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Abstract

This supplementary material gives the technical proofs and additional simula-
tion results. Specifically, Appendix A presents the asymptotic properties of the
oracle estimator by providing the proofs of Theorem 1 and some auxiliary lemmas.
The oracle property of the SCAD-penalized estimator and the consistency of the
SIC are proved in Appendix B. Appendix C gives more information on the data

generating process in Section 5.2 and presents additional simulation results.

A Proofs of Theorem 1 and auxiliary lemmas

In this appendix, we present the proof of Theorem 1 and relegate some auxiliary lemmas
to the end of this appendix.

We start with some notations. Throughout Appendix A, since we focus on the oracle
estimator with a fixed quantile level 7, we omit 7 in all notations and simplify 1§ and 0
to 7i and 0. let i = (T, i) "

For any i = 1,2,...,n, denote Il(z;) = (1, I(z))7), 9 = (1;,07)" and 9y =
(ioi- 00) 7. Let Mi(9;) := TS0, pr(yar — D) T90), AV (0:) = Mi(®;) — Mi(o)
and AP (9;) := T 0 [(1s — pos) + M) (0 — 65)](m — I{eir < 0}). Define £;(0) =
E[f;(0lzi)], v; := fi(0)'E[fi(0]2s) T (24)], and T := n~" > iy ELfi(Ofars )T ( ) (T (050) —
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;) ']. Define the score vectors of the quantile regression problem (nT)~! >"" | Zthl Pr(Yir—
pi — I(z) " 0) as

H(l)(ﬂ/w 0) -—7{ Z{T — I(ys < p; + I(z) " 0)}

t=1

HY (11, 0) -=E[H" (11;, 0)]

=E[r — Fi(p; — pio + I(241)(0 — 0g) — Rit|vit)]
1 n T

S e < e T O

H®(u,0) :=E[H? (1, 0)]

H® (p

:% ZE[{T — Fi(pti — prio + (i) (0 — 09) — Rig|wie) ()]

Proof of Theorem 1. Throughout the proof, to ease the notations, we focus on the
case with ' = 1. Since the subgroup structure is completely known when we define
the oracle estimator, the results can be directly extended to the general K > 1 groups.
The proof consists of three steps. In the first step, we show the consistency of the oracle
estimator (L, 5) In the second step, we show the convergence rates of maxy<;<y, |[; — ol
and ||§ — O¢||>. Finally, we prove the asymptotic normality of 0 and the conditional

variance of the estimated smooth function.

Step 1. Consistency of i and 0

We first prove the consistency of 6. For i = 1,...,n, note that
M;(9:) — My(90:) = AP (9;)

= AV (0,) + AP (9,) —E[AL () {za}] — AP () + E[A] (9) {za}].
~ H,—/ S ~ J
le Th; T5;
Let &(n,T) = +/Hlog(n)2/T + H~¢. Suppose that ||§ — Ogll2 > L& (n,T) for some
constant L > 0. Then 9; = (ﬁi,aT)T satisfies H@Z — Dgill2 > L& (n, T), for all 1 <i <n.

By Lemmas 2, 4 and 5, we have maxi<;<, T1; = 0,(§3(n, T)), Toi = L - O,(§3(n,T)), and
Ty; > CL*¢(n, T), respectively. Hence, for some sufficiently large L, M;(9;) > M;(9¢;)
for all 1 < i < n. Hence, with probability approaching one, " | M;(9;) > > 7" | M;(9;),
which however contradicts the definition of z; and 0. Therefore, we conclude that 0=

8y + O,(61(n,T)) = B, + 0,(1).



Next, we prove the consistency of i;, for i = 1,...,n. Note that each p; is the
Ce . ~T T
minimizer of M;((in,0 )'). Note that

Mi((12,0')7) = Mil(p0::0 )7) = A (12,8 )7) = AN (10,6 )T)

= [A0 (1,8 )7) + AP ((:,8")7) — EIAD (23,0 ) i} lpo]

— (A0 (10:,0)7) + AP (01,8 )T) — BIAY (101, ) ) Y lgp]
+ [EAL (15, 07) ) i} lo—g — EIAY ((1i, 67) I}

- :E[Aﬁ”«um,0T>T>|{xit}n9:g — BIAM (01, 60) )z} ]

+ BN (0 00) Dl )] = AP (1, 01)7) — AP (8 )7).

Ty;

As H?log(n)?/T — 0, we consider a positive sequence &(n, T) such that vV HE (n, T) =
0(&3(n, T)), suppose that |ji; — p0;] = L& (n, T). Then, by Lemmas 4 and 5, we have that

AT AT
BT (1:,600) ) {z}] = CL2 (0, T), AP (15,0 )T) = Op(€3(n, 7)), and AP ((10:, 6 )7) =
0,(&3(n,T)). For some sufficiently large constant L, we have that Ty; = CL& (n,T).

Hence
P (lrgax |Hi — ptos] > CfQ(HaT))

~T ~T
<P (Mi((m, 0 )") < My((10i,0 )7), 31 <i <, 3|ps — pos| > C&a(n, T)>

gn»(max swp [AN((0)) + AP((1,0"

1SiSm g, |[<Léa(n,T)

))) = EIAY ((11,0T) )z} log| > Tz)

m(max sup [BIAD (a0 0T DI}l — EIA (or, 09) ) ]| > TBZ)

1SS0y s |[<Léa (n,T)

=P(A;) + P(Ay).

By Lemma 2, we have P(A;) — 0, as T' — oo. In addition, since
A (1101, 07)T) — AP (1103, 09) )] < 21T (i) |2 - |6 — o2,

it is obtained that P(As) — 0 provided that |8 — |2 = O,(&1(n, T)), ||ﬁ(x,t)||2 <+VH,
and H?log(n)?/T — 0. Therefore, we prove the consistency of fiy, ... ,ﬁn,a under the

conditions in Theorem 1.



