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Supplementary Materials 

I) FE model description:  

An anatomically accurate model of knee joint consisting of the femur, tibial and patellar bones, 

articular surfaces, as well as the origins and insertions of the ligaments, was employed. This model was 

derived from digitized magnetic resonance image (MRI) transverse contours. The subject (a male of 28 

years old with a height of 171 cm and weight of 79 kg) was placed in the transmit/receive circularly 

polarized knee coil of a Siemens Medical Systems Trio 3 Tesla for whole-body MRI. The Trio has a 

state-of-the-art 40mT/m gradient system with a slew rate of 200 T/m/s. A 3D FLASH sequence was used 

to obtain T1 weighted images with a spatial resolution of 5 x 5 x 1mm. The imaging plane was oriented 

along the anatomical transverse plane. These images are optimal to differentiate between the musculature, 

tendons, tissue fascia, and bone (Dhaher and Sun, 2006). The image data set was then imported into an 

MRI viewing and analysis package (Source Signal Imaging Inc., San Diego, CA) and re-sampled in the 

sagittal, coronal, and axial planes, providing convenient segmentation bases. The muscle-bone junctions 

were identified from the MRI images following the procedure outlined in (Dhaher and Kahn, 2002). 

Polygonal surfaces were used to generate a FE mesh of the knee joint using the Hypermesh (Altair 

Engineering, Troy, MI) pre-processor. Bones were modeled as rigid bodies (Donahue et al., 2002) using 

4-node quadrilateral elements that shared linear elastic boundaries with the articular cartilages. Eight-

node hexahedral elements were used to represent the articular cartilages, ligaments and menisci with an 

average size of 1.1 x 1.2 x 0.25 mm (Fig. 1). Element type and the total number of elements for each 

component of the knee joint are shown in table 1.  

Table. 1:  Mesh details of the knee joint. 

Set Number of elements Types of elements 

Femoral cartilage  15692 C3D8R 

Tibial cartilage  11507 C3D8R 

Patellar cartilage  5824 C3D8R 

Meniscus  14880 C3D8R 

ACL  3312 C3D8R 

PCL  2224 C3D8R 

LCL 1548 C3D8R 
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MCL 4076 C3D8R 

MPFL 1160 C3D8R 

LPFL 1008 C3D8R 

PT 4100 C3D8R 

Graft  31616 C3D8R 

QT 2117 C3D8R 

Bones (femur, tibia and Patella) 29906 S4R, S3R 

Total  128943 C3D8R, S4R, S3R 

This mesh size was obtained through a mesh sensitivity analysis, where a maximum of 6% 

difference in the von-Mises stress and principle strain was considered.  
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Figure. 1: Posterior view (left) of the bones and musculature of the right leg, showing the finite element 

model representing the knee joint. The middle one is an exploded posteromedial view of the knee FE 

model depicting the mesh used for the soft tissues and the locations of attachments for the quadriceps 

and hamstring muscles. The FE model consisted of four bones (femur, fibula, tibia, and patella) and 

continuum-based soft tissue structures. All relevant ligaments (anterior and posterior cruciate – ACL, 

PCL; medial and lateral collateral – MCL, LCL; medial and lateral patellofemoral – MPFL, LPFL; 

patellar tendon – PT; quadriceps tendon – QT), articular cartilage (femur, tibia, and patella), and menisci 

were included. The retinaculum ligaments were removed from the model due to the lack of experimental 

data. More details on the system of axes and the joint center calculations can be found in prior work 

(Schroeder, 2010, 2014). Key geometrical aspects of the ACL-R model with a description of tunnel 

dimension and locations are shown at right.   

II) Description of parametric surgical simulations:  

The ACL-R models were designed to be parametric with respect to the femoral tunnel sagittal and 

coronal angles (Fig. 2), quadrant coordinates of femoral tunnel placement (Fig. 3), the joint angle at 

which the BPTB graft is tensioned and fixed to the femoral tunnel (fixation angle), and the amount of the 

graft tensioning force (Fig. 4). 

 

Figure 2: Femoral tunnel sagittal (A) and coronal angles (B). The sagittal and coronal angles were derived 

from Takeda et al., (2013). 

