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1 Proof of the main results

In this section we provide the proofs of our main results. We begin with a simple technical

lemma that greatly facilitates the presentation. The proof is a trivial consequence of standard

tail-bounds for the normal approximation (Feller, 1968, Section 7.1, Lemma 2).

Lemma 1. Let Φ be the cumulative distribution function of the standard normal distribution

and x ≥ 0. Then

1− Φ
(√

2(x+ o(1)) log(n)
)

= n−x+o(1) as n→∞ .

Next, we argue that for the proofs of our main results, we can assume F0 has zero mean and

unit variance.
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1.1 Simplifying assumption

To prove the results in this paper it suffices to consider the case where the nominal distri-

bution F0 has zero mean and unit variance. To see this suppose F0 has arbitrary mean and

variance µ0 and σ2
0. Define F̃0(x) = F0(µ0 + σ0x). It is easy to see the distribution F̃0 has

zero mean and unit variance. Using this we can easily re-parameterize the hypothesis test

in (11).

Let X be a random variable with distribution Fθ for some θ ∈ [0, θ∗) and define X̃ =

X−µ0
σ0

. Define also ϕ̃0(θ̃) =
∫
eθ̃xdF̃0(x), the moment generating function of F̃0. It is easy to

check that X̃ has density with respect to F̃0 given by exp
(
θ̃x− log(ϕ̃(θ̃))

)
where θ̃ = σ0θ

(equivalently θ = 1
σ0
θ̃). Therefore, statements in θ̃ pertaining a zero mean and unit variance

distribution can be translated to a general distribution by simple multiplication by a factor

1/σ0.

1.2 Proof of Theorem 1

Proof. Without loss of generality and as explained in Section 1.1 we assume that F0 has

mean zero and variance one, as this makes the arguments easier and less cluttered.

Let ψ(X) : Rnt → {0, 1} denote an arbitrary test function. We begin by bounding the worst

case risk of this test by the average risk, namely

R(ψ) = P∅ (ψ(X) 6= 0) + max
S:|S|=s

PS (ψ(X) 6= 1)

≥ P∅ (ψ(X) 6= 0) +
1(
n
s

) ∑
S:|S|=s

PS (ψ(X) 6= 1) .

The average risk can naturally be interpreted as the risk of testing the simple null hypothesis

against a simple alternative, where S is chosen uniformly at random over the class of all

subsets of [n] with cardinality s. Since we are doing a test between two simple hypotheses

the optimal test (i.e., the test minimizing the average risk) is given by the Neyman-Pearson

lemma, namely ψ(X) = 1 {L ≥ 1} where L is the likelihood ratio given by

L ≡ 1(
n
s

) ∑
S:|S|=s

exp (θXS − ts log(ϕ0(θ))) with XS ≡
∑

i∈S,j∈[t]

Xij .
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The risk of this test can be easily expressed as 1 − 1
2
E (|L− 1|), where the expectation is

with respect to the null hypothesis (so all Xij are i.i.d. with distribution F0). To proceed we

need to get an upper bound on E (|L− 1|). A simple, but often useful way to proceed is to

use Jensen’s inequality to get

E (|L− 1|) ≤
√

E ((L− 1)2) =
√
E (L2)− 1 ,

where the equality above follows since E (L) = 1. This approach is generally referred to as

the second moment method. To show any test is asymptotically powerless it suffices therefore

to show that E (L2) converges to one as n→∞.

To simplify the presentation let S and S ′ denote two independent random variables, and both

independent from X. Both S and S ′ are sampled uniformly from the set {S ⊂ [n] : |S| = s}.

Then clearly L = E (exp (θXS − ts log(ϕ0(θ))) |X) and therefore

E
(
L2
)

= E (exp (θXS − ts log(ϕ0(θ))) exp (θXS′ − ts log(ϕ0(θ))))

= E (exp (θ(XS +XS′)− 2ts log(ϕ0(θ))))

= E (exp (t|S ∩ S ′|(logϕ0(2θ)− 2 logϕ0(θ)))) .

For the last equality we used the fact that for all S and S ′ we have XS+XS′ = 2XS∩S′+XS4S′

(in the previous expression 4 denotes the symmetric set difference).

The beauty of the above result is that is reduces quantification of the risk to a statement

about the moment generating function of the random variable K ≡ |S ∩ S ′|. Given the dis-

tribution S and S ′ we conclude that K has an hypergeometric distribution with parameters

(n, s, s), and therefore K is stochastically bounded from above by the binomial distribu-

tion with parameters (s, s
n−s). Using the well-know expression for the moment generating

function of a binomial distribution we conclude that

E
(
L2
)
≤
(
1− s

n−s + s
n−sκ(θ)t

)s
,

where κ(θ) ≡ ϕ0(2θ)/ϕ0(θ)2. Therefore E (L2)→ 1 provided

s2

n− s
(κ(θ)t − 1)→ 0 .
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Consider now the specific parameterizations of s and θ in the theorem statement. Note that

when t = ω(log3 n) then necessarily θ → 0, so we can conveniently use a Taylor expansion

of the moment generating function ϕ0(θ) around θ = 0:

ϕ0(θ) = ϕ0(0) + θϕ′0(0) +
θ2

2
ϕ′′0(0) +O(θ3) , (1)

as θ → 0. Using the fact that F0 has mean zero and unit variance we get ϕ0(θ) = 1 +

1
2
θ2 +O(θ3) as θ → 0. Simple asymptotic algebra yields that κ(θ) = 1 + θ2 +O(θ3). Since

1 + x ≤ ex we conclude that κ(θ) ≤ exp (θ2 +O(θ3)).

When β > 1/2 we conclude that

s2

n− s
(κ(θ)t − 1) = (1 + o(1))n1−2β(κ(θ)t − 1)

≤ (1 + o(1))n1−2β
(
exp

(
tθ2 +O(tθ3)

)
− 1
)

= (1 + o(1))exp ((1− 2β) log n) (exp (2r log n+ o(1))− 1) .

The last expression converges to 0 provided 1− 2β+ 2r < 0 meaning that when r < β− 1/2

any test is asymptotically powerless. This lower bound is tight when β ∈ (1/2, 3/4] (the

moderately sparse regime) but it is a bit loose for the very sparse regime. However, a

modification of the above argument allows us to get a tight lower bound when β > 3/4.

The very sparse regime: the main limitation of the second moment method as presented

above has to do with the fact that the likelihood ratio statistic L might take rather large

values. Although this might be a rare occurrence, it can be enough to ensure the second

moment is much larger than the first moment. A way to mitigate this issue is to consider a

so-called truncated second moment method. Let Ω denote an arbitrary event and define the

truncated likelihood ratio L̃ ≡ L1 {Ω}. Clearly L̃ ≤ L and therefore

E (|L− 1|) = E
(
|L− L̃+ L̃− 1|

)
≤ E

(
|L̃− 1|

)
+ 1− E

(
L̃
)

≤
√

E
(
L̃2
)
− 2E

(
L̃
)

+ 1 + 1− E
(
L̃
)
,
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where we used the triangle inequality and the fact that E (L) = 1, followed by Jensen’s

inequality. Therefore, to show a test is powerless it suffices to show that both E
(
L̃
)

and

E
(
L̃2
)

converge to one as n → ∞. The choice of event Ω is therefore quite crucial. In the

present context we are going to consider the event

Ω =

max
i∈[n]

Yi <

√
2(1 + η) log n

t︸ ︷︷ ︸
≡τ(η)

 , (2)

where η > 0 must be carefully chosen.

Truncated first moment: Note first that E
(
L̃
)

= E (L1 {Ω}) is the probability of Ω

under the alternative hypothesis (where there is a set S of anomalous streams and S is chosen

uniformly at random over the subsets of [n] with cardinality s). Given the symmetry of the

definition of Ω we see that E
(
L̃
)

= PS (Ω) where S is an arbitrary set with cardinality s.

Without loss of generality let S = [s]. Then

E
(
L̃
)

= PS (Ω)

= 1− PS
(

max
i∈[n]

Yi ≥ τ(η)

)
= 1− sPS (Y1 ≥ τ(η))− (n− s)P∅ (Y1 ≥ τ(η)) .

using the union bound in the last line. Using Lemma 6 we conclude that

P∅ (Y1 ≥ τ(η)) = n−1+η+o(1) ,

and provided r ≤ 1 + η

PS (Y1 ≥ τ(η)) = n−(
√

1+η−
√
r)2+o(1) .

