
SUPPLEMENTARY MATERIAL

Online Bootstrap Inference For Policy Evaluation in

Reinforcement Learning

In this online supplementary material, we provide detailed proofs for the lemmas and

main theorems in Sections 4.1 and 4.2, as well as additional experiments.

S1 Proofs for Section 4.1

The following lemma is a restatement of Theorem 2 from Chong et al. (1999). In the

following, we say that a sequence εt is small with respect to another sequence αt if there exist

sequences {et} and {rt} such that εt = et + rt for all t, rt → 0, and
∑t

k=1 αt‖et‖2 converges.

Also, we say that a scalar sequence {at} has bounded variation if
∑∞

t=1 |at+1 − at| <∞. We

refer to the cited article for further details on these conditions.

Lemma S1.1. Consider the linear stochastic approximation update

θt+1 = θt + αt+1(Ã(Xt+1)θt − b̃(Xt+1)).

Assume the following conditions hold:

(B1) The step size sequence {αt} satisfies αt > 0, αt → 0, and
∑∞

t=1 αt =∞.

(B2) Ā is a bounded Hurwitz matrix.

(B3) {Ã(Xt)− Ā} is small with respect to αt.

(B4) Let {ρt} be a positive real sequence converging monotonically to 0, such that

(i) {ρ−1
t (b̃(Xt)− b̄)} is small with respect to αt.

(ii) (ρt − ρt+1)/(αtρt)→ c <∞,

(iii) The sequences {ρt+1/ρt} and {ρt/ρt+1} have bounded variation.

Then θt − θ∗ = o(ρt).
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Proof of Proposition 4.1

We verify that the conditions of Lemma S1.1 hold under our assumptions (A1), (A2), (A3).

Firstly, it is easy to see that (B1) holds under (A3), i.e., with a step size αt = α0t
−η,

η ∈ (1/2, 1). Similarly, (B2) follows directly from assumption (A2).

For functions f defined over the state space X , we define the t-step transition operator

P tf(x) =
∫
y∈X f(y)P t(x, dy), where P t(x, y) denotes the t-step transition probability from

state x to y. When t = 1, we write P1f(x) = Pf(x).

Next, define Â : X → Rd×d and b̂ : X → Rd to be the solutions to the Poisson equations

Ã(x)− Ā(x) = Â(x)− PÂ(x),

b̃(x)− b̄(x) = b̂(x)− P b̂(x),

for x ∈ X . The existence of Â and b̂ is guaranteed under (A1). Furthermore, under (A2),

there exist constants Âmax, b̂max>0 such that ‖Â‖F ≤ Âmax and ‖b̂‖2 ≤ b̂max (Delyon, 2000).

Then we can write Ã(Xt) − Ā = et + rt, where et = Â(Xt) − PÂ(Xt+1), and rt =

PÂ(Xt+1) − PÂ(Xt). To verify condition (B3), it suffices to show that
∑∞

t=1 αt‖et‖ < ∞,

and ‖rt‖ → 0, as t→∞ (Chong et al., 1999).

Let Ft = σ({Xt}) denote the natural filtration with respect to the Markov chain Xt. Then

E[et|Ft] = 0, and et is a martingale difference sequence with respect to Ft. Furthermore, et is

a.s. uniformly bounded, since ‖et‖F ≤ 2Âmax, by construction. So
∑∞

t=1 α
2
tE[‖et‖2|Ft] <∞.

Then, by Theorem 29 of Delyon (2000),
∑∞

t=1 αt‖et‖ converges.

Also, since P(Xt, ·)→ µ as t→∞, it follows that ‖rt‖ → 0, as t→∞. So {Ã(Xt)− Ā}

is small with respect to αt, and (B3) holds.

Next, set ρt = t−γ, with γ ∈ (0, η − 1/2). Conditions (B4)(ii) and (B4)(iii) hold under

this definition, with c = 0 in (B4)(ii) (Chong et al., 1999). It remains to verify (B4)(i).

Define b̃(Xt)− b̄ = et + rt, where et = b̂(Xt)−P b̂(Xt+1), and rt = P b̂(Xt+1)−P b̂(Xt). It

suffices to show that
∑∞

t=1 αtρ
−1
t ‖et‖ <∞, and that ρ−1

t ‖rt‖ → 0, as t→∞.