Step 2. Rate of maxi<;<n |l — ftoi| and 16 — 60|
As i1, ..y [, 0 are consistent, by Lemma 6, we have the following asymptotic repre-

sentations
[ — ftoi + op(|Jt — foi])
——~/(60-6 (0) T HY (71;,0) — HY (105, 00) — HY (7i:, 0
Y ( 0) +fl( ) 7 (,LL“ ) 7 (/‘LOU 0) 7 (:uzu )
+£:(0) ' HY (ptor, 00) + Op(T™ v H™ v [|6 — 6]13),
foralle=1,...,n, and
8 — 00+ 0,(]|0 — 8o]|2)

BRI RS
=r! _EZHEI)(MOZAOO)% +H (po, 60)
;=1

- /

B 1 n . o~
-~ n Z {Hz('l)(ﬂi, 0) — H" (1105, 80) — H" (7, ‘9)} %]

07 [HO (72, 8) — H® (1, 00) - H(72. )]

T7;

+0, (T_1H1/2 VH vV max |11 — M0i|2> :

As v; < VH, |Tsill2 = Op(y/H/(nT)). Because of the consistency of (11, 8), by taking
§ = H™ V27127713 in Lemma 7, ||Tg|l2 and ||T%||l2 are both o,(/H/(nT)), which

implies that

16 — 8|2 = O, (Eﬂ’%'“i f10i | )+O (VH/(nT)v T HY?v H)

and

1H<1?<>§ |1 — 1ol

~

(1) ) (1) (1) ()
sc{m s, 80)| -+ s (B G B) — H 1, B0) - men}

+0,(\/H/(nT) VT THY?v H~%).

By taking the union upper bound and Lemma 1,

1
e (B (or, 00)| > €y 250

1<i<n - T

P

log(n
<ZIP’ llrg% HY (101, 86)| > C :,E )] < 2exp(—C'log(n)),




which implies that max;<;<, |H§1)(,u0¢,90)| = Op(y/log(n)/T). Additionally, because of

consistency of fi and 6, by Lemma 7, for any € > 0,

max P [HHI V(7. 0) — HEI)(MOZ»,OO) - H( '(71;,0)| > e log(n)/T} =o(n™ ).

1<i<n

Therefore, we have maxj<;<, |fi; — poi| = Op(y/log(n)/T + H~%) and ||§ — Oolla =
O,(r/H/(nT) + (Hlog(n)/T)3* + H=4). If Hn?log(n)®/T — 0, then (H log(n)/T)%* =

o(/H/(nT)) and ||6 — 8|2 = O,(v/H/(nT) + H

Step 3. Asymptotic normality of/H\ and estimated function
Note that || — 8g|l2 = O,(\/H/(nT) + H~4) and

ZZE pr (i — fii — T(z) " 0)|] — ZZE pr(yir — i — (i) " 6o) |2ir]

t=1 =1 t=1 =1
Tr n T (2i) T O—mie+7ii—po;
:ZZ/ Fy(zlzs) — F(Olzs)d
=1 i=1 ¢ W(zit) TO0—ms+1i—pios (Al)
T n
1 N R _
=3 SN fr(0faa) [(T(xa) (8 — 65))® + 2T (2) " (0 — 65) 1]
t=1 i=1

+0, (RTIVH(\/H](nT) + H-))

where Ry = I(x) T 00 — mi(wa) + Jii — pior = O(H ™4 + y/log(n)/T). Define

T
= arg mlnz { I (z)" (8 — o) (T — I{ey < 0})

t=1 i=1

+%fi(0|xit)[(ﬂ(:£it)T(0 —0))% 4 2T (zy) ' (6 — BO)Et]}.
We have obviously

0=00+(Z"fZ) " (-Z"fR+ Z"e),
where Z = [II(z11), ..., (z17), M(x21), ..., (z,7)] ", f = diag(f1(0]z11), - .., fu(0]znr)),
R=(Ry,....,Ry)7, and € = ((r — I{ey; < 0}),..., (1 — I{ear <O})T.
First consider II(x)"(Z' fZ)'Z"e. TIts conditional asymptotic variance is given
by 7(1 = 7)II(2) (Z"fZ) " (Z"Z)(Z" fZ) 'II(z) < H/(nT). Using Lindeberg-Feller
condition, similar to the proof of Theorem 3.1 of Zhou et al. (1998), and by a central

limit theorem for a-mixing sequences, we have

[r(1—7)(z) (Z"f2)"(Z2"2)(Z" fZ) 'I(x)] E O(z)(Z'fZ)'Z e % N0, 1).



By Lemma 3 and |R;| = O(H =%+ /log(n)/T),
N(2) (27 £2)7 2] Ri = O,(/EJGT)(H + /log(m)]T)) = oy(y/H](nn).
Thus,

()" (6 — 6o)
(r(L =) (2 fZ2)" (2 2)(Z" fZ) ' TL(x))"/?

— N(0,1).

Denote

n T

== 3 i) (0 — 007 — Tle < 0)

n n T

T
+ Z ZE[PT(%’t — 1y — TI( 9Czt 0)|ry] — Z ZE pr(Yit — i — H(xit)Te(J)’xit]-
i=1

=1 t=1 1=1 t=1
If |6 — 8], = 6£(n, T) where 4 is any positive constant, by a similar argument as Lemma
2 with all information of n individuals combined, we have

sup ZZPT (yir — i — xzt ZZPT Yit — i — (%t) 0)

|6—0]12<86(n,T)| =1 t=1 i=1 t=1

- [Q(0) — Q(0)]| = 0,(nTE*(n, T)).

By comparing Q(O) with (A.1), Q(8) is a quadratic function of 8 — 6 after ignoring
the small term O,( \/ /(nT) + H-9)?). As 0 is the minimizer of the quadratic
function. When |0 — 9||2 =6&(n,T),

1Q(8) — Q(0)| > CnT||6 — 6|2 — VH(\/H/(nT) + H4*) > CnT||0 — 6|2

Therefore, we have that with probablity approaching one

inf pr(yir — T — T(234) " 0) — pr (v — s — M (23) 1 0)| > 0.
10—81l2=5¢(n,T) Z;; [ ]

By the convexity of p,(:) function and the definition of fi; and 6, this implies that |6 —
0|, = 0p(&(n,T)). Therefore, 0 has the same asymptotic properties as 6.

Finally, by the B-spline approximation error, if H(nT)~V/CHY — oo |TI(z)70y —
m;(x)| = 0,(y/H/nT), and the above results imply that

()76 — m;(x)
(r(1 = IN2)(Z" fZ)"(Z2'Z)(Z" £Z) ' TL(x))"/>

— N(0,1).