Therefore, when r ≤ 1 + η

E
(
L̃
)

= 1− n1−βn−(
√

1+η−
√
r)2+o(1) − (n− s)n−1+η+o(1)

= 1− n1−β−(
√

1+η−
√
r)2+o(1) −O(1)→ 1 ,

provided r < (
√

1 + η−
√

1− β)2. This means the first truncated moment converges to one

for any η > 0, provided r < (1−
√

1− β)2.
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Truncated second moment: bounding this term requires significantly more work. Begin

by noting that

E
(
L̃2
)

= E (exp (2θXS∩S′ + θXS4S′ − ts log(ϕ0(θ)))1 {Ω})

= ϕ0(θ)−stE

exp (2θXS∩S′) exp (θXS4S′)
∏
i∈[n]

1 {Yi < τ(η)}


≤ ϕ0(θ)−stE

(
exp (2θXS∩S′) exp (θXS4S′)

∏
i∈S∪S′

1 {Yi < τ(η)}

)

≤ ϕ0(θ)−stE (exp (t|S ∩ S ′|(log ϕ̃0(2θ))− t|S4S ′|(log ϕ̃0(θ))) ,

where ϕ̃0(θ)t ≡ E (exp (θtY1)1 {Y1 < τ(η)}). The steps above mimic the derivation for the

regular second moment, and the main difference is that we now need to consider the moment

generating function of a truncated distribution, instead of the original distribution. Clearly

ϕ̃0(θ) ≤ ϕ0(θ) and so we conclude that

E
(
L̃2
)
≤ E (exp (t|S ∩ S ′|(log ϕ̃0(2θ)− 2 logϕ0(θ)))) .

Define κ̃(θ) ≡ ϕ̃0(2θ)/ϕ0(θ)2. As before, to show the truncated moment converges to zero it

suffices to show that

s2

n− s
(κ̃(θ)t − 1)→ 0 .

Note that, the argument based on the untruncated second moment method indicates all tests

are powerless if r < β − 1/4. Since we are considering the case β ≥ 3/4 this means that it

suffices to treat only the case where r ≥ 3/4−1/2 = 1/4. To get an upper bound on ϕ̃0(2θ)t

we make use of the following technical result.

Lemma 2. Let X be a real-valued random variable and let f : R → [0,∞) be one-to-one

increasing and differentiable. Then, for any τ ∈ R,

E (f(X)1 {X ≤ τ}) =

∫ τ

−∞
P(X > x)f ′(x)dx . (3)

To use this lemma we must get a good upper bound on P∅ (Y1 > x) for x ≤ τ(η). When

x ≤ 0 we trivially bound this probability by one, and for 0 ≤ x < θ∗ we make use of a simple
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Chernoff bound. In a similar fashion to the proof of Lemma 6 we have

P∅ (Y1 > x) ≤ P∅

∑
j∈[t]

X1j ≥ xt


≤ exp

(
−t

[
sup

λ∈[0,θ∗)

{λx− log(ϕ0(λ))}

])

= exp

(
−t

[
sup

λ∈[0,θ∗)

{λx− log(1 + λ2/2 +O(λ3))}

])

≤ exp
(
−t
[
x2 − log(1 + x2/2 +O(x3))}

])
≤ exp

(
−t(x2/2 +O(x3))

)
.

Let n be large enough so that τ(η) < θ∗. Applying the above result and Lemma 2 we get

ϕ̃0(2θ)t =

∫ τ(η)

−∞
P (Y1 > x) 2θtexp (2θtx) dx

≤
∫ 0

−∞
2θtexp (2θtx) dx +

∫ τ(η)

0

exp
(
−t(x2/2 +O(x3))

)
2θtexp (2θtx) dx

≤ 1 + 2θt

∫ τ(η)

0

exp
(
−t(x2/2 +O(x3))

)
exp (2θtx) dx

= 1 + 2θtexp
(
2θ2t

)
exp

(
O(tτ 3(η))

) ∫ τ(η)

0

exp
(
−t(x− 2θ)2/2)

)
dx

= 1 +
√

8π(1 + o(1))(θ
√
t)exp

(
2θ2t

) ∫ (τ(η)−2θ)
√
t

−2θ
√
t

1√
2π

exp
(
−y2/2

)
dy

≤ 1 +
√

8π(1 + o(1))(θ
√
t)exp

(
2θ2t

)
Φ((τ(η)− 2θ)

√
t) ,

where in the second to last step we used the fact that t = ω(log3 n). At this point note that

(τ(η)− 2θ)
√
t = −

√
2
(√

4r −
√

1 + η
)2

log n < 0

when r ≥ 1/4, provided we choose η > 0 sufficiently small. Therefore using Lemma 1 we

conclude that

ϕ̃0(2θ)t ≤ 1 +
√

8π(1 + o(1))
√

2r log nn4rn−(
√

4r−
√

1+η)2+o(1)

= 1 +
√

8π(1 + o(1))
√

2r log n n4r−(
√

4r−
√

1+η)2+o(1)

= n4r−(
√

4r−
√

1+η)2+o(1) .

With an analogous argument to the one used for ϕ̃(2θ)t one can show that (ϕ0(θ))2t =



8

n2r+o(1). Therefore

s2

n− s
(κ̃(θ)t − 1) = o(1) + n1−2β+2r−(

√
4r−
√

1+η)2+o(1) .

The above converges to zero when 1 − 2β + 2r − (
√

4r −
√

1 + η)2 < 0. This is the case η

is small enough and r < (1 −
√

1− β)2, since in that case 1 − 2β + 2r − (
√

4r − 1)2 < 0,

completing the proof.

1.3 Proof of Theorem 2

Proof. By the arguments in Section 1.1, the proof continues under the assumption that F0

has zero mean and unit variance, without loss of generality.

Under the null and for a given (but arbitrary) permutation π ∈ Π it is clear that Xπ and

X have exactly the same distribution. Therefore maxi {Yi(X)} is uniformly distributed on

the set {maxi{Yi(Xπ}, π ∈ Π} (with multiplicities) conditionally on the order statistics of

X. So, for a given α > 0

P∅ (Pmax-perm(X) ≤ α) = P∅
(∣∣∣{π ∈ Π : max

i
{Yi(Xπ)} ≥ max

i
{Yi(X)}}

∣∣∣ ≤ α(nt)!
)

≤ bα(nt)!c
(nt)!

≤ α ,

If there are no ties, the first inequality above is an equality, but with ties present the test

becomes slightly more conservative. This argument is completely standard and for more

details on permutation tests the reader is referred to (Lehmann and Romano, 2005).

What remains to be proven is the behavior of the test under the alternative. Namely we

must show that, provided r is large enough (as stated in the theorem) then for any α > 0

P∅ (Pmax-perm(X) > α) −→ 0 .

For convenience, let π be a uniformly distributed permutation of Π and let this be indepen-

dent from X. We can rewrite our permutation p-value as a conditional probability:

Pmax-perm(X) = P
(

max
i
Y π
i ≥ max

i
Yi

∣∣∣ X
)
.

To get a good upper-bound on the permutation p-value we use the following concentration

inequality (see Shorack and Wellner (1986) and Arias-Castro et al. (2018), for instance).
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Lemma 3 (Bernstein bound for sampling without replacement). Let (Z1, . . . , Zm)

be sampled without replacement from the set {z1, . . . , zn}. Define zmax = maxj{zj}, z =

1
n

∑n
j=1 zj, Z = 1

m

∑n
j=1 Zj and σ2

z = 1
n

∑n
j=1(zj − z)2. Then, for all τ ≥ 0:

P
(
Z ≥ z + τ

)
≤ exp

(
− mτ 2

2σ2
z + 2

3
(zmax − z)τ

)
.

Using this lemma, we find that

Pmax-perm(X) = P
(

max
i
Yi(X

π) ≥ max
i
Yi(X)

∣∣∣ X
)

≤
∑
k∈[n]

P
(
Yk(X

π) ≥ max
i
Yi(X)

∣∣∣ X
)

=
∑
k∈[n]

P

1

t

∑
j∈[t]

Xπ
k,j ≥ X +

(
max
i
Yi(X)−X

) ∣∣∣∣∣∣ X


≤
∑
k∈[n]

exp

(
−

t
(
maxi Yi(X)−X

)2

2σ2
X + 2

3
(maxi,j Xij −X)

(
maxi Yi(X)−X

))

= n · exp

(
−

t
(
maxi Yi(X)−X

)2

2σ2
X + 2

3
(maxi,j Xij −X)

(
maxi Yi(X)−X

)) .

The first inequality is a consequence of a simple union bound, and we used Lemma 3 in the

second inequality.

At this point it is clear that, to control the p-value of our test we need to characterize

the behavior of X, σ2
X , maxi,j Xij and maxi Yi(X) under the alternative hypothesis. Since

|S| = o(n) most of the elements of X are samples from the null distribution. Therefore we

intuitively expect that X and σ2
X should be good estimators for the mean and variance of F0.

The behavior of the term maxi,j Xij is a bit more delicate, but one can see that for the given

parameterization of the null the dominant contribution is still given by the null distribution.