By the same argument used above for {Ã−Ā}, et is an a.s. uniformly bounded martingale
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difference sequence, with ‖et‖F ≤ 2b̂max for all t. Then
∑∞

t=1 α
2
tρ
−2
t E[‖et‖2|Ft] < ∞, since

η − γ > 1/2. So, by Theorem 29 of Delyon (2000),
∑∞

t=1 αtρt‖et‖ converges.

Next, we have

‖P b̂(Xt+1)− P b̂(Xt)‖ =

∥∥∥∥∫
y∈X

b̂(y)(P(Xt+1, dy)− P(Xt, dy))

∥∥∥∥
≤
∫
y∈X
‖b̂(y)‖‖P(Xt+1, dy)− P(Xt, dy)‖

≤ b̂max

∫
y∈X
‖P(Xt+1, dy)− P(Xt, dy)‖.

Consider the integrand in the above expression. For any bounded initial distribution ν0, i.e.,

with supx∈X ‖ν0(x)‖ ≤ νmax, for some constant νmax <∞, we have

‖P(Xt+1, dy)− P(Xt, dy)‖ ≤ sup
x1,x2∈X

‖ν0P t+1(x1, dy)− ν0P t(x2, dy)‖

≤ νmax sup
x1,x2∈X

‖P t+1(x1, dy)− P t(x2, dy)‖

= νmax sup
x1,x2∈X

‖(P t+1(x1, dy)− π(dy))− (P t(x2, dy)− π(dy))‖

≤ νmax sup
x1,x2∈X

(
‖P t+1(x1, dy)− π(dy)‖+ ‖P t(x2, dy)− π(dy)‖

)
≤ νmax

(
Mκt+1 +Mκt

)
≤ 2νmaxMκt,

where the penultimate inequality holds by (4.1). It follows that ‖P b̂(Xt+1) − P b̂(Xt)‖ ≤

2b̂maxνmaxMκt, and so ρ−1
t ‖rt‖ ≤ 2b̂maxνmaxMtγκt → 0, as t→∞. �

Proof of Proposition 4.2

First, we list the conditions required for our central limit theorem, Proposition 4.2, to hold.

The assumptions listed below are from Liang (2010), who proved a central limit theorem for

the varying truncation stochastic approximation MCMC algorithm. This is a general form

of algorithm (2.1), and is designed to solve the equation

h(θ) =

∫
X
H(θ, x)fθ(x)dx = 0,
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where θ ∈ Θ ⊂ Rdθ is a parameter vector and fθ(x), x ∈ X ⊂ Rdx is a density function

depending on θ. The function h(θ) is called the mean field function, and H(θ, x) is a noisy

observation of h(θ).

The stochastic approximation algorithm is designed to iteratively estimate θ from a se-

quence of noisy observations that depend on the current estimate of θ (hence forming a

controlled Markov chain). The main update step for this algorithm is given by

θt+1 = θt + αt+1H(θt, Xt+1)

= θt + αt+1h(θt) + αt+1εt+1, (S1.1)

where h(θ) =
∫
H(θ, x)fθ(x)dx, fθ being the invariant distribution of the controlled Markov

transition kernel Pθ, and εt+1 = H(θt, Xt+1)− h(θt) is the residual noise term.

In order to ensure the convergence of the iterates in (S1.1), Liang (2010) imposes a

varying truncation scheme, whereby the iterates θt are constrained within an increasing

sequence of compact sets {Ks}s≥0. Under this scheme, Andrieu et al. (2005) showed that

there exists a time step tσs <∞ such that θt ∈ Kσs for all t ≥ tσs , and there are no further

truncations beyond time step tσs . The central limit theorem applies to the averaged iterate

θ̄t := 1
t−tσs

∑t
i=tσs+1 θi.

The following conditions are assumed by Liang (2010):

(C1) Θ is an open set, the function h : Θ→ Rd is continuous, and there exists a continuously

differential function v : Θ→ [0,∞) such that

(i) There exists M0 > 0 such that

L = {θ ∈ Θ, 〈∇v(θ), h(θ)〉 = 0} ⊂ {θ ∈ Θ, v(θ) < M0}.