Tunnel
Direction

Sagittal Plane Angle 

[58.58o to  19.4o]
Coronal Plane Angle 

[75.6⁰  to  43.3⁰]
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Figure 3: The tunnel placement constructed in the current model followed the quadrant method presented 

by Bernard et al. (1997). In the figure, v represents the line parallel to the Blumensaat line, and h 

represents the line perpendicular to the Blumensaat line. The position of the center of the femoral tunnel 

was defined by a, which represents the percentage distance from the most posterior contour in reference 

to the total length of the lateral condyle (v), and b, which represents the percentage distance from the 

intercondylar shelf (Blumensaat line) with respect to the total depth of the intercondylar notch (h). The 

average anatomic ACL location (footprint) is shown as reported by Piefer et al. (2012).  

 

Figure 4: Fixation angle and graft pre-tensioning force. The ranges used for the graft pre-tensioning force 

and fixation angle were chosen based on anecdotal clinical evidence reported in several studies (Arnold 

and Netter, 1998; Nicholas, 2004; van Kampen, 1998; Yasuda et al., 1997; Yoshiya et al., 2002). 

III) Details on ligament model:  

The behavior of connective tissues was derived from an uncoupled representation of the strain 

Blumensaat line

Intercodylar shelf

Average ACL Foot Print (a=28.5%;b=35.2%)

Example f 9 mm tunnel

a [25%-75%] & b [2%-80%] 

Vertical

coordinate Horizontal

coordinate

Fixation Angle [ 0 - 40 ]  

Pre-tension  [ 20 N - 120 N ]
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energy function defined as follows (Limbert and Middleton, 2004): 

𝜓𝑡(𝐼1, 𝐼4, 𝐽) = 𝜓𝑛𝑓(𝐼1) + 𝜓𝑓(𝐼4) + 𝜓𝑣𝑜𝑙(𝐽)  (1) 

Where: 

{
 
 

 
 𝜓𝑛𝑓(𝐼1) = 𝑐1(𝐼1 − 3)                                         

𝜓𝑓(𝐼4) =
𝑐2

2𝑐3
exp (𝑐3(𝐼4 − 1)

2
)    𝑖𝑓 𝐼4 > 1  

𝜓𝑣𝑜𝑙(𝐽) =
1

𝐷
(𝐽 − 1)

2        
                                      

  (2) 

where (𝜓𝑛𝑓(𝐼1) + 𝜓𝑓(𝐼4)), 𝜓𝑣𝑜𝑙(𝐽)  are the isotropic (𝑓 fibrillar and 𝑛𝑓 nonfibrillar) and volumetric 

parts, respectively. Next, the total stress can be computed from the equation:  

𝜎𝑡 =
2

𝐽
𝐹 (

𝜕𝜓𝑡

𝜕𝐶
) 𝐹𝑇               (3) 

where c1, c2 and c3 are the material parameters, 𝐼1 = tr(C), 𝐼4 = C:  (𝑛0⨂𝑛0) (n0 is a unit vector specifying 

the fiber direction in the reference configuration), 𝐶 =  𝐹
𝑇
F  is the

 
modified right Cauchy-Green tensor, 

F = J2/3F   is the deformation gradient tensor, J = det (F), and  𝜆𝑓 = √𝐼4  ( f  is the fiber stretch). The 

incompressibility penalty function is (𝐽 − 1)2and D is chosen to be 0.001 to simulate the near 

incompressibility of ligaments. Finally, this model was incorporated into the ligaments using Vumat-

Abaqus (Quasi-static Analysis with Abaqus/Explicit). 

Table 2: Material coefficients 

 

Summary of the material coefficients of the ligament model. 

 

C1 

(fixed for each 

ligament) 

                       C2 

 
C3 

Mean  

MCL  1.0 35 

35 

2.0 

1.2 

17.5 

17.5 

C3 = 0.4 C2 

LCL 1.0 C3 = 0.4 C2 

ACL 0.5 C3 = 2.4 C2 + 7.6 

PCL 0.2 C3 = 15.7 C2 – 4.7 

MPFL  1.0 C3 = 0.4 C2 

LPFL 1.0 C3 = 0.4 C2 
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The initial stretches (in-situ strains) were included in the FE model of the ligaments by defining three 

different configurations (Weiss et al., 1995): the stress-free (𝐹0) state, the reference state (𝐹𝑟), and the 

current state 𝐹  (Fig. 5).  

 

Figure 5: Multiplicative decomposition of the deformation gradient of the ligament. 