We state some auxiliary lemmas used for the proof of Theorem 1. The first lemma is
the Bernstein-type inequality for the geometrically a-mixing sequence. It is a corollary

of Theorem 2.19 in Fan and Yao (2008) by taking ¢ < n/log(n) in their theorem.

Lemma 1. Let {x;} be a strictly stationary a-mizing process with mean zero and mizing
coefficient a(l) < 1t for some r € (0,1). Suppose that E|z|* < CKIA¥2D? k =3,4,...,

then for any € > 0,
T

IP) (
t=1

Next, we state some intermediate results in the proof of Theorem 1 in the following

T g
log(T) eA + D?

> Ts) < Clog(T)exp |-C

lemmas and present their proofs.

Lemma 2. Let d(n,T) be a sequence depending on n and T such that d(n,T) — 0 as
T — oo and \/Hlog(n)?T-* + H=% = O(&(n,T)). Under the conditions in Theorem 1,

max sup ‘Agl)(ﬁi) + AP @) — E[AN ) {zu}])| = 0,(d*(n, T)).

SIS 19, B0 |l 2=d(n.T)
Proof of Lemma 2. Let N; = {19(1) ...,19§N)} be a §(n,T) covering of {0 : ||9¥; —
Boill2 < d(n,T)}. The size of Ny is bounded by N < (Cd(n,T)/§(n,T))" and thus
log N < CH log(T) if we choose 6(n,T) < T~%d(n,T) for some a > 0.
Let Ay (9:) = pr (yie —TL(i0) T9:) — pr (yi — (i) "00;) + T (i) T (95— 0) (T — I {ey <
0}). Using the Lipschitz property of p,(-), and that for any ;, there exists some 192(-“
such that ||9; — 1951)”2 < d(n,T), we have

\AI 9;) + AP (0,) — E[AN (9)[{za}] — AV (0) — AP (01) + B[AN (0))[{z4}]

A
> ()T (9 — 9)| = O(VHS(n, T)),

t=1

which can obviously be made to be 0,(£?(n, T)) by setting d(n, T') < T~ (n,T) for some

%IQ

zan (@) {z}]| <

a large enough.

Denote m;; = m(x;). Using that p,(z) = |z|/2 + (7 — 1/2)z, by simple algebra,
80(90)] = [ lew i+ pos = ) 04| = e+ + o — Fi(a) o

+T0 () " (95 — D0:)(1/2 = I{ew < 0})

<[ () " (9 = 9oi)| - I{Jea] < [T(it) (95 — 90i)| + [mie + pros — T(ie) "D}
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Thus, |Ay ()| < CVHEN, T) == A.
Furthermore, we have
E[(Ai(9:) — E[Au(9:) {za}])?] < E[Au(9:)]”
<P {|€it| < [TH(ir) (9 — Boi)| + |ma + pro — T(wi) 1902|} B (2i0) " (9; — o))
<[CVHd(n,T)] - E[M(z:) " (9; — 90i) |
<CVHd*(n,T) := D?,
where the first factor CvHd(n, T) comes from P(|e;| < |TI(z:) T (9 — S0:)| + [mie + p10: —
II(z;) ") by Assumption (A3).
Using Bernstein’s inequality in Lemma 1, together with the union bound, we have

that for any a > 0,

P ( sup [0 + A7) - BIAY (@)l {a}| > o)
9;eN;

T a?
log(T') aA + D?

<O(T)" 1og(T) exp [—C
Letting a = Cd*(n,T), we have

P (max sup |AL (@) + AP (@) — EIAL (0 [{za}]| > Cd(n, T))
1<z<n19 eN;
T a?
log(T') aA + D?

<COn(T)“" log(T) exp [—C

<Cn(T)“" log(T) exp {—C H~Y%¢(n, T)}

log(T')

\/_ Tlog(n) TH /2
log(T) log(T')

<exp |log(n) + CHlog(T) + C'loglog(T) — — 0.

]

Lemma 3. Under the conditions of Theorem 1, the eigenvalues of T—* Zthl T (5)TL (24) "
and TS0, () I(2;)" are bounded and bounded away from zero uniformly over

1=1,...,n, with probability approaching one.

Proof of Lemma 3. We focus on the proof of 71 Zthl I (xy)TI(x;) ", since the state-
ment for T7-' 321, II(z;)II(z;)T can be proved in an analogous fashion.
Since M(zy) = VHOB(z;) and the eigenvalues of E[TI(z;)TI(z;)T] are bounded

away from zero and infinity, the desired statement for II(z;) is implied by

% Z By,(vy)Bp/(24) — HEB),(v3) B (244)| = 0,(1/H)



for all 1 < h,h’ < H. Denote V;?’h/ = HBj(zy) B (ry) = ez\/ﬁB(xit)\/ﬁB(xit)Teh/,

where e; is the vector whose ¢-th entry is one and other entries are all zero. We have
E[(V")?) < |ef VHB(zy)|*Elej, VHB (24)VHB () Ten] < CH,

as all eigenvalues of E[v/HB(z;)vVHB(z;) "] are bounded. Note that [V;*"'| < lef VHB (2)|-
lefVHB(zy)| < H. By the a-mixing property of z;;, we know that Vi?’h/ is also a-mixing

with mixing coefficients bounded by those of z;;. By Lemma 1, for any fixed € > 0,
]P (
Taking a union bound for all 1 < h,h' < H, as H3log(T)/T — 0,

€
>
)

€T/ log(T)
I ] — 0.

T
1 / / T 2/H?
LS E L]
t=1

log(T) e+ CH

> %) < Clog(T) exp [—C’

T

1 hh hh
P| max | g V,m —EV,
1<hh<H|T —

<C'exp [2 log(H) + loglog(T) —

Lemma 4. For any positive sequence d(n,T) depending on n and T,

T T

inf ETi_ﬁiTﬁii— Eri_ﬁi—r’ﬁi
|z9i—z901ﬁ12d(n,T>; ['0 (4 = Th{@t) )xt} ; [P (i — T (ie)  Doi)

zit:|
>CTd*(n,T)

with probability approaching 1.