(ii) There exists M1 ∈ (M0,∞) such that VM1 is a compact set, where VM = {θ ∈

Θ, v(θ) ≤M}.

(iii) For any θ ∈ Θ\L, 〈∇v(θ), h(θ)〉 < 0.
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(iv) The closure of v(L) has an empty interior.

(C2) The mean field h(θ) is measurable and locally bounded. There exists a Hurwitz matrix

F , γ > 0, ρ ∈ (0, 1], and a constant c such that, for any θ∗ ∈ L,

‖h(θ)− F (θ − θ∗)‖ ≤ c‖θ − θ∗‖1+ρ ∀θ ∈ {θ : ‖θ − θ∗‖ ≤ γ},

where L is defined in (B1)(i).

(C3) For any θ ∈ Θ, the transition kernel Pθ is irreducible and aperiodic. In addition, there

exists a function V : X → [1,∞), and a constant α ≥ 2 such that for any compact set

K ⊂ Θ:

(i) There exists a set C ⊂ X , and integer l, constants 0 < λ < 1, b, ζ, δ > 0 and a

probability measure ν such that

sup
θ∈K
P lθV α(x) ≤ λV α(x) + bI(x ∈ C) ∀x ∈ X ,

sup
θ∈K
PθV α(x) ≤ ζV α(x) ∀x ∈ X ,

inf
θ∈K
P lθ(x,A) ≥ δν(A) ∀x ∈ C,∀A ∈ BX .

(ii) There exists a constant c > 0 such that, for all x ∈ X ,

sup
θ∈K
‖H(θ, x)‖V ≤ c,

sup
θ,θ′∈K

‖H(θ, x)−H(θ′, x)‖V ≤ c‖θ − θ′‖.

(iii) There exists a constant c > 0 such that, for all θ, θ′ ∈ K,

‖Pθg − Pθ′‖V ≤ c‖g‖V ‖θ − θ′‖ ∀g ∈ LV ,

‖Pθg − Pθ′g‖V α ≤ c‖g‖V α‖θ − θ′‖ ∀g ∈ LV α .

(C4) The step sizes {αt} are non-increasing, positive sequences that satisfy the conditions

∞∑
t=1

αt =∞, lim
t→∞

(tαt) =∞, αt+1 − αt
αt

= o(αt+1),
∞∑
t=1

α
(1+τ)/2
t√
t

<∞,

for some τ ∈ (0, 1] and a constant α ≥ 2 defined in (B3).
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We refer to Liang (2010) for further details on these conditions.

We now verify that (C1)-(C4) hold under assumptions (A1)-(A3). We also show that,

under our assumptions, the iterates of the update (2.1) are constrained within a compact

set K ⊂ Θ, thereby avoiding the need for the varying truncation scheme. Then the result

directly follows. Using the notation of (S1.1), in our case, we have H(θ, x) = Ã(x)θ− b̃, with

mean field h(θ) = Āθ − b̄. By (A2)(iii), we have EX∼µ[H(θ,X)] = h(θ), for all θ ∈ Θ.

(C1) assumes the existence of a global Lyapunov function v. We may choose v(θ) =

θTb̄ − 1
2
θTĀθ. Then v is a global Lyupanov function for the mean field h (Andrieu et al.,

2005; Liang, 2010). L denotes the set of all valid solutions θ∗ for the equation h(θ) = 0.

In our case, since Ā is Hurwitz by (A2)(ii), there exists a unique solution θ∗ for the linear

system Āθ = b̄, and L is a singleton set.

For (C2), the measurability and local boundedness of h follows directly from linearity. For

the latter part, we may choose F = A. Then for any θ ∈ Θ, we have ‖h(θ)−F (θ− θ∗)‖ ≡ 0,

so (C2) holds.

For (C3), in our case the function H(θ, x) = Ã(x)θ − b̃(x) is bounded by (A2)(ii), so we

can choose the drift function V ≡ 1. Then the first two conditions of (C3)(i) hold trivially.