Using a multiplicative decomposition, 𝐹 = 𝐹0𝐹𝑟 , if an initial stretch field is assumed to be a uni-

axial stretch, F0 will take this form: 

𝐹0 =

[
 
 
 
 
λ0 0 0

0
1

√λ0
0

0 0
1

√λ0]
 
 
 
 

                  (4) 

where λ0 is the stretch along the local fiber-direction. The total stress corresponding to the current state 

can be computed from equation (3). The initial stretches in the PCL were set to zero at full extension 

(Peña et al. 2006), and for the rest of the ligaments, the initial stretches data from the experiments were 

enforced in discrete regions in search of static equilibrium in the finite element code (Dhaher et al., 2010).   

IV) Details on multiscale cartilage model:  

1) Microfibril:  

The first step in the formulation is to leverage the multiplicative decomposition of the deformation 

gradient to describe the interplay between the shear and uniaxial deformation (Asaro and Rice, 1977; Lee, 

1969). In that construct, the total deformation gradient tensor 𝐹 = 𝐹𝑠𝐹𝑓, where s and f stand for shear and 

uniaxial deformation. We assume that the plastic flow associates only with the uniaxial deformation along 

) free-stress(SF

state) reference(0

state) current(

0F rF

F
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the fibril direction. The total deformation gradient tensor of fibril is expressed as 𝐹𝑓 = 𝐹𝑓𝑒𝐹𝑓𝑝, where e 

and p stand for elastic and plastic. Combining the two multiplicative decompositions, the total deformation 

gradient tensor takes the form:  𝐹 = 𝐹𝑠 𝐹𝑓𝑒𝐹𝑓𝑝 = 𝐹𝑒𝐹𝑝  where, 𝐹𝑒 = 𝐹𝑠𝐹𝑓𝑒 (Fig .6): 

 

 

Figure 6: Multiplicative decomposition of the macroscopic deformation gradient of the cartilage. 

 

At the microfibril level, the general expression of the strain energy function takes the following form:  

𝜓𝑓𝑙(𝐼1𝑒 , 𝐼4𝑒) =
1

2
𝜇𝑓𝑙(𝐼4𝑒)(𝐼1𝑒 − 3)           (1) 

where the shear moduli µfl is considered as a function of the elastic microfibril deformation with  

𝜇𝑓𝑙(𝐼4𝑒) = 𝜇0 (𝑡𝑎𝑛ℎ (𝑎1(𝐼4𝑒 − 1)) − 𝑎2𝑒𝑥 𝑝 (𝑎3(𝐼4𝑒 − 𝐼0)))           (2) 

The hyperbolic form of the strain energy function is advantageous in fitting the stiffness evolution of the 

microfibril predicted by molecular dynamic simulation (Buehler, 2006, 2008; Tang et al., 2009a; Tang 

et al., 2010). The strain energy function is then used to connect the effective stress (𝜎𝑒𝑓𝑓) of the microfibril 

to the yield condition (i), the plastic strain rate (𝛾̇) (ii) and the flow resistance (𝑔(𝑡)) (iii) of the tissue as 

follow: 
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{
 
 

 
 𝜎𝑒𝑓𝑓 =

4

3
𝐼4𝑒

𝜕𝜓𝑓𝑙

𝜕𝐼4𝑒
= 𝑔0 = 𝑔𝑖 + 𝑐𝛽

2       (𝑖)

𝛾̇ = 𝛾̇0 |
𝜎𝑒𝑓𝑓

𝑔(𝑡)
|
1/𝑚

𝑠𝑖𝑔(𝜎𝑒𝑓𝑓)                   (𝑖𝑖)

𝑔(𝑡) = ∫ℎ𝛾̇𝑓(𝑔)                                 (𝑖𝑖𝑖)

           (3) 

Where  𝑓(𝑔) = (1 −
𝑔(𝑡)

𝑔𝑠
), here 𝑔0 = 𝑔𝑖 + 𝑐𝛽

2 represent the yield strength of the microfibril, which is a 

function of the crosslink density between tropocollagen molecules (TC M) (𝑔𝑖 = 400 𝑀𝑝𝑎 𝑎𝑛𝑑 𝑐 = 11 ) 

(Tang et al., 2009a). After that, the plastic velocity gradient of the fibrils takes the deviatoric (dev) as 

follows: 

𝐹̇𝑝 𝐹𝑝
−1
 
= 𝛾̇ 𝑑𝑒𝑣(𝑛0⊗ 𝑛0)                         (4) 

This form was numerically integrated to compute the uniaxial plastic deformation gradient (𝐹𝑝) and then 

the uniaxial elastic deformation gradient (𝐹𝑒).  