In contrast, the term maxi Yi(X)−X really depends on the alternative - the largest stream

mean is surely driven by the anomalous observations. Formally, we can show the following

result.

Lemma 4. Let β ∈ (1
2
, 1), θ =

√
2r(log n)/t with r > 0 and consider the alternative

hypothesis in (11). Assume F0 has zero mean and variance one and t = ω(log(n)). Then
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(i) X = OP

(
1√
nt

)
and σ2

X = 1 +OP

(
1√
nt

)
(ii) Let c ∈ (0, θ∗ − θ). Then,

PS
(

max
i,j

Xij −X ≤
3

c
log(nt)

)
→ 1 as n→∞ .

(iii) Assume further that t = ω(log3(n)) and let ε > 0. Provided r > (
√

1 + ε −
√

1− β)2

we have

PS

(
max
i
Yi(X)−X ≥

√
2(1 + ε)

t
log(n)

)
→ 1

as n→∞.

The first result of the lemma provides a rate at which the bound on our sample variance

can decrease. For the analysis of the max test a much simpler result (already proved in

Arias-Castro et al. (2018)) suffices: for any ε > 0 (i) implies that

PS
(
σ2
X ≤ (1 + ε/2)

)
→ 1 .

Note also that the bound in Lemma 3 is monotonically decreasing in τ . This ensures that

for ε > 0 and with probability tending to one under the alternative, provided r > (
√

1 + ε−
√

1− β)2, the overall p-value of test satisfies

Pmax-perm(X) ≤ n · exp

− 2(1 + ε) log(n)

2(1 + ε/2) + 2ε+ 2
c

log(nt)
√

2(1 + ε)1
t

log(n)

 .

Written differently, with probability tending to 1 under the alternative:

logPmax-perm(X) ≤ log(n)

1− 1 + ε

1 + ε/2 + 1
c
(log(n) + log(t))

√
2(1 + ε) log(n)

t

 .

To ensure Pmax-perm(X)→ 0, or equivalently, logPmax-perm(X)→ −∞ it suffices to ensure

1

c
(log(n) + log(t))

√
2(1 + ε)

log(n)

t
< ε/2 .

However, since we assume t = ω(log3(n)) this is immediately satisfied, since the l.h.s. con-

verges to zero.

We have just proved that, for ε > 0 and r > (
√

1 + ε −
√

1− β)2, Pmax-perm(X) → 0 as

n → ∞. Since ε > 0 is arbitrary this implies the result in the theorem, concluding the
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proof.

1.4 Proof of Theorem 3

Proof. By the arguments in Section 1.1, the proof continues under the assumption that F0

has zero mean and unit variance. Furthermore the conservativeness of this test follows by

the standard argument already presented in the proof of Theorem 2.

For the rest of the proof consider alternative hypothesis. We must show that

PS
(
P̃perm-hc(X) ≤ α

)
→ 1

as n → ∞. Like before, we can write our permutation p-value as a conditional probability

as follows:

P̃perm-hc(X) = PS
(
T̃ (Xπ) ≥ T̃ (X)

∣∣∣ X
)
,

where π is independent from X and uniformly distributed over Π. The first step is to

understand and simplify the role of π in the above expression. This mirrors the analysis

under the null hypothesis in the proof of Theorem 2, as we need to show that the values

of the test statistic computed with permuted data are a good surrogate for the values of

the test statistic under the null. However, the argument becomes more complex due to the

dependencies introduced by the permutation. Like before, we will use the union bound for

the max-operator in the permuted statistic, inducing a multiplicity by the grid-size:

P̃perm-hc(X) = PS
(

max
q∈Q

Ṽq(X
π) ≥ T̃ (X)

∣∣∣∣ X

)
≤
∑
q∈Q

PS
(
Ṽq(X

π) ≥ T̃ (X)
∣∣∣ X
)
. (4)

To proceed recall that quantifying Ṽq(X
π) requires the quantification of two terms: Ñq(X

π)

and P̃q(X
π). Note, however, that P̃q(X) is invariant under permutations of X, and therefore

P̃q(X
π) = P̃q(X), as explained before. As such the only random quantity inside the probabil-

ity operator above (conditionally on X) is Ñq(X
π). Noting that E

(
Ñq(X

π)
∣∣∣ X
)

= nP̃q(X)

we have

P̃perm-hc(X) ≤
∑
q∈Q

PS
(
Ñq(X

π)− E
(
Ñq(X

π)
)
≥ T̃ (X)

√
nP̃q(X)(1− P̃q(X))

∣∣∣∣ X

)
. (5)

To apply Chebyshev’s inequality we need the right-hand-side of the inequality inside the
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probability to be positive, and T̃ (X) might be negative. In the latter case we simply bound

the probability by one. Therefore, using Chebyshev’s inequality we get

P̃perm-hc(X) ≤ 1

{
T̃ (X) ≤ 0

}
+
1

{
T̃ (X) > 0

}
T̃ (X)2

∑
q∈Q

Var
(
Ñq(X

π)
∣∣∣ X
)

nP̃q(X)(1− P̃q(X))
, (6)

where we convention that 0/0 = 0. To continue, we must quantify the conditional variance

of Ñq(X
π). The permutation on X causes dependencies, but these are benign when realizing

the conditional permuted stream means are negatively associated conditional on the data.

Using Theorem 2.11 and the properties P6 and P4 in Joag-Dev and Proschan (1983), we find

that Yi(X
π)|X and Yj(X

π)|X are negatively associated if i 6= j. For ease of notation, define

zq ≡
√

2q

t
log(n) . (7)

Then,

Var
(
Ñq(X

π)
∣∣∣ X
)

=
∑
i∈[n]

Var (1 {Yi(Xπ) ≥ zq} | X)

+
∑
i∈[n]

∑
j 6=i

Cov (1 {Yi(Xπ) ≥ zq} ,1 {Yj(Xπ) ≥ zq} | X)

≤ nP̃q(X)(1− P̃q(X)) ,

where we used the definition of negative association (Definition 2.1 from Joag-Dev and

Proschan (1983)). In conclusion we get the following simple bound for the p-value:

P̃perm-hc(X) ≤ 1

T̃ (X)2

(∑
q∈Q

1

)
1

{
T̃ (X) > 0

}
+ 1

{
T̃ (X) ≤ 0

}
=
kn + 1

T̃ (X)2
1

{
T̃ (X) > 0

}
+ 1

{
T̃ (X) ≤ 0

}
. (8)

To continue the proof we must show that T̃ (X) is of order larger than kn = no(1). This mimics

the approach in Proposition 1 and Theorem 2 under the alternative. Recall that T̃ (X) =

maxq∈Q Ṽq(X), so it suffices to show that Ṽq(X) is larger than kn with high probability for

particular values of q ∈ Q. At the final stretch of the proof, it will become clear that one

only needs to consider sequences of values qn ∈ Q which converge to a fixed value q, so let



13

qn ∈ Q with qn → q and q > 0. To start, note that:

PS
(
Ṽqn(X) ≥ kn

)
= PS

(
Ñqn(X)− E

(
Ñqn(X)

)
≥ Aqn(X)

)
, (9)

where we have defined for convenience

Aqn(X) ≡ kn

√
nP̃qn(X)(1− P̃qn(X) +

(
nP̃qn(X)− E

(
Ñqn(X)

))
.

To bound the above probability using Chebyshev’s inequality, we first need to find a high-

probability upper bound for the random quantity Aqn(X). Note that the second term in

Aqn(X) will typically be negative when anomalies are present. To characterize this quantity,

define:

wi,q ≡ PS

(
Yi(X) ≥

√
2q

t
log(n)

)
,

and let p̃q ≡ wi,q if i /∈ S and ṽq ≡ wi,q if i ∈ S. Now, note that under the alternative

E
(
Ñq(X)

)
= (n− s)p̃q + sṽq, such that

Aqn(X) = kn

√
nP̃qn(X)(1− P̃qn(X)) + s(p̃qn − ṽqn) + n

(
P̃qn(X)− p̃qn

)
. (10)

Note that using Lemma 6, we can easily characterize p̃qn and ṽqn , and conclude that p̃qn =

n−q+o(1) and

ṽqn =

 n−(
√
q−
√
r)2+o(1) if r < q

no(1) if r ≥ q
.

At this point, the expression above looks remarkably similar to the critical terms encountered

in the proof of Proposition 1. However, we have an extra term n
(
P̃qn(X)− p̃qn

)
that

also needs to be controlled. If we ignore that term then it would suffice to show that

P̃qn(X) ≈ n−q+o(1) to complete the proof. However, such guarantee is not enough to control

the last term, and a much more refined result is required to ensure P̃qn(X) is a sufficiently

accurate surrogate for p̃qn . In detail, we require the first term in Aqn(X) to be at most

n(1−q)/2+o(1) with high probability, and the third term cannot outweigh the preceding two.