The third condition in (C3)(i) is a standard assumption in the Markov Chain Monte

Carlo (MCMC) literature, and is referred to as the minorization condition. By Theorem

5.2.2 of Meyn and Tweedie (2009), for ϕ-irreducible Markov chains, “small sets” for which

the minorization condition holds exist. By (A1), the Markov chain is irreducible, and so, by

definition, is ϕ-irreducible for some irreducibility measure ϕ. Hence the condition holds in

our case.

(C3)(ii) follows directly from (A2)(ii). (C3)(iii) does not apply in our case as we are

dealing with a homogeneous Markov chain that does not depend on θk (not have a controlled

Markov chain). The conditions of (C4) hold trivially under (A3).

Finally, by Proposition 4.1, we can choose a large enough constant Rθ > 0 such that

‖θt − θ∗‖2 ≤ Rθ for all t ≥ 0. Then θt ∈ K for all t ≥ 0, for some compact set K ⊂ Θ. �
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S2 Proofs for Section 4.2

Proof of Proposition 4.3

To verify the conditions for Lemma S1.1, it suffices to check that {WtÃ(Xt) − Ā} and

{ρ−1
t (Wtb̃(Xt) − b̄)} are small with respect to the step sizes {αt}. By (A2)(ii) and the

boundedness of Wt, we have ‖WtÃ(Xt)‖F ≤ WmaxAmax <∞, and ‖Wtb̃(Xt)‖ ≤ Wmaxbmax <

∞, for all t ≥ 1. By independence of Wt, we have Eµ[WtÃ(Xt)−Ā] = 0 and Eµ[Wtb̃(Xt)−b̄] =

0. The rest of the argument is identical to the proof of Proposition 4.1. �

Lemma S2.1. Assume (A1)-(A3) hold. Then

√
t(

¯̂
θt − θ∗) = −Ā−1 1√

t

t∑
i=1

ε̂i+1 + op(1).

Proof. An argument similar to above may be used to verify that conditions (C1)-(C4) also

hold for the perturbed SA update (3.1) under assumptions (A1)-(A3). Then the result

follows as an intermediate step in the proof of Theorem 2.2 by Liang (2010). �

The following lemma is adapted from Lemma 5 of Xu et al. (2020).

Lemma S2.2. Assume (A1)-(A3) hold. Then, for any i > j, we have∥∥∥E [Ã(Xi)|Fj
]
− Ā

∥∥∥
F
≤ AmaxMκi−j,

where M and κ refer to the constants from (4.1).

Proof. By (4.1), for any i > j, the following holds:∥∥P i−j(·|Fj)− µ∥∥ ≤Mκi−j, (S2.1)

Then we have∥∥∥E [Ã(Xi)|Fj
]
− Ā

∥∥∥
F

=

∥∥∥∥∫
x∈X

Ã(x)P i−j(dx|Fj)−
∫
x∈X

Ã(x)µ(dx)

∥∥∥∥
F

≤
∫
x∈X

∥∥∥Ã(x)P i−j(dx|Fj)− Ã(x)µ(dx)
∥∥∥
F

≤
∫
x∈X

∥∥∥Ã(x)
∥∥∥
F

∥∥P i−j(dx|Fj)− µ(dx)
∥∥

≤ AmaxMκi−j.
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The first equality follows from the definition of Ā in (A2)(i), the second step holds by Jensen’s

inequality, and the final step follows from (A2)(iii) and (S2.1). �

Proof of Lemma 4.1

Starting with (4.4), we have

ε̂t+1 = (Wt+1Ã(Xt+1)− Ā)θ̂t − (Wt+1b̃(Xt+1)− b̄)

= Wt+1(Ã(Xt+1)θ∗ − b̃(Xt+1)) + (Wt+1Ã(Xt+1)− Ā)(θ̂t − θ∗). (S2.2)

using the fact that Āθ∗ = b̄.
By Lemma S2.1 and (S2.2), we have

√
t(

¯̂
θt − θ∗) = −Ā−1 1√

t

t∑
i=1

ε̂i+1 + op(1)

= −Ā−1 1√
t

t∑
i=1

Wi+1(Ã(Xi+1)θ∗ − b̃(Xi+1))− Ā−1 1√
t

t∑
i=1

(Wi+1Ã(Xi+1)− Ā)(θ̂i − θ∗) + op(1).