2) Fibril:  

The collagen fibril was modeled as microfibril reinforced composite material with incompressible Neo-

Hookean matrix, and the elastic strain energy of the fibril under extension (𝜓𝑓𝑏𝑡) and shear (𝜓𝑓𝑠) are 

given by  

{
 
 

 
 𝜓𝑓𝑏𝑡(𝐼4, 𝐼4𝑒) = 𝑣𝑓𝑙𝜓𝑓𝑙(𝐼1𝑒𝑓, 𝐼4𝑒) + 𝑣𝑚𝑙 (

𝜇𝑓𝑚

2
(𝐼1𝑓 − 3))

𝜓𝑓𝑠(𝐼1𝑓, 𝐼4, 𝐼4𝑒) =
1

2
𝜇𝑒𝑓𝑓𝑓𝑏(𝐼4𝑒)(𝐼1𝑓𝑏 − 𝐼1𝑓)

𝜇𝑒𝑓𝑓𝑓𝑏(𝐼4𝑒) = 𝜇𝑓𝑚
(1+𝑣𝑓𝑙)𝜇

𝑓𝑙(𝐼4𝑒)+ 𝜇0(1−𝑣𝑓𝑙)

(1−𝑣𝑓𝑙)𝜇
𝑓𝑙(𝐼4𝑒)+𝜇0(1+𝑣𝑓𝑙)

      (5) 

The total elastic strain energy density of the fibril (𝜓𝑓𝑏) is therefore written as  

𝜓𝑓𝑏(𝐼1𝑓, 𝐼4, 𝐼4𝑒) = 𝜓𝑓𝑏𝑡(𝐼4, 𝐼4𝑒) + 𝜓𝑓𝑠(𝐼1𝑓, 𝐼4, 𝐼4𝑒)           (6) 

3) Cartilage :  

The former process is used to treat the cartilage as fibril reinforced composite material characterized by 

axial (𝜓𝑡𝑡) and shear (𝜓𝑡𝑠) strain energy as follow  

{
 
 

 
 𝜓𝑡𝑡(𝐼1, 𝐼1𝑓 , 𝐼4, 𝐼4𝑒) = 𝑣𝑓𝜓𝑓𝑏(𝐼1𝑓, 𝐼4, 𝐼4𝑒) + 𝑣𝑚( 

𝜇𝑚

2
(𝐼1 − 3))

𝜓𝑡𝑠(𝐼1𝑓, 𝐼4, 𝐼4𝑒) =
1

2
𝜇𝑒𝑓𝑓(𝐼4𝑒)(𝐼1 − 𝐼1𝑓)

𝜇𝑒𝑓𝑓(𝐼4𝑒) = 𝜇𝑚
(1+𝑣𝑓)𝜇

𝑒𝑓𝑓𝑓𝑏(𝐼4𝑒)+ 𝜇𝑚(1−𝑣𝑓)

(1−𝑣𝑓)𝜇
𝑒𝑓𝑓𝑓𝑏(𝐼4𝑒)+𝜇𝑚(1+𝑣𝑓)

            (7) 
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The total strain energy of tissue (𝜓𝑡) is defined by  

𝜓𝑡(𝐼1𝑓, 𝐼4, 𝐼4𝑒) = 𝜓𝑡𝑡(𝐼4, 𝐼4𝑒) + 𝜓𝑡𝑠(𝐼1𝑓, 𝐼4, 𝐼4𝑒) + 𝜓𝑣𝑜𝑙(𝐽)          (8) 

We can further write the strain-energy function of the tissue as:  

𝜓𝑡 =
1

2
(𝑣𝑓𝑣𝑚𝑙 𝜇𝑓𝑚 + 𝑣𝑚 𝜇𝑚)

(

 𝐼4 +
2

√𝐼4

− 3

)

 +
1

2
(𝑣𝑓𝑣𝑓𝑙 𝜇𝑓𝑙)

(

 𝐼4𝑒 +
2

√𝐼4𝑒

− 3

)

 +
1

2
𝜇𝑒𝑓𝑓 ( 𝐼1 − 𝐼1(𝐹𝑓))