Proof of Lemma 4. For convenience of notation, denote my; = m(zy). Using the

Knight’s identity, namely p,(x—y)—p-(z) = —y(r—1(z < 0))+ [ (I(z < t)—I(x < 0))dt,

and mean value expansion, we have that, for each 1 < i < n and z € [H(:cit)THO(k) —



My, H(%ﬁ)TO(k) + i — poi — M,

T
Z Elp, (eir + maut + pro; — I(w4) "9;) |w4]

t=1

T

— Z Elp- (e + mi + poi — H(xz't)T’ﬁOz‘”%t]
t=1
r T(wit) T Oi+pi—poi—mi

-y / [Fu(z]zi) — Fp(0]zi)|d

II(zs) T Qoi—mse

TI(wt) T 03+pi—poi—mit

I
o

{sz(()kcit) + Z;f;(zla:zt)] dz

—1 YT (zit) T O0i—mis

AV
N = o«
[M] =

FiOl) | (TL(i) T (95 = 901))? + 2L0(z) T (9 — Yor) R

I
N

|(Rit + ﬁ(Iz‘t)T(’ﬁi —90:))* — R},

|
o
(]~

-
Il

1

where R;; = my; — I (z) " 6.
By the property of B-splines, we have |R;| = O(H~4). By Cauchy’s inequality and

Lemma 3,

t=1

T , 12 ¢ ¢ 1/2
< Z (H(xzt) ('191 1901)) ZR?t

t=1 t=1

_ - 12 o 1/2
= (192 001)T (Zn(xzt)n(xzt> ) (19z 1901) ZRgt

| t=1 t=1
=Cd(n, T)TH™.

By Lemma 3, we have

T
~ 2
> (M) (9 = 90)) = T: — 90l = T (n, 7).

t=1

Since fi(0[zi) > f, we have that

D I(Ra 4 M) (9 = 90))° = RY| = O, (TVHI(n. T)) = 0,(d*(n. 7))

and with probability approaching one,

xit} —E [pr(yit - ﬁ(xit)TﬁOi)

T
ZE |:p7'(y7,t - ﬁ(l’n)—r’ﬁz) wit] Z CTdQ(TL, T)
t=1

10



Lemma 5. Under the conditions of Theorem 1, for any constant L > 0 and any sequence

d(n,T) such that d(n,T) > C\/H/T,
T ~
sup > T(zi) " (9; — 90) (7 — I{ew < 0}) = L- O,(Td*(n, T)).
[9:—B0ill2=Ld(n,T) {7
Proof of Lemma 5. The proof is straightforward using that

T 2

> T(za)(r — I{eq < 0})

t=1

E = 0,(TH).

2

By Markov’s inequality, it is easy to check that
T ~
Sup Z I (2y) " (9 — 90:) (T — [{eir < 0})
19 —D0illa=Ld(n,T) =3

=L - 0,(VTHd(n,T)) = L - O,(Td*(n,T)).
]

Lemma 6. Under the conditions of Theorem 1, we have the following asymptotic repre-
sentations of the oracle estimator
1i — poi + op(|1t: — poil)
= =7 (6 —00)+ £i(0)™ {H" (71:,8) — H" (101, 60) — 5" (7., 0)}
+1:(0) L (pioi, 00) + Op(T™H v H™ v [0 — 65]3).
forallt=1,2,...,n, and

6 — 6, +0,(]|0 — 8o]s)

1 n
= - Z H" (1101, 00)y; + H® (15, 6)

n

3 .
|- {Hl fis, 0 HE)(um,eo)—H§1><m,e>}~n]

n

b [ ><u, 6) — ) (1, 60) — H'(11,0)
+Op <T1H1/2 V Hid V 1n<1a<x ’l/j\’l - /L02'|2) .
Proof of Lemma 6. By the computational property of the QR estimator (Kato et al.,

2012), it is shown that max;<;<, |H§1)(ﬁi, 0) = O,(T~1). Thus, uniformly over 1 <i < n,

we have
Op(T™) = B (uoi, 00) + H 7z, 8) + {7, 8) — B (1101, 00) — H" (71, 0) }.

11



Expanding Hi(l)(ﬁi, 5) around (g, @o), we have
H{ (7ii, ) = = fi(0) (i — 1oi) — fi(0)v] (6 — 6o)
+ Op(H™ v max [i; — ioif* V0 — 6o][3).
and hence, for all 1 <1i <n,
i o= =] 0= 00) + (O {7 0) ~ o 00) ~ MO @D}
+ £:(0) " H (04, 80) + Op(TH v H v max [fi; - 10> V 1|6 — 60][2). 2

Similarly, we have HH ( )H2 =0 (T maxi<i<ni<t<7 || I(zi)|]2) = OP(T_lhfl/Q)7

Il Bl L

and

O,(T HY2) = H® (15, 8) + HO(, 0) + {H® (7,0) — H? (15, 85) — H®(7,0) }

Expanding H® (fi, 8) around (p,, 8o), we have

HO(71,0) = —— ZE fi(Olzie) T (i) I (1) '] (6 — 60)

1 ZE Ol T ) — 1) + 0,118 = Boll2) + Oyl masx [ — ).
By plugging (A.2) into (A.4), we have

~ N n 1 -
HO(,0) = —T(8 — 60) — — > H (0i. 80,

i=1
- Z{ . Mz, Hgl)(ﬂou 6o) — Hz‘(l)<ﬁiab\>} i (A.5)
+05(18 = Boll2) + Op(T~ v H=V max |71 — puo?).

Combining (A.3) and (A.5), we can obtain

n

~ 1
re-ae,=- n ZHEU(M% 00)7; + H® (1o, 0o)

- _Z{ (1) ,uzu/\ H(l (M02700> H(l)(uzaa>}71

+ {H® (72,8) — HO (110, 00) — H? (12,0) }
+Op(T HY? v H™* v max [i; — poil*) + 0,(1|0 — Ooll2).

which completes the proof.

12



Lemma 7. Take § such that 5v/H — 0 and max, <<y, |[; — poi| V 10 — 6g]|> = O0,(0). We

have

Z’Yz {H ) M’La ) - Hi(l) (ﬁh b\) - Hgl)(MOia 30)} = Op(\/ﬁd(Ta 5) \Y Hid)

2

and

HH@) (7, 0) — H? (71, 0) — H® (s, 90)H2 = 0,(VHA(T,8) v H™),

where d(T,8) == [T~ log(vHS)|] V [T~V2HY461/2| log(v/HS)|/2].

Proof of Lemma 7. We focus on the proof of the first statement since the proof of the
second one is analogous. Without loss of generality, we assume that pg; = 0 and 8y = 0.
Let guo(u, ) :=I(u < p+x'0) — I(u < 0) and Gs := {gue : || < 4,]|0]]2 < §} and
Eir = (w, ().