The accuracy of the approximation P̃qn(X) to p̃qn is captured in the following lemma:

Lemma 5. Consider the setting of Lemma 4 and let qn → q with q ∈ (0, 1], t = ω(log3(n))

and t = no(1). Then, for any ε > 0, there exists sequence gn → 0 such that under both the
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null and alternative hypothesis

P
(
P̃qn(X)− p̃qn ≤ nmax{− 1+q

2
,−β−q}+ε+gn

)
→ 1 .

Note that this lemma, together with the characterization of p̃q, implies that there exists a

sequence gn → 0 such that

PS
(
P̃qn(X) ≤ n−q+gn

)
→ 1 .

Putting all the facts together, we conclude that for any ε > 0, there exists a deterministic

sequence an with characterization

an ≡


nmax{ 1−q

2
,1−β−q}+ε+o(1) − n1−β−(

√
q−
√
r)2+o(1) if r < q ,

nmax{ 1−q
2
,1−β−q}+ε+o(1) − n1−β+o(1) if r ≥ q ,

such that for the event Ω ≡ {Aqn(X) ≤ an} we have P (Ω) → 1. Note that an is nearly the

same term as encountered in the proof of Proposition 1 - although there we were able to

characterize the counterpart of ṽq in a sharper way, but this does not affect the final result.

We can now proceed as follows:

PS
(
Ṽqn(X) ≤ kn

)
= PS

(
Ñqn(X)− E

(
Ñqn(X)

)
≤ Aqn(X)

)
≤ PS

(
Ñqn(X)− E

(
Ñqn(X)

)
≤ an

∣∣∣ Ω
)

+ PS (Ωc)

≤ PS (Ω)−1 PS
(
Ñqn(X)− E

(
Ñqn(X)

)
≤ an

)
+ PS (Ωc)

= PS (Ω)−1 PS
(
−
(
Ñqn(X)− E

(
Ñqn(X)

))
≥ −an

)
+ PS (Ωc)

≤ PS (Ω)−1 PS
(∣∣∣Ñqn(X)− E

(
Ñqn(X)

)∣∣∣ ≥ −an)+ PS (Ωc)

≤ PS (Ω)−1 a−2
n Var

(
Ñqn(X)

)
+ PS (Ωc) , (11)

where the last inequality follows from Chebyshev’s inequality provided an < 0. Note that

an < 0 for n sufficiently large provided:
1− β − (

√
q −
√
r)2 −max

{
1−q

2
, 1− β − q

}
− ε > 0 if r < q ,

1− β −max
{

1−q
2
, 1− β − q

}
− ε > 0 if r ≥ q .

(12)

Recall that PS (Ω) → 1, and therefore for n sufficiently large we have PS (Ω) ≥ 1/2. Fur-
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thermore, the summands in Ñq(X) are independent, such that

Var
(
Ñqn(X)

)
= (n− s)p̃qn(1− p̃qn) + sṽqn(1− ṽqn) .

Assuming (12) and using (11) we conclude that for large enough n

PS
(
Ṽqn(X) ≤ kn

)
≤ 2a−2

n

(
(n− s)p̃qn(1− p̃qn) + sṽqn(1− ṽqn)

)
+ P (Ωc) .

Note that PS (Ωc)→ 0. Using the asymptotic characterization of p̃qn and ṽqn , the first term

converges to 0 provided:
max{1− q, 1− β − (

√
q −
√
r)2} − 2(1− β − (

√
q −
√
r)2) < 0 if r < q ,

max{1− q, 1− β} − 2(1− β) < 0 if r ≥ q .

(13)

Note that the conditions in (12) and (13) are nearly identical to those obtained when proving

Proposition 1, with the former holding for any ε > 0. Now, similar algebra as used in the

proof of that proposition boils down to the same resulting requirements in the statement of

that proposition, i.e. if 
r > (1−

√
1− β)2 if q = 1 ,

r < 1/4 and r > β − 1/2 if q = 4r ,

(14)

then there exists an ε > 0 such that (12) and (13) hold, and thus PS
(
Ṽqn(X) ≤ kn

)
→ 0.

At this point we can simply follow the arguments of the proof of Proposition 2 almost ver-

batim. Suppose that r ≤ 1/4 and r ≥ β − 1/2. Consider the gridpoint q∗n ≡ minq∈Q|q − 4r|.

Since the size of the grid is increasing with n, we have q∗n = 4r + o(1). Therefore:

PS
(

max
q∈Q

{
Ṽq(X)

}
≤ kn

)
≤ PS

(
Ṽq∗n(X) ≤ kn

)
→ 0 .

The other case, when r > (1 −
√

1− β)2, follows analogously with qn = 1, since this value

is included in the grid Q. Then, this result trivially implies that T̃ (X) → 1 and (kn +

1)/T̃ 2(X)→ 0 with probability tending to one, and therefore

PS
(
P̃perm-hc(X) ≤ α

)
→ 1 ,

completing the proof.
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1.5 Proof of Theorem 4

Proof. The conservativeness of this test follows by the standard argument already presented

in the proof of Theorem 2. For the alternative, the proof relies on the results shown in

Theorem 3. The proof of that theorem requires a grid no larger than no(1), which contains

two sequences q1,n, q2,n ∈ Q, such that q1,n = 4r + o(1) if r < 1/4 and q2,n = 1 + o(1)

otherwise. In the context of our restated statistic, this means our result follows if there

exists two sequences τ1,n, τ2,n ∈ R such that:

τ1,n = µ0 +

√
2σ2

0

t
(1 + o(1)) log(n) ,

τ2,n = µ0 +

√
2σ2

0

t
(4r + o(1)) log(n) .

We show that the first sequence exists in R; the second sequence then follows analogously

by replacing σ2
0 by 4rσ2

0. Note that the requirement for τ1,n can be rewritten as:

τ1,n −

(
µ0 +

√
2σ2

0

t
log(n)

)
= o

(√
log(n)

t

)
.

Since
√

log(n) → ∞, there exists an n0 such that for n ≥ n0 there exists sequences i∗n ∈{
k√
t

}√t log(n)

k=−
√
t log(n)

and j ∈
{

k√
log(n)

}log(n)

k=0

such that

|i∗n − µ0| ≤
1√
t
, |j∗n − σ0| ≤

1√
log(n)

.

Now, defining τ1,n = i∗n +
√

2(j∗n)2

t
log(n), we have that:∣∣∣∣∣τ1,n − (µ0 +

√
2

t
σ2

0 log(n))

∣∣∣∣∣ ≤ |i∗n − µ0|+ |j∗n − σ0|
√

2

t
log(n) ≤ 1 +

√
2√

t
= o

(√
log(n)

t

)
,

so τ1,n is sufficiently close to the optimal value. Now, the size of the grid is of order

O
(√

t log3(n)

)
, and since t is of order no(1), the grid is not too large.
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1.6 Proof of Lemma 2

Proof. We have

E (f(X)1 {X ≤ τ}) =

∫ ∞
0

P(f(X)1 {X ≤ τ} > t)dt

=

∫ f(τ)

0

P(f(X) > t)dt

=

∫ f(τ)

0

P(X > f−1(t))dt

=

∫ τ

−∞
P(X > x)f ′(x)dx,

where in the last line we changed the integration variable to x := f−1(t).

1.7 Proof of Lemma 4

Proof. Let us start by characterizing the overall sample mean X. By Chebyshev’s inequality

we have

X = E
(
X
)

+OP

(
1√
nt

)
,

as n→∞. Now note that, under the alternative hypothesis

E
(
X
)

=
|S|
n

E (X) =
|S|
n

∫
xexp (θx)

ϕ(θ)
dF0(x) ,

where X ∼ Fθ. A Taylor expansion of the function inside the integral around θ = 0 yields∫
xexp (θx)

ϕ(θ)
dF0(x) =

∫
x+ x2θ +O(θ2)dF0(x)

= θ +O(θ2)

Finally θ = O
(√

log(n)/t
)
→ 0 since t = ω(log(n)). Putting all this together yield the first

result stated in (i).

For the second result in (i) note that

σ2
X =

1

nt

∑
i,j

(Xij −X)2 =
1

nt

∑
i,j

X2
ij −X

2

=

(
1

nt

∑
i,j

E
(
X2
ij

))
+

(
1

nt

∑
i,j

X2
ij − E

(
X2
ij

))
−X2



18

For the first term we see that

1

nt

∑
i,j

E
(
X2
ij

)
=

1

nt

∑
i/∈S,j∈[t]

Var (Xij) +
1

nt

∑
i∈S,j∈[t]

Var (Xij) + E (Xij)
2

=
n− |S|
n

+
|S|
n

(1 +O(θ))

= 1 +O

(
n−β

√
log n

t

)
,

as n → ∞. In the above the variance of the anomalous streams was characterized with a

Taylor expansion of θ around 0, similarly to what was done for the average term.