Consider the second term in the above expression. We want to show that this term is

op(1). It suffices to show that its second moment vanishes as t → ∞. First we expand the

second moment and split it into square and cross terms. We have

E

∥∥∥∥∥ 1√
t

t∑
i=1

(
Wi+1Ã(Xi+1)− Ā

)(
θ̂i − θ∗

)∥∥∥∥∥
2

2


=

1

t

t∑
i=1

t∑
j=1

E
[〈(

Wi+1Ã(Xi+1)− Ā
)(

θ̂i − θ∗
)
,
(
Wj+1Ã(Xj+1)− Ā

)(
θ̂j − θ∗

)〉]
=

1

t

t∑
i=1

E
[∥∥∥(Wi+1Ã(Xi+1)− Ā

)(
θ̂i − θ∗

)∥∥∥2

2

]
+

1

t

∑
i 6=j

E
[〈(

Wi+1Ã(Xi+1)− Ā
)(

θ̂i − θ∗
)
,
(
Wj+1Ã(Xj+1)− Ā

)(
θ̂j − θ∗

)〉]
= I1 + I2.
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We deal with each term separately. First, we have

I1 =
1

t

t∑
i=1

E
[
(θ̂i − θ∗)T(Wi+1Ã(Xi+1)− Ā)T(Wi+1Ã(Xi+1)− Ā)(θ̂i − θ∗)

]
≤ λA

t

t∑
i=1

E
[∥∥∥θ̂i − θ∗∥∥∥2

2

]
→ 0,

since θ̂i → θ∗ a.s.-PW|D, by Proposition 4.3. Here, λA = supx∈X

∥∥∥W1Ã(x)− Ā
∥∥∥2

2
< ∞, by

Assumption (A2)(ii) and the boundedness of W .

Now consider the term within the sum in I2. Without loss of generality, assume i > j.

Let Fj denote the natural filtration with respect to the Markov chain {Xk}, upto index j.

Then, we have

E
[〈(

Wi+1Ã(Xi+1)− Ā
)(

θ̂i − θ∗
)
,
(
Wj+1Ã(Xj+1)− Ā

)(
θ̂j − θ∗

)〉]
≤ R2

θ

iγjγ
E
[〈
Wi+1Ã(Xi+1)− Ā,Wj+1Ã(Xj+1)− Ā

〉]
=

R2
θ

iγjγ
E
[
E
[
〈Wi+1Ã(Xi+1)− Ā,Wj+1Ã(Xj+1)− Ā〉 |Fj+1

]]
=

R2
θ

iγjγ
E
[〈

E
[
Wi+1Ã(Xi+1 |Fj+1

]
− Ā,Wj+1Ã(Xj+1)− Ā

〉]
,

where the first step uses
∥∥∥θ̂i − θ∗∥∥∥ ≤ Rθi

−γ, for some γ ∈ (0, η − 1/2) and Rθ < ∞, by

Proposition 4.3, while the second step follows from the tower property, conditioning on the

filtration Fj+1.

Proceeding from here, we have

R2
θ

iγjγ
E
[〈

E
[
Wi+1Ã(Xi+1) |Fj+1

]
− Ā,Wj+1Ã(Xj+1)− Ā

〉]
≤ R2

θ

iγjγ
E
[∥∥∥E [Wi+1Ã(Xi+1) |Fj+1

]
− Ā

∥∥∥
F

∥∥∥Wj+1Ã(Xj+1)− Ā
∥∥∥
F

]
≤ R2

θ

iγjγ
E
[∥∥E [Wi+1A(Xi+1) |Fj+1 ]− Ā

∥∥
F

(
‖Wj+1A(Xj+1)‖F +

∥∥Ā∥∥
F

)]
≤ (1 +Wmax)AmaxR

2
θ

iγjγ
E
[∥∥E [Wi+1A(Xi+1) |Fj+1 ]− Ā

∥∥
F

]
≤ (1 +Wmax)A2

maxR
2
θM

κi−j

iγjγ
.
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We first bound the inner product using Frobenius norms. In the third step, we bound the

second term within the expectation using Assumption (A2)(ii) and the boundedness of Wj.