As |m(zy) — T(zy) 00| < H=% and ||v,]|s < VH overi = 1,...,n, it suffices to show

max E

— su
1<i<n b

gegé

Z{g §it) Eg(git)}u = O(d(T, 9)).

t=1

Denote @75 = {9 —Elg(&)] : g € Gs}. Note that @,5 is pointwise measurable and each
element is bounded by 2. By Lemmas 2.6.15 and 2.6.18 of van der Vaart and Wellner
(1996), the class G, is a VC subgraph class. By Theorem 2.6.7 of van der Vaart and
Wellner (1996), there exists a constant v > 1 such that the covering number satisfies
N(é/@g, Ly(Q),2¢) < Ce for any 0 < ¢ < 1 and any probability measure Q on R. In
addition, as Elgo(&)?) = E[[Fi(u + W(z) 6laa) — F(0lra)] < Clul + VE|6]l2) <
C+V/H$. By the Bernstein-type inequality for bounded empirical process, e.g., Proposition

B.1 in Kato et al. (2012), we obtain the desired result.

B Proofs of Theorems 2 and 3

In this appendix, we present the proofs of Theorems 2 and 3 and relegate some auxiliary

lemmas to the end of this appendix. For the brevity of notation, we simplity > | Zthl

to Zzt
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Proof of Theorem 2. We define the oracle estimator to be that obtained from (5)
assuming the groups are known and thus é?k) is obtained from only observations in
G, separately for different groups. Similarly to the proof of Theorem 2, we denote
En,T) = \/W + H=4. Tt suffices to show that with probability approaching one,
the oracle estimator is a local minimizer of the SCAD-penalized quantile regression (6).

Considering any 6; with ||@; — é? |lo < ¢ for all 1 < i < n, with ¢ sufficiently small,
specifically ¢ = o(X), and (g1, ..., ) With maxi<;<, |p — pf| < d, with d sufficiently
small. We only need to show that uniformly over 8, := {8 = (8, ,...,0])" : |6, —5?”2 <

¢, Viy and pg = {(p1, ., pn) T MaXy iy | — ] < d}

pr yir — pi — T(ae) " i)+<;‘) S oa(l16: — 6,1

i<j
-1
n ~0 ~0
7 el 7~ T 80 4 (5) o6 -8

i<j
Let g; = k if i € G. That is, g; is an indicator on the individual ¢’s group identity.
Let O:={0=(0,...,0))T :0;, =0, if g; = g;}. That is, O consists of all coefficients
that satisfy the group partition structure. For ease of presentation, define the mapping

LR — O with '(0) = (67, ...,0;), where 8] = 3. _ 8;/|Gy,|. In other words, T

]97

can be the projected value of 8 to the space O.

The proof of the displayed equation above can be achieved by the following two steps.

(a)
n -1
T p* * *
E T\J1 7 % 0; E 0; —0;
6*=r(0) eeec pERY nT pr(yie = pi = M(zar) 07) + <2) pA(116; ]”2>

i<j

1 ~0 ~O n ! ~0 ~0
Zn_T ZPT(yit — M — H(l’it)—rei) + (2) ZpA(H@i —0.]2).
2t

i<j

-1
n
6*=I'(9) 069 HEny nT ZPT Yit — Wi — H(Jzzt) 7,) + (2) Zp)\(HOZ — 03”2)

i<j

1 * * *
St 10~ (3) 100310 >
%t

1<j

For (a), by the definition of the local minimizer which minimizes the check loss subject

to the grouping constraint, we have

0*=I'(0),0€60,,ucp, nT

* 1 ~0 -0
inf Zpr Yig— i~ (i) ' 07) > T > pr(yu—ng—TL(zy)'6;). (B.1)
it
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If g; # g, by our assumptions, we have A\ = o(||@¢; — 6o,||2) and &(n,T) = o(\). Thus,

16; — 611> > [|60; — Bu;ll> — 118, — Buills — (16 — 6ol

(B.2)
>3aX — 0,(N) > 2a.
In addition,
16; =8/l = || > 6u/IGi] - 6; <p%ﬂﬁ—§méa
k:gr=gi ‘9k=9i
which implies that
16: = 6112 > 167 = 6,1l — 116; = 8ll2 = 16 — 62 > 20X = 2¢ > a.
Thus, by the definition of SCAD penalty function,
. . ~ -0 (a+1 A2
p2(16; ~ 83112) = pa((18; — 8)1) = “TIX g 2, (B3
On the other hand, if g; = g;, then éj = éj and 6 = 6] and thus we have
pA((167 = 0;ll2) = pa(ll€0; = 8]l2) = 0, if g; = g;. (B.4)

Combining these two cases (B.3) and (B.4), as well as (B.1), we proved (a).
In the rest of the proof we will show (b). Using the convexity of the check loss function,

we have p,(z) — p-(y) > (1 — I{y < 0})(z —y). Thus for the difference of the loss terms,

we have

T
Z pT(yit — M — %t z Z Pr Yit — Hi — (xit)TO;‘k)
t=1

> — Z 7 — Wyu < ()" 0; + p:})I(zy) " (0; — 6])

-
Il
—_

(B.5)
(7 — Hew < 0} (wa) ' (6; — 67)

Mq

&
Il
—

(1{ew <0} — ey < T(2i) " 0; — miy + pi — poi }) I (w5) T (8; — 7).

Mq

~~
Il
i

For the first term, using Bernstein’s inequality in Lemma 1 in Appendix A, we have

max Y (7 — ey < 0)Iy(xi) = O,(y/T log(T) log(nH log(T)))

1<h<H,1<in

15



T
and thus, max Z(T — e <OPII(zy)

t=1

= 0,(\/TH log(T)log(nH log(T))).
2
By Lemma 8, for sufficiently small ¢ and d, we have

T
sup Z(l{eit <0} — ey < T(2i) " 0; — miy + ps — poi }) I ()
1<i<n,[|0;—8] 2<c || t=1 2
i — a2 |<d
T
< sup Z(l{eit <0} — ew < T(wy)"0; — mis + i — pioi}
1<i<n,[|0;—8; |l2<c || =1
lwi—pg1<d
+ F(H(l’it)TOi — My + b — Mm’) - F<O))H(l’it)
2
T
b s SO w) T8 — i+ s — por) — F(0) ()
1<i<n,||0;—0; ||l2<c || t=1 2
\uz uZISd

=0, (H**T"?10g(T)log(nT)) + O,(TVHE(n, T)) = O,(TVHE(n, T)).
We denote

w; ==Y (7 —1{eq < O} (zy)
- Z(l{eit <0} — ey < M(wi) " 0; — mis + i — poi }) I (24).