+  
EK
2
(𝐽 − 1)2                                                       (9) 

4) Total stress :  

By satisfying both the Clausius-Duhem dissipation inequality at the macroscopic continuum level and 

the constraint of the incompressibility of soft tissue, the total stress σt can be expressed with fibrillar σf 

and nonfibrillar σnf stress tensors as follow: 

{
  
 

  
 𝜎𝑡 = 𝜎𝑛𝑓 + ∑𝜎𝑖

𝑓
                                                                                                                 

𝜎𝑛𝑓 =
2

𝐽
(𝐼1

𝜕𝜓𝑡

𝜕𝐼1
𝑑𝑒𝑣(𝐵) + (𝐸𝑘𝐽(̅𝐽 ̅ − 1))𝐼)                                                                      

𝜎𝑖
𝑓
= {

2

𝐽
(𝐼4

𝜕𝜓𝑡

𝜕𝐼4
𝑑𝑒𝑣(𝑛 ⊗ 𝑛) + 𝐼4𝑒

𝜕𝜓𝑡

𝜕𝐼4𝑒
𝑑𝑒𝑣(𝑛𝑒⊗𝑛𝑒))}

𝑖

                      𝑖𝑓 𝐼4𝑖 > 1   

𝜎𝑖
𝑓
= 0                                                                                                                   𝑖𝑓 𝐼4𝑖 ≤ 1

        (10) 

where i represent the number of the considered fibril by integration point. For more details on the 

construction of the constitutive model, please refer to the work of (Adouni and Dhaher, 2016; Adouni et 

al., 2019; Faisal et al., 2019; Tang et al., 2009b). This model was implemented with a Vumat-Abaqus 

(Quasi-static Analysis with Abaqus/Explicit). In the superficial zone of cartilage, the collagen fibrils are 

oriented horizontally, parallel to the medial and lateral directions. In the transitional zone of the cartilage, 

fibrils are randomly oriented (i.e., no dominant orientations) following a gradual curvature starting 

parallel from the superficial zone and turning perpendicular to the surface (along with the medial and 

lateral directions). In the deep zone, vertical fibrils are initially oriented perpendicular to the subchondral 

junction (Bi et al., 2006). Finally, all calibrated materials parameters, multiplicative decomposition, and 

invariant are listed in the tables below.  

Table 3: Model parameters. 

         Materials parameters 

𝜇𝑚 Shear Modulus of the Solid matrix 
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EK Bulk modulus of the cartilage 

𝑣𝑓 volume fraction of the fibril 

n0(1,2,3) fibril direction in the reference configuration 

n(1,2,3) fibril direction in the deformed configuration 

n𝐞(1,2,3) fibril direction in the deformed configuration associated with the elasto-plastic flow 

𝜇𝑒𝑓𝑓𝑓𝑏        The effective shear modulus involves the effects of shear interactions at the interface of the 

microfibril and fibril matrix. 

𝜇𝑒𝑓𝑓         The effective shear modulus involves the effects of shear interactions at the interface of the 

fibril and tissue matrix. 

𝜇𝑓𝑚 Shear modulus of the fibril matrix 

𝜇0 Shear modulus of the microfibril 

𝑣𝑓𝑙 Volume fraction of the microfibril 

𝐼0 Secondary stiffening of the microfibril 

𝑎i(1,2,3) Dimensionless microfibril parameters 

g0 Yield strength of microfibril 

𝛾̇0 Initial plastic strain rate 

𝛾̇ Initial plastic strain rate 

m Rate Sensitivity 

 h Hardening rate  

         Multiplicative decomposition and invariant 

F = 𝐹𝑒𝐹𝑓
𝑝
 Multiplicative decomposition of the deformation gradient into elastic and plastic parts 

𝐼1 = tr(F 𝐹
𝑇
) First invariant  

𝐼1𝑒 = tr(F𝑒 𝐹𝑒
𝑇
) First elastic invariant  

𝐼4 = 𝑛0
𝑡B 𝑛0 Invariant related to the fibril stretch   

𝐼4𝑒 = 𝑛0
𝑡B𝑒 𝑛0 Invariant related to the elastic fibril stretch   

𝐼1𝑓 = 𝐼4 + 2𝐼4
−1/2

 First invariant of fibril 

𝜆𝑓 = √𝐼4 
fibril principal stretch 

 