The final step follows from Lemma S2.2.

So far, we have shown that

I2 ≤ (1 +Wmax)A2
maxR

2
θM ·

1

t

t∑
i 6=j

κi−j

iγjγ
.

Consider the double sum above. Grouping terms by l = |i− j|, we have

t∑
i 6=j

κi−j

iγjγ
= 2

t−1∑
l=1

St,lκ
l, where St,l =

t−l∑
j=1

1

jγ(j + l)γ
.

Then St,l ≤
∑t−l

j=1
1
j2γ

. For any fixed l, limt→∞
∑t−l

j=1
1

j1+2γ <∞, and so limt→∞
1
t

∑t−l
j=1

1
j2γ

=

0, by Kronecker’s lemma. Hence, St,l/t → 0, as t → ∞. Then, by the Dominated Conver-

gence Theorem, we have limt→∞
1
t

∑t−1
l=1 St,lκ

l = 0. It follows that I2 → 0 as t→∞, and so

1√
t

∑t
i=1(Wi+1Ã(Xi+1)− Ā)(θ̂i − θ∗) = op(1). This concludes the proof. �

The following is a restatement of Lemma 2.11 from van der Vaart (1998).

Lemma S2.3. Suppose that Xn =⇒ X for a random vector X with a continuous distribu-

tion function. Then supx |P (Xn ≤ x)− P (X ≤ x)| → 0.

Proof of Theorem 4.2

Let f(x) = Ã(x)θ∗ − b̃(x). Then, by Assumption (A2)(ii), f is bounded, and

lim
t→∞

E[f(Xt)] = Āθ∗ − b̄ = 0

under the stationary distribution µ.

By the Poisson equation (see e.g., Douc et al. (2018)), there exists a bounded function u

such that

u(x)− Pu(x) = f(x).
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For t ≥ 0, we define the following terms:

et+1 = u(Xt+1)− Pu(Xt),

rt+1 = Pu(Xt)− Pu(Xt+1).

Let Ft = σ({Xi}ti=1) denote the natural filtration induced by the Markov chain {Xt}. Then

f(Xt) = et + rt, where et is a martingale difference sequence, since

E[et+1|Ft] = E[u(Xt+1) | Ft]− Pu(Xt) = 0,

and

1√
t

t∑
i=1

ri =
1√
t
(Pu(X0)− Pu(Xt))→ 0 a.s., (S2.3)

as t→∞, by a telescoping sum argument. Then from (4.6) we have

√
t(θ̄t − θ∗) = − 1√

t
Ā−1

t∑
i=1

f(Xi+1) + op(1)

= − 1√
t
Ā−1

t∑
i=1

ei+1 + op(1), (S2.4)

by (S2.3). Combined with Proposition 4.2, this implies that

1√
t
Ā−1

t∑
i=1

ei+1 =⇒ N (0, Ā−1Q(Ā−1)T). (S2.5)

On the other hand, since ei+1 is uniformly bounded (as f(x) is uniformly bounded for all

x ∈ X ), the Lindenberg condition is satisfied, that is,

t∑
i=1

E
[
‖ei‖2

2

t
I{‖ei‖2/√t≥ε} |Fi−1

]
→ 0,

in probability, as t→∞. So, by the martingale central limit theorem (e.g., Lemma A.3. of

Liang (2010)), we have

1√
t
Ā−1

t∑
i=1

ei+1 =⇒ N (0,Λ), (S2.6)
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where Λ is a positive definite matrix with

Ā−1

t∑
i=1

E[eie
T
i /t|Fi−1]

(
Ā−1

)T → Λ, (S2.7)

in probability as t → ∞. It follows from (S2.5) and (S2.6) that Λ = Ā−1Q
(
Ā−1

)T
, and so,

by (S2.7), we have

t∑
i=1

E[eie
T
i /t|Fi−1]→ Q, (S2.8)

in probability, as t→∞.