Then, the last line in (B.5), after summing over i, can be written as

Zw (0, — 0) nTZw 0:— > 6,/IGy)
J:9;=9i

0—0 1 'wl-—'ijOi—Hj
nTZZ w/®-0)_ 1 5 ’< )7(6: — 0))

nl = 4 |Gy,
=1 j:g;= (4,5):1<j and g;=g;

=0,(n"*VHE(n, T) +n~*\/(H/T)log(T) log(nH log(T))) x Y. llei—el

i<j and g;=g;
When gi 7é 95> by (B2)7

16; — 6,12 >(18, — 6, [l> — 1|16: — 6;]l> — |8, — 6] ]|> > [|6; — 8}]]> — 2¢ > a.
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Also, [|0; — 6}[|2 > aA, when g; # g;. So the difference of penalty terms of (b) is

(3) w00 (3) Soatio: -l

1<J i<j
—1
n * *
:(2> Z [p/\(HOi_ejH?)_p/\(Hgi_9j||2)]
1<J,9i#9;
—1
n * *
+(5) 3 00l - malle; — 1)
1<J,9i=4;
n -1
(5) X w6 - m6; - 6l
1<J,9i=9;

When g; = g;, we have 6; = 8. Furthermore,

16; — 8;]l2 < [16; — 6|2 + 116 — 0 [|2 + (18, — ] ]|> < 2¢ < A,

and since the SCAD penalty p(z) = Az when z € [0, \], we have

(Z);W”ei 62 () > m(l6; - 6511

z<]

(1) % mto-a=(3) AR

1<J,9i=4; 1<J,9i=

Thus, by our assumption, the difference of the penalties is p051tlve and dominant in the
left hand side of (b), which implies that (b) holds.
O

Proof of Theorem 3. In the proof, we denote the true number of groups by Ky and
the true partition is Gy = (Goq, . . . , Go,) With true group indicators go; = k if i € Gj. Let
G ={G1,...,Gk} be any partition for {1,...,n} with K groups, with group indicators

gi,i=1,...,n. Define

6% = {0%,...,00°} = mln Z ZPT Yir — poi — I (24) " 6;)

0;=0; if g;=
i=1 t=1
We note that 85° under the true partition is different from the 6y; we defined previ-
ously, as the minimizer of E[f(k)(O\xit)(H(xit)TOi —mg)?], where fi(-|z;) is the average
conditional density function for the group G. However, we first show that they are close

enough. By Knight’s identity, for any ¢ € Gy,
pT(yit — Hoi — H(xz’t)—rei) - ,OT(yit — Moi — mz’t)
l‘[(mzt) 0,—m1;t
:(H(x,-t)TOi —mg)[[{ex <0} — 7] + / [I{e; <u} —I{ey; < 0}du
0

17



Hence, as f;(0|zi) = fu)(0]z) for all i € Gy,

E[p‘r(yit — Hoi — H(ﬂﬂit)TOi)] - ]E[p7'<yit — Hoi — mit)]

T(zs) T 60—y
=K / Flu|zy] — FlO|xi)du
0
1
So for ||@;—8¢;||2 < M, H= %/ with M,, — oo arbitrarily slowly, we have E[|TI(x;)"6;—
mil*] < B[ (i) T (8; — 00;)| + |TL(2s0) "00; — my])®] = O(MIH~O/243/2 4 fr=sdy —
O(H3%) and thus
Elor(yie — proi — I(3) " 60:)] — Elpr (yir — proi — mir)]
1
[ 3 i Ol [0, — | + O

For [|0; — 0¢;||o = M, H=?/34 e have

E[Pr(%’t — Moi — (xzt) 9(k )] [pf(yzt Hoi — (-th) 901)]

=E Bf(k)(omt)[n(%tfei - mit]2:| - K Ef(k)(()mt)[ﬂ(xit)TGOi —m2]| + O(H %)
- Bf o Ol [F(za) " (8 — eoﬂ = [%fmomit)n(xﬁf(ei ~ 00,)(TL(z,,) B, — )

+ O(H ™3
1

:E[§f(

>CM,H* — O(H3) > 0,

#) (0lzie) [T (230) " (05 — 60:)]*] + O(H ~>7)

where the third equality above results from 6y minimizes ]E[% f(k)(0|xit)(H(a7it)T0i —
m;)?], which means E[f(k)(O\:vit)H(xit)T(Oi — 00;)(TI(z4) "0g; — my)] = 0. This means
105° — Oi||, < M, H=3¢ < H~%1/2 and thus 0 still satisfies the approximation property

sup, [TI(z) 7050 — m;(z)| < CH.

Case 1. (K < Ky, under-fitted model)

In this case, let G be the partition that minimizes

min ZZpT Yit — Hoi — H(l'zt) 0:)

0,=0;, if G;=G,;,|G|=K —

18



By definition, it is obvious that if 7, 7 belongs to the same group in the true partition G
so that the distribution of (y;, ;) and (y;¢, ;) are the same, they are still in the same
group in the partition G. In other words, G is formed by combining some groups in Gy.
In particular, given K is fixed, there are only a fixed number of such possible partitions
g.

Suppose Go, Gor are combined into Gy, then

> Elor(yi — pro: — T(wa) "05)] = > Elor(yie — pro: — T(war) "052)]

i€G i€Gpn
H(xzt BOzfmzt ' B ‘ 0(_;’ B Hgo 5
= Z [[{ex < u} — I{eq < 0}du > Z 165; o ll2 = Cnrp
i€G (I“)Te(h —Mit i€G

where at least one of the distance |85, — 65°||5 for i € Goy, and ||0f;, — 05|, for i € G

is larger than, say p/2. By summing over different groups, we get
> Elp- (i — po; — M) "65)] ZE pr(Yir — po; — H(zi) " O52)] > Cnp.