Table 4: The statistically and manually calibrated material parameters of the articulate cartilage model. 
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Materials parameters Lower bound Upper bound 
Calibrated 

distribution 

𝝁𝒇𝒎 Shear modulus of the fibril matrix (MPa) 0 4 2.879 (1.036) 

𝜇𝑚 Shear modulus of the solid matrix (MPa) NA NA 0.1 to 0.4  

𝝁𝟎 Shear modulus of the microfibril (MPa) 1000 4000 2906.928 (510.65) 

𝒗𝒇 volume fraction of the fibril NA NA 0.15 to 0.18 

𝒗𝒇𝒍 Volume fraction of the microfibril 0.1 0.4 0.212 (0.034) 

𝑰𝟎 Secondary stiffening of the microfibril 1.6 2.8 2.118 (0.196) 

𝒂𝟏 Dimensionless microfibril parameter 1 0.1 2 1.163 (0.383) 

𝒂𝟐 Dimensionless microfibril parameter 2 100 1000 524.584 (195.205) 

𝒂𝟑 Dimensionless microfibril parameter 3 10 100 51.52 (18.024) 

m Rate Sensitivity NA NA 0.05 

𝛾̇0 Initial plastic strain rate (1/s) NA NA 0.01 

EK Bulk modulus of the cartilage NA NA 1/0.001 

β crosslink density between the TC M NA NA 9 

NA: not applicable.   

V) Details on the meniscus model: 

Due to well-documented observations of the transverse and axial planes’ isotropy in the meniscus, 

a special subclass of orthotropy - transverse isotropy was used to model the mechanical behavior of the 

meniscus (Fithian et al., 1990; Proctor et al., 1989; Tissakht and Ahmed, 1995). Axial, transverse, and 

circumferential axes characterize the meniscus’s local coordinate system, assuming the transverse-axial 

plane as a plane of isotropy (Fig. 7). This assumption leads to a number of independent constants to be 5 

in the matrix. Hence, the transverse isotropy is maintained considering circumferential modulus (EC), 

transverse and axial modulus (Et, Ea, such that Et=Ea),  Poisson’s ratio (νct, νca, and νct= νca) that is defined 

as the ratio of the contractile strain in the transverse plane to the tensile strain in the circumferential 

direction under the load in the circumferential direction, Poisson’s ratio, νta, within the transverse plane, 

shear modulus, Gt =Ga, in the plane along the fiber direction. The stress-strain relationship for the 

transversely isotropic materials is defined as follows: 
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Figure 7: Representation of the circumferential (C), transversal (T) and axial directions (A) within 

the meniscus structure. 

VI) Details on Surrogate Modeling 

The RBF approximation of the response function at n arbitrary training points can be 

found as: 

       (1) 

where x is the vector of input variables, xi is the vector of input variables at the ith sampling point, 

 is the Euclidean norm representing the radial distance r from design point x 

to the sampling point xi,  is a radially symmetric basis function, and  are the unknown 

interpolation coefficients. Some of the most commonly used RBF formulations are:  

(thin-plate spline); ,  (Gaussian); (multiquadric); and  

(inverse multiquadric). Subject to the normalization of r values to the range of (0, 1), the tunings 

E=20MPa 

T

C

A

)(
~

xf )(xf


=

−=
n

i

iif
1

~
)xx()x( 

 

x−xi = (x−xi)
T (x−xi)

nii ,1, =

 

(r) = r2 log(r)

 

(r) = e−r2

 

  0

 

 (r) = r 2 + c 2

 

 (r) = 1 r 2 + c 2
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parameter c lies within ]0, 1].  

The unknown coefficients in Eq. (1) are found by minimizing the sum of square errors of response 

approximation at all n training points as expressed by the following: 

           

2

1 1

 
= =









−−=

n

j

n

i

ijijfR )xx()x(    (2) 

Expanding Eq. (S1) leads to a solution for the coefficient vector  given by  

       f1−
= A        (3) 

where [𝐴] = [∅‖𝑥𝑗 − 𝑥𝑖‖]; 𝑗 = 1: 𝑛; 𝑖 = 1: 𝑛,     T

n ,..., 21= and    T

nffff )(),...,(),( 21 xxx= . The 

error statistics PRESS and 𝑅𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
2  as defined by Eqs. (4) and (5) are used to evaluate the accuracy 

of constructed surrogate models at the training points.  