For the second term note first that all the moments of F0 are finite, in particular the fourth

moment. Therefore by Chebyshev’s inequality we have

1

nt

∑
i,j

X2
ij − E (Xij) = OP

(
1√
nt

)
.

Finally, we know that X
2

= OP(1/nt) when β > 1/2. Putting everything together yields the

second result stated in (i).

The argument needed to prove (ii) is the same already used in Arias-Castro et al. (2018),

and presented here for completeness.

Letting x > 0, a union bound gives

PS
(

max
i,j

Xij > x

)
≤ PS

(
max

i∈S,j∈[t]
Xij > x

)
+ PS

(
max

i/∈S,j∈[t]
Xij > x

)
≤ |S|t(1− Fθ(x)) + (n− |S|)t(1− F0(x)) . (15)

Now, let c ∈ (0, θ∗ − θ). We have that:

1− Fθ(x) =
1

ϕ0(θ)

∫ ∞
x

exp (θu) dF0(u)

=
1

ϕ0(θ)

∫ ∞
x

exp ((θ + c)u) exp (−cu) dF0(u)

≤ 1

ϕ0(θ)
exp (−cx)

∫ ∞
x

exp ((θ + c)u) dF0(u)

≤ ϕ0(θ + c)

ϕ0(θ)
exp (−cx) .

Therefore, with considerable slack, we can take x = 2
c

log(nt) guarantee that both terms



19

in (15) converge to zero. Together with the characterization of X in (i) we conclude that

PS
(

max
i,j

Xij −X ≤
3

c
log(nt)

)
→ 1 .

To show part (iii) very different argument is needed as this is a lower-bound on the tail prob-

ability, rather than an upper bound. The following lemma gives a precise characterization

of the tail probability.

Lemma 6. Consider the setting of Lemma 4. Let i ∈ S and let qn → q > r as n→∞ and

t = ω(log3 n). Then

PS

(
Yi(X) ≥

√
2qn log n

t

)
= n−(

√
q−
√
r)2+o(1) .

If q ≤ r we have PS
(
Yi(X) ≥

√
2qn logn

t

)
= no(1).

To show (iii) begin by noting that

PS

(
max
i∈[n]

Yi(X) ≥
√

2(1 + ε)

t
log(n)

)

≥ PS

(
max
i∈S

Yi(X) ≥
√

2(1 + ε)

t
log(n)

)

= 1−

(
1− PS

(
Yi(X) ≥

√
2(1 + ε)

t
log(n)

))|S|
(16)

Consider the case where (
√

1 + ε −
√

1− β)2 < r < 1 + ε. Note that, in that case, we can

use Lemma 6 with (16) which gives:

PS

(
max
i∈[n]

Yi(X) ≥
√

2(1 + ε)σ2
0

t
log(n)

)
= 1−

(
1− n−(

√
1+ε−

√
r)2+o(1)

)|S|
= 1− exp

(
n1−β log

(
1− n−(

√
1+ε−

√
r)2+o(1)

))
≥ 1− exp

(
−n1−βn−(

√
1+ε−

√
r)2+o(1)

)
,

where in last inequality we simply used the fact that log(1 + x) ≥ x. Finally, provided

(
√

1 + ε −
√

1− β)2 < r < 1 + ε we guarantee that 1 − β − (
√

1 + ε −
√
r)2 + o(1) > 0.

The statement for r > 1 + ε follows immediately since this probability is monotonically

increasing in r. To get the statement in (iii) we just need to use this result together with
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the characterization of X, concluding the proof.

1.8 Proof of Lemma 5

Proof. Note that p̃q and P̃q(X) differ in two major aspects; first, p̃q depends on the null

distribution, while P̃q(X) depends on the distribution of permutation stream means - which

may be “contaminated” by anomalous observations. Secondly, P̃q(X) is random, while p̃q is

deterministic.

To characterize the “contamination” effect, we define the following quantity corresponding

to the probability of a permutation stream exceeding zq ≡
√

2q(log n)/t when precisely k

anomalous observations are sampled in the permutation stream:

P̃ ′k,q(X) ≡ P (Y1(Xπk) ≥ zq | X) ,

where πk is uniformly distributed over the set Π(k) independent from X, and the set Π(k) ⊆ Π

is defined as the set of permutations with exactly k observations sampled from anomalous

streams in permutation stream with index 1. Specifically:

Π(k) ≡
{
π ∈ Π :

∑
i∈S

∑
j∈[t]

∑
h∈[t]

1 {π(i, j) = (1, h)} = k

}
.

Note that Π(k) does not depend on the data, but merely on the index set S. By definition

E
(
P̃ ′0,q(X)

)
= p̃q. Now consider the following decomposition of our quantity of interest:

P̃qn(X)− p̃qn =
(
P̃qn(X)− P̃ ′0,qn(X)

)
+
(
P̃ ′0,qn(X)− E

(
P̃ ′0,qn(X)

))
. (17)

Intuitively, bounding the first term amounts to characterizing the effect of “contamination”

by anomalous observations when computing P̃qn(X). The second term focusses mainly on

the random fluctuations (when contamination is not present).

We start with the first term in (17). Intuitively, with high probability, the permutation

stream Y1(Xπ) consists solely of nominal observations, especially for small t. With modest

probability, a few anomalous observations are sampled, but their influence on the ensuing

distribution of the stream mean Y1(Xπ) should be minimal, especially in light of the expo-

nential tails of the distributions in question. Finally, sampling a large number of anomalies
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might unduly influence the distribution of Y1(Xπ), but the probability of this happening is

very small. For our purposes, the effect of the anomalous observations is modest on Y1(Xπ)

provided there are no more than log(n) contaminating samples.

To proceed, we first condition on the number of anomalous observations sampled in the first

permutation stream, which allows us to bound the first component in (17) as:

P̃qn(X)− P̃ ′0,qn(X) ≤
blog(n)c∑
k=1

P̃ ′k,qn(X)P
(
π ∈ Π(k)

)
+

t∑
k=dlog(n)e

P
(
π ∈ Π(k)

)
. (18)

Note that the bound above is only sensible when P
(
π ∈ Π(0)

)
is close to 1. By assuming

t = no(1) this is indeed the case.

To characterize the bound in (18), we start by characterizing the probability P̃ ′k,qn(X). For

small enough k, we can bound this term in a nontrivial way through the use of Lemma 3 and

Lemma 4. Note that Y1(Xπk) arises from two sampling processes; t − k samples from the

null streams, and k samples from the anomalous streams. We will bound the contribution

of the anomalous streams crudely by their maximum. Define Um(X) as the sum of a sample

of size m without replacement from the nominal observations of X, i.e. from the set X0 ≡

{Xij : i 6∈ S, j ∈ [t]}. Now, we can bound:

P̃ ′k,qn(X) ≡ P (Y1(Xπk) ≥ zqn | X)

≤ P
(

1

t

(
Ut−k(X) + kmax

i,j
{Xij}

)
≥ zqn

∣∣∣∣ X

)
. (19)

To continue, we will use the Bernstein bound of Lemma 3. Define X0 and σ2
X0

the sample

mean and variance of X0. Direct application of the lemma results in complicated expressions,

so we first define for convenience:

dk(X) =
σX0

σX

(√
t− k
t
−X0

√
t− k

2σX0q log(n)
+

√
t− k

2σX0q log(n)

k

t− k
max
i,j
{Xij}+O

(
1

t

))
.

While this term is complex, it is ultimately a nuisance term as one should note that, since

t = ω(log(n)3) and k ≤ log(n), Lemma 4 applied to the set X0 implies there exists a sequence

gn → 0 such that

P (|dk(X)| ≤ 1 + gn)→ 1 . (20)
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Now, we can continue from (19) as:

P
(

1

t

(
Ut−k(X) + kmax

i,j
{Xij}

)
≥ zqn

∣∣∣∣ X

)
= P

(
Ut−k(X)

t− k
≥ t

t− k
zqn −

k

t− k
max
i,j
{Xij}

∣∣∣∣ X

)

= P

Ut−k(X)

t− k
≥ X0 + dk(X)

√
2σ2

X0
qn

t− k
log(n)

∣∣∣∣∣∣ X


≤ exp

− 2d2
k(X)σ2

X0
qn log(n)

2σ2
X0

+ 2
3
(maxi 6∈S,j∈[t]{Xij} −X0)

√
2d2k(X)σ2

X0
qn

t−k log(n)



= exp

− d2
k(X)qn log(n)

1 + 1
3
(maxi 6∈S,j∈[t]{Xij} −X0)

√
2d2k(X)qn
(t−k)σ2

X0

log(n)

 ≡ B(X) , (21)

where the inequality is due to Lemma 3. Now, due to the result in (20), as well as application

of Lemma 4 to the set X0, we have that:

PS
(
B(X) ≤ exp

(
−qn(1 + o(1)) log(n)

1 + o(1)

))
→ 1 .