By following the proof of Theorem 1, in particular Lemma 2, we can show that
H@zg — 9|2 = O,(\/H/(nT) + H~%). Similarly to Lemma 4, we have E[Zle pr(Yie —
~ ~G
() 79)] — E[S, pr(yie — M) 9] = Op(TB; — 9§ 3) = Op(nT€(n,T)). By
the definition of 9§, we have D i ﬁ(xit)T(ﬂi — 99 [[{es < TL(zy)" 09, — p1s —mis} — 7]

§

has mean zero and thus of order O,(nT¢?*(n,T)). Thus,

\Zm g — W) 0,) = 3 po(ya — () T65)] = O,(nTE(n, ),

Note that

nT ZPT Yit — H<$Zt)Tﬁogz ZpT Yie — th)T,ﬁOgZ)

' = 0y((nT)71?),

and

Z pT Yit — mlt)T'ﬁgzp)

1 ~ _
nT > ey — (i) TOF) — | = 0y((nT)~"?).
it
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So for the SIC, denote n = K H log(nT)/(nT) and we can write

SIC(K) — SIC(Ko)

Zi,t pr(Yit — 1 I(z) ', )/( T) - Zi,t pr(Yit — ﬁ(xzt)TafO)/(nT))
e +O(n)

> pr(yie — () 9,/ (nT)

> ey = W) T05) / (nT) = 32, pr (g — T (i) T9G2) / (nT) + Op(€2))
e +0(n)

> Pr (i — (i) TG/ (nT) + O, (€2)

[, pr(yie — (i) T9G)] = B[, pr (yu — (i) "OF)] + O, (nTE + W))
B[, pr(yae — T(wa) T96)] + Op(nTE2 + V/nT)

=log | 1+

=log | 1+

=log | 1+

+0(n) > log(1+Cp)+O(n) >0

Case 2. (Ky < K < K4z, over-fitted model)

Again, let G be the partition that minimizes

ZZPT yzt Hoi — H(xzt) 01)] .

i=1 t=1

min
0,=0, if G;=G;,|G|=K

Obviously, we will have 8¢, = 65°. By the same argument in case 1, we have

’ Z Pr (yzt - ﬁ<mzt z’ Z PT Yit — Izt)—r/ﬁ()gz)

and ’— ZPT Yit — xn)Tﬁgf) — E[n—T ZpT(yit —TI (z22) T,ﬂgo ‘ _ 1/2)'
it

= Op(H +nTH™%),

Thus,
SIC(K) — SIC(K))

—1log (1 n Zi,t pr(Yit — ﬁ(l'zt)—r@lg)/(nT) — Zi,t pr (it — ﬁ(Izt)T@gO)/(nT))
> i Pr(Yit — ﬁ(l'zt)Tﬁzgo)/(nT)

(K — Ko)H log(nT)
_.I_
nT’

O,(H +nTH™2?) ) N (K — Ko)H log(nT)

=log [ 1+ — :
( 51 e (i — Ti()TD; )/ (nT) nt
(K — Ko)H log(nT)

> 0.
nT

=0,(H +nTH™?) +

Finally, we present an auxiliary lemma used in the proof of Theorem 2.
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Lemma 8. For ¢ > 0 and d > 0 sufficiently small,

T
1
sup ‘? Z Iy, (zi) [I{eir < 0} — I{ew < H(xit)Tei — My + i — oif
1<i<n1<h<H =1

18:—6; ||<c,|ni—ng|<d

— F(O|z) + F(TL(zi) " 0; — mis + p1; — poi| wie)]
=0, (H**T~21og(T) log(nT)).

Proof of Lemma 8. We consider the upper bound for Ele I1, (z)[[{ew < 0} —
ey < I(zy)"0; — my + i — poi} — Fi(Olws) + F (X () "0; — ma + pi — prog| i)
only since the lower bound can be derived similarly. Letting m;(60;) = II(x;)" 0; and ¢,
satisfy that |m;(0;) — mit(é(;) + p; — 13| < t,,, we have

sup = Z Iy (i) [[{en < mir(0:) — mie + pis — poiy — I{eir < 0}

1<i<n,1<h<H i—1
=! -
10:—6; || <c,|pi—pg|<d

+F(0]xi) — F'(mi(0;) — miy + i — poiTit)]

T
1 o N
< swp > (o) [Tew < mi(8;) = ma + 732 = pios + ta} = Hea < 0}
1<i<n,1<h<H —
10:—87 || <c,|ui—fg | <d

+F(0]xit) — F'(mie(0;) — mir + i — phoiTit)]

< sup Z 0 () | e < mia(8) = mig + 728 = poi + tn} = ew < 0}

1<i<n, 1<h<H

FF(025) — F(mit(8)) — ms + 112 — pios + talzir)

+ sup = Z TI(20) [F (e ( éf) Mgt + 115 — fo; + tn|Tit)
1<i<n,1<h<H

||ef§§’\\3c,|m—ﬁ?|<d
— F(m(0;) — mig + i — proi)],
where the first inequality stems from the increasing monotonicity of the indicator function.
The second term in the last line can be arbitrarily small since |m(6;) —mit<§?)+ui_ﬁ$’ <

t,, while t,, is arbitrarily small when we choose ¢ and d to be sufficiently small.

Note that E[|TT;, (i) (1{ex < an+0,} —1{ey < an})|9] < (CVH)T26,, for ¢ = 3,4, ...
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By Lemma 1, for any non-negative sequences a,, — 0, §,, — 0, we have that for any u > 0,

[ ul

<C'log(T) exp {—C’
(B.6)

T
Z (i) [1{eq < an + 6.} — Hew < any — Fan + 6,|2i) + Flan|zi)]| >

Tu?

log(T) (u/H + 6,)

Denote ’191 = (,ui,BiT)T, ’1901' = (Momeg—i)—r and T?L(’ﬁz) = mzt(ez) + i - Let Al = {191 :
|95 — Yoilla < C&(n, T)}. Similarly to Lemma 2, we construct an (nT)~° covering of A,

with size R = O((nT)°?), with elements denoted by {9, ... 9™} Then, we have

sup ZHh Qth [1{%5 < mzt(ﬂ ) My — fho; + tn} - 1{eit < 0}
1<i<n, 1<h<HT
9, EA

—F%Mm%mm—mﬁmmm+FM%ﬂ

1<z<m?i<< E Hh xzt [1{% m,t(ﬂl ) m ,uOZ—ktn} 1{62,5 O}
1<r<R

—F@Mw%—mwww+mmg+mw%ﬂ

T
1 -
+ sup T Z IT), (x;) [1{% < e (94) — M — proi + tn}
1<i<n,1<h<H —
1<r<R,)6;~6."||<C(nT)~*

— ey < ﬁ%it(ﬂﬁr)) — My — poi + tn}
— F(ma(9;) — mag — pioi + ta]mi) + F(ia(97) = myy + to]z2)

= ]1 + ]2‘

By (B.6), using the union bound and that \ﬁtit(’ﬁy)) — Mt — io; + tn| < CVHE(N,T),

we have

= Op((VH/T)log(T)(H log(nT))).