 
=

−=
n

i

jj ffPRESS
1

2

)(

~
 (4) 

𝑅𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
2 = 1 −

𝑃𝑅𝐸𝑆𝑆

𝑆𝑆𝑇
 (5) 

where )(

~
jf is the approximation of the response

jf  at the jth  training point using the RBF model created 

by (n - 1) training points that exclude the jth point.  SST represents the total sum of squares for 

responses njf j :1; = . In addition, to evaluate the accuracy of the constructed surrogate models at test 

points, RSME and R2 statistics defined by Eqs. (6) and (7) are used. 

m

SSE
RMSE =   (6) 

SST

SSE
R −= 12           (7) 

where m is the number of test points. SSE and SST represent the sum of square errors and the total sum 

of squares for responses at m test points, respectively.  

In this paper, for each desired response of the ACL-R simulations, the best choice of RBF basic 

function, ∅(𝑟) , along with the best tuning parameter c  was explored. The objective was to find an 

optimal combination of RBF basic function and tuning parameter c for which the PRESS (Eq. (4)) 

was the lowest compare to the other possible combinations. To achieve this objective, the following 

steps were followed: 

Step 1: for each desired response, two surrogate models with multiquadratic and inverse 

multiquadratic RBF functions were built.  
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Step 2: for each surrogate model of different RBF functions, the tuning parameter c is changed 

within ]0, 1] with an increment of 0.1 (instead of 0, 0.01 is considered), and their accuracy was 

assessed using Eq. (S3) for each c (0.01, 0.1, 0.2…0.9, 1). 

Step 3: With the identification of the range of c associated with the lowest error, c is changed 

within that range with an increment of 0.01, and the error is assessed for each of them. A value of c 

associated with the lowest PRESS (Eq. (4)) is chosen for each surrogate model of different RBF 

functions. 

Step 4: for each response, a surrogate model with the lowest PRESS is selected. 

VII) Sensitivity indices 

The partial variances are defined by the variance of the output Y (ligament forces) when input 

parameter Xi (6-surgical design parameters) is fixed to its true value.  If the true value is unknown, 

the expectation of the known range of variation of the input is well used as an accepted alternative 

(Saltelli et al., 2010), leading to the following equations.  

𝑉𝑖 = 𝑉(𝐸(𝑌|𝑋𝑖))         (1) 

𝑉𝑖𝑗 = 𝑉 (𝐸(𝑌|𝑋𝑖,𝑋𝑗)) − 𝑉(𝐸(𝑌|𝑋𝑖))         (2) 

where V ( ) and E ( ) are the variance and expectation operators, respectively. For higher-order terms, 

all terms are linked by: 

𝑉(𝑌) = ∑𝑉𝑖 + ∑𝑉𝑖𝑗 +⋯+ 𝑉12….6       (3) 

Dividing both sides of the equation by V(Y) , we obtain the main equation used to figure out the 

sensitivity indices:  

∑ Sii + ∑ ∑ Sij +⋯+ S12…6 = 1j>ii          (4) 

 

VIII) Joint Kinematics and contact behavior 

Most of the surgical designs (79 %) resulted in medial contact forces within the range of healthy 

model prediction (540 N ± 50N). However, 21% of the designs that favor an increase in the medial 

force characterized by an additional anterior location (~ 85% vertically) and higher graft fixation angle 

(~ 35 degrees) and femoral tunnel orientations that are ranging from 59/39 to 72/55 degrees in the 

coronal and sagittal plane, respectively. A higher range of fixation angle (31 to 39 degrees) and graft 
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tensioning force (85 to 116 N) were observed to have the tendency to shift the compartmental load 

distribution meaningfully from the lateral side to the medial side. Six out of 48 models augmented the 

lateral joint displacement by nearly 10%. These models were characterized by a high fixation angle 

and low graft pretension. However, the augmentation of the graft pretension and the tunnel’s posterior 

location led to a posterior displacement of the knee joint.  

Graft tensioning force and fixation angle accounted for the major portion of the variance in the 

joint total contact force (56%). The combined and separate changes in the graft tensioning and fixation 

angle were mainly controlling the sensitivity of the computed maximum contact stress (48%). Tunnel 

placement followed by the graft fixation angle were responsible for most of the observed variability 

of the kinematics of the joint (46%). 
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