Since this high probability upper bound can be restated as n−q+o(1), we ultimately obtain

that

PS
(
P̃k,qn(X) ≤ n−q+o(1)

)
→ 1 . (22)

Next, we characterize the probability P
(
π ∈ Π(k)

)
. Note that P

(
π ∈ Π(k)

)
= P (H = k),

with H a hypergeometric distribution with population size nt, number of success states st

and sample size t. A coupling argument can be used to show H is stochastically dominated by

a binomial random variable with t trials with success probability st/nt, and H stochastically

dominates a binomial random variable with t trials with success probability (st− t)/nt. For
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convenience, denote pL = (st− t)/nt, and pU = st/nt. We have that:
blog(n)c∑
k=1

P
(
π ∈ Π(k)

)
= P (H ≤ blog(n)c)− P (H = 0)

≤ P (Binomial(t, pL) ≤ blog(n)c)− P (Binomial(t, pU) = 0)

≤ (1− pL)t − (1− pU)t +

blog(n)c∑
k=1

(
t

k

)
pkL .

Now, the first part of the expression above can be upper bounded as:

(1− pL)t − (1− pU)t =

(
1− st− t

nt

)t
−
(

1− s

n

)t
=
(

1− s

n

)t((
1 +

1

n− s

)t
− 1

)

≤
(

1 +
1

n− s

)t
− 1

≤ 1

1− t
n−s
− 1

=
t

n− s− t
= n−1+o(1) ,

where the second inequality is due to Bernoulli’s inequality. The second part of the expression

can be upper bounded as:
blog(n)c∑
k=1

(
t

k

)
pkL ≤

blog(n)c∑
k=1

(
et

k

)k
pkL

≤
blog(n)c∑
k=1

n−kβ+k
log(t)
log(n)

+o(1)

≤ n−β+
log(t)
log(n)

+o(1) +

blog(n)c∑
k=2

n−kβ+k
log(t)
log(n)

+o(1)

≤ n−β+o(1) +

blog(n)c∑
k=2

n−k
β
2

+o(1)

≤ n−β+o(1) ,

where the first inequality is due to Stirling’s inequality, and the fourth inequality is due to t =

no(1) such that log(t)/ log(n) = o(1) and for sufficiently large n, we thus have log(t)/ log(n) ≤
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β/2. We can conclude that for any ε > 0,
blog(n)c∑
k=1

P
(
π ∈ Π(k)

)
≤ n−β+o(1) . (23)

For the other probability term in (18), we have that:
t∑

k=dlog(n)e

P
(
π ∈ Π(k)

)
= P (H ≥ dlog(n)e) ≤ P (Binomial(t, pU) ≥ dlog(n)e)

≤
t∑

k=dlog(n)e

(
et

k

)k ( s
n

)k
=

t∑
k=dlog(n)e

n−kβ+k
log(t)
log(n)

+o(1)

≤
t∑

k=dlog(n)e

n−kβ+k β
2

+o(1) =
t∑

k=dlog(n)e

n−k
β
2

+o(1)

≤ tn− log(n)β
2 ≤ n−β−q , (24)

where we have assumed that t = no(1), and subsequently that the fraction log(t)
log(n)

≤ β
2

for n

sufficiently large. We have also used that β > 1/2 and q ≤ 1.

Putting the results from (22), (23), and (24) in (18), we have that there exists a deterministic

sequence gn → 0 such that:

PS
(
P̃qn(X)− P̃ ′0,qn(X) ≤ n−β−q+gn

)
→ 1 . (25)

For the second term in (17), we must show that P̃ ′0,q(X) concentrates well around its mean.

We use Chebyshev’s inequality, requiring a characterization of the variance of P̃ ′0,q(X), ob-

tained by carefully characterizing the dependency between two permutation streams. In

many cases, these streams do not share any observations, and thus are independent. To

characterize this rigorously, let π∗ be some arbitrary fixed permutation from Π(0). We then

partition Π(0) in sets {Π(0)
k (π∗)}tk=0 as follows: we have π ∈ Π

(0)
k (π∗) if π permutes precisely

k of the same coordinates as π∗ to the first stream. Specifically:

Π
(0)
k (π∗) ≡

{
π ∈ Π :

t∑
j=1

1
{
π−1(1, j) = π−1

∗ (1, j)
}

= k

}
.

In particular, note that if π ∈ Π
(0)
0 (π∗) with π∗ some fixed permutation, this means that the
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random variables Y1(Xπ) and Y1(Xπ∗) are independent (given the two permutations). Note

that, since n � t, intuitively Π ≈ Π0(π∗) for any permutation π∗, such that one should

expect a very weak dependency between Y1(Xπ) and Y1(Xπ∗) when π ∈ Π uniformly at

random.

Now, we first find the second moment of P̃ ′0,q(X). Let π1 and π2 be permutations uniformly

and independently at random from Π(0), such that:

E
(
P̃ ′0,q(X)2

)
= E

[
E
(
1 {Y1(Xπ1) ≥ zq}

∣∣∣ X
)
E
(
1 {Y1(Xπ2) ≥ zq}

∣∣∣ X
)]

= E
[
E
(
1 {Y1(Xπ1) ≥ zq}1 {Y1(Xπ2) ≥ zq}

∣∣∣ X
)]

= E
[
1 {Y1(Xπ1) ≥ zq}1 {Y1(Xπ2) ≥ zq}

]
=
∑
π∈Π(0)

t∑
k=0

∑
ξ∈Π

(0)
k (π)

E
[
1 {Y1(Xπ1) ≥ zq}1 {Y1(Xπ2) ≥ zq}

∣∣∣ π1 = ξ, π2 = π

]

· P (π1 = ξ)P (π2 = π) . (26)

At this point, it is convenient to look at the summands of k in (26) individually. First, note

that for k = 0 we have that, due to independence:∑
π∈Π(0)

∑
ξ∈Π

(0)
0 (π)

E
[
1 {Y1(Xπ1) ≥ zq}1 {Y1(Xπ2) ≥ zq}

∣∣∣ π1 = ξ, π2 = π

]
P (π1 = ξ)P (π2 = π)

=
∑
π∈Π(0)

∑
ξ∈Π

(0)
0 (π)

E
[
1
{
Y1(Xξ) ≥ zq

}]
E
[
1 {Y1(Xπ) ≥ zq}

]
P (π1 = ξ)P (π2 = π)

≤
∑
π∈Π(0)

{
E
[
1 {Y1(Xπ) ≥ zq}

]
P (π2 = π)

∑
ξ∈Π(0)

E
[
1
{
Y1(Xξ) ≥ zq

}]
P (π1 = ξ)

}

=
∑
π∈Π(0)

{
E
[
1 {Y1(Xπ) ≥ zq}

]
P (π2 = π)E

(
P̃ ′0,q(X)

)}
= E

(
P̃ ′0,q(X)

)2

.

Now, before proceeding to bound the term in (26) for k ≥ 1, we first define

ρk ≡ P
(
ξ ∈ Π

(0)
k (π)

)
,

when ξ is sampled uniformly at random from Π(0), and π ∈ Π(0) arbitrarily and fixed.
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Note that this is a hypergeometric probability; the probability corresponds to choosing t

indexes, of which k indexes should match the t indexes placed in the first stream by the

permutation π, out of the (n−s)t indexes in total, without replacement. To characterize this

probability, we use a stochastic domination argument like before; note that a hypergeometric

random variable H with (n − s)t total states, with t success states and a sample size of

t, is stochastically dominated by a binomial random variable with t draws with success

probability t/((n− s)t). Therefore:
t∑

k=1

ρk = P (H ≥ 1) ≤ P
(

Bin

(
t,

1

n− s

)
≥ 1

)
≤

t∑
k=1

(
t

k

)(
1

n− s

)k
≤

t∑
k=1

(
et

nk

)k (
1 +O

( s
n

))k
≤

t∑
k=1

n−k+k
log(t)
log(n)

+o(1)

≤ n−1+o(1) +
t∑

k=2

n−k(1−ε)+o(1) ≤ n−1+o(1) , (27)

where the fifth inequality holds for any ε > 0 since t = no(1), and thus for sufficiently large

n we have log(t)/ log(n) ≤ ε. Then, for the summands k ≥ 1 in (26), we now have that:∑
π∈Π(0)

∑
ξ∈Π

(0)
k (π)

E
[
1 {Y1(Xπ1) ≥ zq}1 {Y1(Xπ2) ≥ zq}

∣∣∣ π1 = ξ, π2 = π

]
P (π1 = ξ)P (π2 = π)

≤
∑
π∈Π(0)

E
[
1 {Y1(Xπ2) ≥ zq}

∣∣∣ π2 = π

]
P (π2 = π)

∑
ξ∈Π

(0)
k (π)

P (π1 = ξ)

= ρkE
(
P̃ ′0,q(X)

)
.