For I, using the monotonicity of the indicator function and define ¢/, such that
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|3 (9;) — s (97)] < ¢ for all ||9; — 97 ||, < C(nT)~, we have

_[2 S sup Z Hh Lit |:1{€zt < mzt(ﬁz(T)) — My — Hoi + t;], + tn}
1<r<R,1<i<n,1<h<H T

i e L Ey Lo

0,€A:,[19;—9\" |2<C(nT) =
— ey < ﬁm(ﬂy)) —myg — poi + tn} — F (Mg (9;) — muyy — poi + tol i)
+Fﬁmm%—mmww+tmﬂ

< sup Z Hh xzt [1{6zt < mzt(,ﬂgr)) — My — Mo + t/n + tn}

1<r<R,1<i<n,1<h<H T
— Hew < ma(®7) = muy — po; + tn} — F(ag(9:) — may — piog + ) + to]72)
o+ F(a(9") = ma — pog + tula)|

+ sup = Z Ly (i [ (Mt (9:) — M — po; + b, + tal2it)

9,€A,[9; =9 |2<C(nT) 0
— F(n(9:) = mi — pos + talaa)|
:Z[21 —|— [22.

Again by (B.6) for I; with union bound, and that Iy, is arbitrarily small by the smooth-

ness of F(-), we obtain

= Op((VH/T)log(T)(H log(nT))).

C Additional simulation results and information

This appendix presents detailed information on the data generating process (DGP) and

some additional simulation results.

C.1 Detailed information on DGP in Section 5.2

To better illustrate the varying subgroup structures of the DGP across 7, the conditional
quantile functions for two lower quantile subgroups and three upper quantile subgroups
are presented in Figures 1(a)-1(b) and Figures 2(a)-2(c), respectively. In addition, by

the definition of m; (-), we need to add a constant independent of x;; to ensure that
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fol m; +(x)dz = 0. Therefore, for 7 = 0.1 and 0.9, m, , is defined as

sin(27r:pz~t) — (0.4 + 0.890#) x 1.281552 +1.0252412, 1 € G1,L;
mi,o.l(ifit) =
sin(27rxz-t) — (1.2 — 0.8xit) x 1.281552 + 1.0252412, 1 € GQ,L,

and

(

Sin(272y) + (0.4 + 0.8z;) x 1.281552 — 1.0252412, i € Gyu:

Mi0.9(Tit) = { sin(2mzy) + (1.2 — 0.87;) x 1.281552 — 1.0252412, i € Gau;

\sin(27rxit), 1€ Gau.

C.2 Additional simulation results

We conduct an additional simulation experiment with varying subgroup structure at
different quantile levels. The data generating process is identical to Experiment 4, only
with (n,T) = (60, 1000).

The MSEs and the percentages of correct subgroup recovery for this experiment are
summarized in Table 1, and the empirical coverage probabilities for the pointwise confi-
dence intervals are summarized in Figure 3. The findings are similar to Experiment 4 in
the main paper. With 7" increased to 1000, we have the percentages of correct subgroup
recovery for three quantile levels increase accordingly, and the MSEs decrease accordingly.
The empirical coverage probabilities are closer to the target line for three quantile levels

than the case with (n,T") = (60, 100).

Table 1: Mean squared errors (MSEs) of the oracle and SCAD-penalized estimators, and
percentages of correct subgroup recovery for the additional experiment. We consider

three quantile levels of 7 = 0.1, 0.5 and 0.9.

(n,T) = (60,1000) |7=01 71=05 7=09

% of correct subgroup | 99.2% 100% 94.4%

Oracle | 0.443 0.0913 0.682
MSE (x10~%)
SCAD 0.460 0.0911 0.744
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(b) Q- (yit|zit) of the 2nd lower subgroup

B =02;m7=0.1

25



Fem e e
s = -
> -
T e s e
4 - - 0,57 ~ ~
1 g P o e P >
A L S -
e e e 7
’ - S N
il S M - ;/
7 A el . ’
Y 0 , ,
i ey (ST - , 7
a ¥ N PR ~ - . 2
. ~ ~ = . o,
o C _ - -, ,
ST R
foihs N - o
e = et Pl o
~ ~ - o -
~ \‘. - ’
\\ .\“__ - o"
~ - -
L .-
: ol
'JI'JU C‘ZG C;E'J U%E 1E:ﬂ
(a) Qr(yit|xit) of the 1st upper subgroup
5
g e
2 emrmeo . Sl
’-’ ‘,' "\. "\
T i 5
s , - et Gt B
T | P R o e
i "" i s L R
4 B - by b ~ ~
N ke G
. & ~ ~
B - e ~ ‘\ -
It e SN
i RO
’ s Bt
O b
s
“n
i
'L"I'L'IU C‘ZG C;TJ U%E 15:0
15-
1.0
0.5
0.0
0.5
1.0
a .UC o0 IZE 0 :EC 0. ‘7'3 1 ;JC
(¢) Qr(yit|zit) of the 3rd upper subgroup
1.0
05
oo~
0.5

0.00 025 0.50 075 1.00

(d) m(k),O.Q(') for k = 17 2)3

Figure 2: Conditional quantile functions at lower quantiles and m) 9 of three upper
subgroups. ----: 1Ist subgroup; ——: 2nd subgroup; ——: 3rd subgroup. g7 = 0.5; |l

T=06;@7T=07,@7T=08mT=0.9.
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Figure 3: Empirical coverage probabilities for pointwise confidence intervals of m; ()
for the case with varying subgroup structures at different quantile levels. We consider

(n,T) = (60,1000) and three quantile levels of 7 = 0.1, 0.5 and 0.9.
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