Next, from (4.7), we have

√
t(

¯̂
θt − θ̄t) = − 1√

t
Ā−1

t∑
i=1

(Wi+1 − 1)f(Xi+1) + op(1)

= − 1√
t
Ā−1

t∑
i=1

(Wi+1 − 1)ei+1 + op(1),

using (S2.3). Let ξt = (Wt − 1)et. Then ξt is a martingale difference sequence, since

E[ξt+1 | Ft] = E[Wt+1 − 1]E[et+1 | Ft] = 0.

Since ξt is uniformly bounded, the Lindenberg condition holds. Then, by the martingale

central limit theorem, conditional on the data D, the term 1√
t
Ā−1

∑t
i=1 ξi+1 is asymptotically

normal with mean 0 and variance

p-lim
t→∞

Ā−1

t∑
i=1

E[ξiξ
T
i /t|Fi−1]

(
Ā−1

)T
= p-lim

t→∞
Ā−1Var(W1)

t∑
i=1

E[eie
T
i /t|Fi−1]

(
Ā−1

)T
= Ā−1Q

(
Ā−1

)−1
,

where the first equality follows by independence of Wi and ei and the fact that the Wi’s are

i.i.d., while the second equality follows from (S2.8) and Var(W1) = 1. So, we have

√
t(

¯̂
θt − θ̄) = − 1√

t
Ā−1

t∑
i=1

ξi+1 + op(1) =⇒ N (0, Ā−1Q(Ā−1)T), (S2.9)

as t→∞, where the asymptotic normality holds conditional on data D.
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Let X ∼ N (0, Ā−1Q(Ā−1)T) denote the random variable with the limiting distribution of
√
t(θ̄t − θ∗) as t→∞. Applying Lemma S2.3 to the result of Proposition 4.2 and equation

(S2.9), respectively, we get

sup
v∈Rd

∣∣∣PD(
√
t(θ̄t − θ∗) ≤ v)− P(X ≤ v)

∣∣∣→ 0, and

sup
v∈Rd

∣∣∣PW|D(
√
t(

¯̂
θt − θ∗) ≤ v)− P(X ≤ v)

∣∣∣→ 0, in probability,

as t→∞. Then

sup
v∈Rd

∣∣∣PW|D(
√
t(

¯̂
θt − θ∗) ≤ v)− PD(

√
t(θ̄t − θ∗) ≤ v)

∣∣∣
≤ sup

v∈Rd

∣∣∣PD(
√
t(θ̄t − θ∗) ≤ v)− P(X ≤ v)

∣∣∣
+ sup

v∈Rd

∣∣∣PW|D(
√
t(

¯̂
θt − θ∗) ≤ v)− P(X ≤ v)

∣∣∣
→ 0,

in probability, as t→∞. �

S3 Additional Experiments

In this section, we provide the study of the second-order accuracy of our bootstrap method

in the Frozenlake environment considered in Section 5.1.

To empirically evaluate the second-order accuracy, we measured the coverage error rates

of the 95% confidence intervals for the value function of the initial state in the Frozenlake

environment. We use TD learning to estimate the value function, and the quantile and

standard error estimators, computed from the online bootstrap estimates, to generate the

confidence intervals. Figure 8a shows the empirical coverage errors of the quantile and

standard error estimators as a function of the number of episodes in the RL Frozenlake

environment. The rates are re-scaled to start from 1 at the first time step. In both cases,

we can see that the coverage error decreases at a rate faster than O(1/
√
t) initially, and

eventually reaches a rate of O(1/t) or better.
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(a) Coverage error rates (b) Least squares estimates

Figure 8: Figure 8a shows the coverage error rates for the quantile and SE confidence
intervals, and Figure 8b shows the linear regression coefficients for the log coverage error
rates against the log number of episodes.

We then computed estimates of the coverage error rate by regression the log of the

coverage errors against the log of the number of episodes. We would expect a first-order

accurate method to have a regression coefficient of−1/2 or lower (corresponding to a coverage

error rate of O(1/
√
t)), while a second-order accurate method would have a coefficient of

−1 or lower. As shown in Figure 8b, both the quantile and standard error have regression

coefficients of -1 or lower, which demonstrates that they both achieved second-order accuracy.
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