For the second moment, we therefore have that:

E
(
P̃ ′0,q(X)2

)
≤ E

(
P̃ ′0,q(X)

)2

+ E
(
P̃ ′0,q(X)

) t∑
k=1

ρk = E
(
P̃ ′0,q(X)

)2

+ p̃q

t∑
k=1

ρk ,

where the equality holds by definition of P̃ ′0,q(X). Now, letting qn → q, the variance of

P̃ ′0,qn(X) can be bounded by:

Var
(
P̃ ′0,qn(X)

)
≤ p̃qn

t∑
k=1

ρk ≤ n−1−q+o(1) ,

where the second inequality is due to Lemma 6 and the result in (27). Now, Chebyshev’s
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inequality implies that, for any ε > 0, we have:

P
(
P̃ ′0,qn(X)− E

(
P̃ ′0,qn(X)

)
≥ n−

1+q
2

+ε
)
≤

Var
(
P̃ ′0,qn(X)

)
n−1−q+2ε

≤ n−ε → 0 . (28)

We have now bounded both components of Equation (17). Combining our results of (25)

and (28) implies that, for any ε > 0, there exists a sequence gn → 0 such that:

P
(
P̃q(X)− p̃q ≤ nmax{−β−q,n−

1+q
2 }+ε+gn

)
→ 1 ,

concluding the proof.

1.9 Proof of Lemma 6

To streamline the presentation let W1, . . . ,Wt be i.i.d. with distribution Fθ and denote by

ϕθ(x) the moment generating function of Fθ. Define also τ =
√

(2qn/t) log n. We start by

getting an upper bound for the said probability when r < q. A simple Chernoff bounding

argument yields

PS

1

t

∑
j∈[t]

Wj ≥ τ

 ≤ exp

(
−t

[
sup

λ∈[0,θ∗−θ)
{λτ − log(ϕθ(λ))}

])
. (29)

We must now characterize ϕθ(λ). First note that ϕθ(λ) = ϕ0(λ+ θ)/ϕ0(θ). Now, we develop

a Taylor expansion of ϕ0(λ) around λ = 0, as we did in Equation (1). Note that F0 has zero

mean and unit variance. We obtain:

ϕ0(λ) = 1 +
λ2

2
+O(λ3) , (30)

as λ→ 0. A similar expansion can be developed for ϕ0(λ+ θ) around λ+ θ = 0. Combining

all this yields

ϕθ(λ) =
1 + 1/2(λ+ θ)2 +O((λ+ θ)3)

1 + θ2/2 +O(θ3)
= 1 + θλ+

λ2

2
+O((λ+ θ)3) ,

as both λ, θ → 0, where we used a Taylor expansion for the fraction around θ2/2+O(θ3) = 0.

This suggests the choice λ∗ = τ − θ, which is positive provided n is large enough since r < q.
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This choice yields the bound

sup
λ∈[0,θ∗−θ)

{λτ − log(ϕθ(λ))} ≥ τ 2 − log(ϕθ(λ))

≥ 1

2
(τ − θ)2 +O

(
τ 3
)
,

since τ > θ and we used the basic inequality log(1 + x) ≤ x. When t = ω(log3 n) the first

term dominates, and therefore we conclude that

PS

1

t

∑
j∈[t]

Wj ≥ τ

 ≤ exp
(
−(
√
qn −

√
r)2(log n) + o(1)

)
= n−(

√
q−
√
r)2+o(1) .

To lower-bound the probability in (29) we use a tilting argument. Let θτ be such that Fθτ

has mean τ . Such a choice exists for n large enough and necessarily θτ > θ for large n, since

r < q. Define W̃1, . . . , W̃t to be i.i.d. with distribution Fθτ . Then

PS

1

t

∑
j∈[t]

Wj ≥ τ

 =

∫
1

1

t

∑
j∈[t]

wj ≥ τ

 dFθ(w1) · · · dFθ(wt)

=

∫
1

1

t

∑
j∈[t]

wj ≥ τ


t∏

j=1

exp (θwj − logϕ0(θ)) dF0(w1) · · · dF0(wt)

=

∫
1

1

t

∑
j∈[t]

wj ≥ τ


t∏

j=1

exp

(
(θ − θτ )wj − log

(
ϕ0(θ)

logϕ0(θτ )

))
dFθτ (w1) · · · dFθτ (wt)

=

(
ϕ0(θτ )

ϕ0(θ)

)t
E

1
1

t

∑
j∈[t]

W̃j ≥ τ

 exp

−(θτ − θ)
∑
j∈[t]

W̃j

 .

With this change of measure we can conveniently use the central limit theorem to get a
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meaningful bound. Begin by noting that

PS

1

t

∑
j∈[t]

Wj ≥ τ


≥
(
ϕ0(θτ )

ϕ0(θ)

)t
E

1
0 ≤ 1√

t

∑
j∈[t]

W̃j − τ
σθτ

≤ 1

 exp

−(θτ − θ)
∑
j∈[t]

W̃j


≥
(
ϕ0(θτ )

ϕ0(θ)

)t
exp

(
−(θτ − θ)(tτ +

√
tσθτ )

)
P

0 ≤ 1√
t

∑
j∈[t]

W̃j − τ
σθτ

≤ 1

 ,

where σ2
θτ

denotes the variance of Fθτ . By the central limit theorem we know that

1√
t

∑
j∈[t]

W̃j − τ
σθτ

converges in distribution to a standard normal distribution and therefore the probability in

the expression above converges to Φ(1)− Φ(0) ≈ 0.34 > 1/4. We conclude that, for n large

enough

PS

1

t

∑
j∈[t]

Wj ≥ τ

 ≥ 1

4

(
ϕ0(θτ )

ϕ0(θ)

)t
exp

(
−(θτ − θ)(tτ +

√
tσθτ )

)
.

To control the remaining terms recall that ϕ0(λ) = 1 + λ2/2 + O(λ3) as λ → 0 (see Equa-

tion (30)). Note also that τ = θτ + O(θ2
τ ), which implies (after some manipulation) that

θτ = τ +O(τ 2). Finally, note that both τ and θ have the same order of magnitude. Putting

all this together we conclude that

log

((
ϕ0(θτ )

ϕ0(θ)

)t)
=
t

2

(
τ 2 − θ2 +O(θ3)

)
.

For the other term note that σθτ = 1 + o(1), and therefore σθτ/
√
t = o(θ). This implies that

−(θτ − θ)(tτ +
√
tσθτ ) = −t

(
τ(τ − θ) +O(θ3)

)
.

In conclusion

PS

1

t

∑
j∈[t]

Wj ≥ τ

 ≥ 1

4
exp

(
− t

2

(
(τ − θ)2 +O(θ3)

))
.

When t = ω(log3 n) the term (τ − θ)2 term dominates, and we see we get the asymptotic

behavior as in the upper bound, concluding the proof.

For the case r ≥ q we see that necessarily P
(

1
t

∑
j∈[t] Wj ≥ τ

)
≥ no(1), so the tail probability
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cannot be extremely small. In fact, when r > q this probability will be lower bounded by a

constant.

1.10 Proof of Corollary 1

Proof. To prove this corollary we simply map the original dataset to a new dataset with

short streams, for which we can apply Theorem 4. Partition the set [t] into t̃ sets of size k

such that t̃ ≡ t
k

= no(1) and t̃ = ω(log3(n)). For simplicity, we assume t is divisible by k and

define

X̃ij ≡
1√
k

jk∑
`=(j−1)k+1

Xi` .

Recall that Xij belongs to a natural exponential family with natural parameter θi. Note

that the distribution of X̃ij also belongs to a natural exponential family. Particularly, let F̃0

be the distribution of X̃ij when θi = 0. Then the density of X̃ij with respect to F̃0 is given

by exp
(
θ̃ix− log(ϕ̃0(θ̃i))

)
where ϕ̃0 (θ) ≡ ϕ0(θ/

√
k)k is the moment generating function

of F̃0 and θ̃i ≡ θi
√
k. Note that F̃0 has variance σ2

0 and so, using the parameterization in

Theorem 4 we have for i ∈ S

θ̃i = θ
√
k =

√
2r/(σ2

0t) log(n)
√
k =

√
2r/(σ2

0 t̃) log(n) .

We can now apply the test as in Theorem 4 on the set of observations X̃ ≡ {X̃ij : i ∈ [n], j ∈

[t̃]}. Since t̃ = no(1) and t̃ = ω(log3(n)), Theorem 4 implies the test has power converging to

one provided r > ρ∗(β). If t is not divisible by k one can simply ignore the last observations

in each stream of the original data and proceed as above.

