zero-mean VARMA,,,(p,q) model is given online in another

supplementary file.
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