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S1. The KKR-CPA method 

In the ab initio calculations, Green’s function-based density functional theory 

(DFT) calculations were conducted by the Korringa Kohn Rostoker coherent potential 

approximation (KKR-CPA) method using the AkaiKKR software [1]. Multi-elemental 

disordered phases can be calculated using CPA, which can simulate them with high 

accuracy, especially in alloy systems [2–4].  

Lattice constants were determined to minimize the total energy. In the lattice 

constant optimization calculations, the spin–orbit interactions and relativistic effects 

were not considered. Therefore, the reltyp parameter was set to nrl. The imaginary part 

at Fermi level (edelt) was set to 0.001. The bzqlty parameter, which determines the 

quality of the Brillouin zone mesh, was set to 4. The maximum considered angular 

momentum (xml) was 3. The exchange-correlation potential (sdftyp) was set to the local 

density approximation (mjw). The maximum number of iteration loops (maxitr) was set 

to 300. The density of states (DOS) was then calculated using the optimized lattice 

constant. In this calculation, the spin–orbit interaction and relativistic effects were 

considered. Therefore, the reltyp parameter was set to srals. The edelt, bzqlty, xml and 

maxitr were set to 0.001, 6, 3 and 500, respectively. The width of the energy contour 

(ewidth) was automatically selected from {1.0, 1.5, 2.0, 2.5}.  

 

S2. List of the Magpie descriptors used in this study 

Ward et al. developed a Magpie software [5]. This software creates a set of 



 

 

descriptors for each material, including elemental property statistics (i.e., the mean and 

standard deviation) of different elemental properties (e.g., period/group on the periodic 

table, atomic numbers, atomic weight, and melting temperatures) and electronic 

structure attributes such as the average fraction of electrons from the s, p, d, and f 

valence shells of all the present elements [6]. In this study, 28 Magpie descriptors were 

manually selected and used. The details are given in a previous work [5]. 

 

Table S1. List of the Magpie descriptors used in this study 

 

 

S3. The autoencoder 

To define a material space for efficient autonomous search, an autoencoder was 

used [7], which is one of the dimensionality reduction methods. The information on the 

composition vector C and the Magpie descriptor vector M is compressed in the middle 

layer of a neural network with the same input and output layers. Here, a 10-dimensional 



 

 

latent variable Z was created. Z contains information on both C and M. The importance 

of the crystal structure information in the autonomous material search can be adjusted 

by changing the number of latent variables created by the autoencoder. In other words, 

to perform an autonomous material search in which the crystal structure information is 

more important, the number of latent variables should be reduced and vice versa. Here, 

the ‘h2o’ package in the R software was used [8,9]. The activation function (activation) 

was set to Tanh. The iteration time (epochs) was set to 300. The hidden layer size 

(hidden) was set to 10. Default settings were used for the other parameters. Thus, the 

mean square error (MSE) and root mean square error (RMSE) were 0.03098466 and 

0.1760246, respectively. 

 

S4. Multi-objective Bayesian optimization 

A 12-dimensional material space is defined by combining the latent variables Z 

(Z1, Z2,..., Z10) created by the autoencoder and the one-hot vector S (SF, SH) representing 

the crystal structure. This materials space is explored by the KKR-CPA combined with 

the multi-objective Bayesian optimization. Here, the following Gaussian process 

regression models were constructed for the spin polarization, P, and the half-metallic 

gap, G. 

𝑃 = 𝑓(𝑍1, 𝑍2, 𝑍3, … 𝑍10, 𝑆𝐹 , 𝑆𝐻) 

𝐺 = 𝑓(𝑍1, 𝑍2, 𝑍3, … 𝑍10, 𝑆𝐹, 𝑆𝐻) 

where P, G, Z and S are the spin polarization, half-metallic gap, latent variables created 

by the autoencoder and one-hot-vector of crystal structure, respectively. The gausspr 

function of the kernelab package in the R software was used for the Gaussian process 



 

 

regression [10,11]. The radial basis kernel function (rbfdot) was used as the kernel 

function (kernel). The hyper parameter (sigma) was determined by the heuristics (sigest) 

every time (the kpar parameter was set to ‘automatic’). Both the initial noise variance 

(var) and the tolerance of termination criterion (tol) were set to 0.001. Default settings 

were used for the other parameters. The upper confidential bound (UCB) for each 

material is calculated as an acquisition function from the Gaussian process regression 

models [12]. 

𝑈𝐶𝐵 = 𝜎 + 𝐶𝜇 

The expected uncertainty, σ, and expected value, μ, are calculated using the Gaussian 

process regression. The exploration weight, C, is used to tune the trade-off between 

exploration and exploitation. Here, C was set to the following 5 patterns. 

𝐶 = {0, 1,5,20,50} 

This means that five different target materials were derived for the next KKR-CPA 

calculation at different ratios of exploration to exploitation. Therefore, five KKR-CPA 

calculations were performed per each Gaussian process regression model in the 

autonomous materials search. The candidate materials with the largest Pareto 

hypervolume were determined based on the UCB value and the material data (training 

data), in which P and G are already observed. The Pareto hypervolume was calculated 

using the ecr package in the R software [13]. These are then used as the target for the 

next KKR-CPA calculations. Using this method, it is possible to autonomously search 

for materials with high P and G. 
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