2 An analysis of daily COVID-19 diagnoses across mu-

nicipalities in the Netherlands

To showcase another possible application of our methodology we consider a way to moni-

tor the number of new daily diagnoses of COVID-19, aiming to quickly identify localized

outbreaks. During the current COVID-19 pandemic countries experienced successive waves
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with large numbers of cases, interspersed with periods with more stable disease dynamics,

typically due to measures put in place to limit its spread. In the latter regime it is of high

importance for policy makers to quickly detect signs of new impending outbreaks.

One possible way to proceed is to monitor the daily number of diagnoses per capita in each

separate municipality of the country over a short time frame, and test if a (small) subset

of municipalities has a higher-than-usual number of cases. As such, the framework we have

introduced in this paper can be useful here to detect signs of local outbreaks, as these would

lead to rejection of our null hypothesis (1). A municipality may turn anomalous during the

observed stream and not right from the start. However, recall that our methodology still

has some power even when anomalous streams are only partially affected.

Within small time windows, it may be sensible (to some extent) to apply the proposed

methodology directly to the raw data. Nevertheless, we also consider a more sophisticated

approach by first fitting a model to small time windows of the raw data and then analyzing

the residuals instead, as explained in Section 1. Note, however, that our methodology is

in principle not suitable for serially dependent data, and validity of the conclusions based

on this residual analysis hinge crucially on the validity of the fitted model. In addition,

estimated residuals are dependent (but usually only weakly provided an adequate model

is chosen). In rigor, one should carefully address the influence of this dependency on the

validity of the test conclusions, but this is outside of the scope of this manuscript.

We consider data from The Netherlands. In this country, it is not unreasonable to assume

municipalities are sufficiently comparable: the country is very small and population density is

not too different among municipalities. We use data on newly diagnosed COVID-19 cases per

100.000 inhabitants from 13th of March up until 10th of August 2020, for each of the n = 355

municipalities of the Netherlands. This data was processed from two sources; the data on the

number of diagnoses (uncorrected for municipality population) was retrieved from the Dutch

national institute for public health and the environment (RIVM) at https://data.rivm.nl1,

1The specific hyperlink to this data is https://data.rivm.nl/geonetwork/srv/dut/catalog.search#

https://data.rivm.nl
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
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and the data on municipality population was retrieved from the Dutch central agency for

statistics (CBS) at https://opendata.cbs.nl2. These were combined to obtain the number

of newly diagnosed COVID-19 cases per 100.000 inhabitants. Let i ∈ {1, . . . , 355} denote a

municipality and j ∈ {1, . . . , 151} denote a day in the period above. Then yi,j denotes the

daily rate of new cases per municipality (daily-rate, for short). Specifically, the ratio between

the number of new positive diagnoses on that day divided by the number of inhabitants of

the municipality (as a multiplicative factor of 100.000). To give some insight into this data,

we depict the number of new cases per municipality in each month in Figure 1. As can be

seen, some municipalities clearly have a large number of cases when compared to the others,

but they do not stay so large consistently throughout the months considered.

As we are interested in quickly detecting outbreaks our analysis focuses on very short time

frames, namely windows of five consecutive days. This is motivated by the knowledge of

the incubation time of the disease, believed to be on average around 5 days, and typically

between two and fourteen days (Lauer et al., 2020). Within such a short time frame both

the independence and stationarity assumptions might not be terribly unreasonable under

the null; in a stable regime without local outbreaks, relatively few cases are distributed

somewhat evenly over the population, and those infectious individuals tend not to infect

many others (within that limited time frame). For larger windows of time one naturally

expects the validity of such assumptions to be more questionable. That being said, within

a five-day window there might be some amount of dependency and non-stationarity across

time, even within the null streams. With this in mind an option is to attempt to capture such

global trends and dependencies, and monitor the residual errors of such a model instead, as

suggested in Section 1. Both approaches are discussed below.

Formally, our analysis and results pertain a window of t = 5 consecutive days, starting on

day w ∈ {1, . . . , 147}. We present results for all the possible windows. In short, the raw

/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
2The specific hyperlink to this data is https://opendata.cbs.nl/statline/?dl=2096B#/CBS/nl/dataset/

70072NED/table

https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://opendata.cbs.nl
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://data.rivm.nl/geonetwork/srv/dut/catalog.search#/metadata/1c0fcd57-1102-4620-9cfa-441e93ea5604
https://opendata.cbs.nl/statline/?dl=2096B#/CBS/nl/dataset/70072NED/table
https://opendata.cbs.nl/statline/?dl=2096B#/CBS/nl/dataset/70072NED/table
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Figure 1: Boxplots depicting the normalized number of monthly cases per municipality. For
each municipality, the total number of monthly cases per 100.000 inhabitants is normalized
by the number of days in the month. The five municipalities with the highest mean number
of cases are depicted with a cross and labeled. Data in March pertains only the 13th up
until the 31st of March, and August only pertains the 1st up until the 10th of August.

observations for the window indexed by w are
(
x

(w)
ij : i ∈ [n], j ∈ [t]

)
where x

(w)
i,j = yi,j+w−1.

Taking into account the short time-windows and the first order epidemic dynamics a simple

but sensible model to consider for this data is an AR(1) model, as suggested in Shtatland

(2007, 2008). Note, however, that application of our methodology is crucially dependent

on the validity of the model, but for presentation purposes we stick with this relatively

simple model. Specifically, the model assumes that for null streams the observations x
(w)
i,j are

obtained as a sample from

X
(w)
i,j − µ(w) = a(w)

(
X

(w)
i,j−1 − µ(w)

)
+ ε

(w)
i,j ,

where i ∈ [n], j ∈ [t], a(w), µ(w) ∈ R are (unknown) parameters of the model (common to all

null streams), and ε
(w)
i,j are i.i.d. samples from an unknown zero-mean distribution. Despite

its simplicity, this model can capture some of the epidemic dynamics when applied to very
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short time frames, in contrast with more sophisticated epidemiological models (like the ones

described in Held et al. (2019)).

The first step in this approach is to estimate the unknown parameters of the model. Given

that we do not have knowledge of the distribution of the errors a natural choice is to use the

ordinary least squares estimator

(â(w), µ̂(w)) = arg min
a,µ∈R

{
n∑
i=1

t∑
j=1

(
(x

(w)
i,j − µ)− a(x

(w)
i,j−1 − µ)

)2
}

.

Finally, the methodology proposed in this paper is then applied to the residual errors, namely

(x̃
(w)
i,j : i ∈ [n], j ∈ [t]) where

x̃
(w)
i,j ≡ x

(w)
i,j − µ̂(w) − â(w)

(
x

(w)
i,j−1 − µ̂(w)

)
,

We apply our testing methodology both to the raw data (x
(w)
i,j )i∈[n],j∈[t] and to the residuals

(x̃
(w)
i,j )i∈[n],j∈[t], and contrast the obtained results. Note that often there are few very large

observations. While these cases are important in the context of the application, one needs

no powerful test to mark them as anomalous as their abnormality is so clear. Especially

in the context of COVID-19, these “clear” outliers will be investigated regardless. A more

interesting question is then if, apart from these “clear” outliers, we can still detect higher-

than-usual values among the other municipalities.

To remove “clear” outliers in a rigorous way we use the max test as described in Theorem 2.

First we obtain the 95% quantile of the permutation maximum stream mean distribution.

We then mark all streams with means exceeding this threshold as “clear” anomalies. Finally,

we apply our permutation higher criticism test as in Theorem 4 on the remaining data to

detect possible signals. We also use the higher criticism test using a normal approximation

as in Section 5.5 for a comparison. See also Remark 2 for a discussion on possible alternatives

to consider when fitting the AR(1) model.

We present the results obtained for each possible window of 5 consecutive days in Figure 2.

The p-value obtained by the testing procedures along with the virus’ nationwide progression

is depicted in that figure. Note that the time-windows are indexed by their starting day,
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(a) Tests applied on the raw data.
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(b) Tests applied on the residuals.

Figure 2: The p-values of our permutation higher criticism test and the higher criticisms test
using normal approximations for a window of the previous five days, along with the total
number of daily diagnoses in the Netherlands. For each test 105 permutations were used.

so neighboring windows consider overlapping periods of time. Obviously, the obtained p-

values are dependent and care must be taken if trying to interpret them jointly - the figure

is given merely to aid the presentation. As can be seen in Figure 2, our test nearly always

results in much smaller p-values than the approximation method at each window, both when

using the raw data and the residuals of the AR(1) model. One can also see that, when the

method is used on the residuals, larger p-values are typically observed. This indicates that

in many of the windows considered, the use of the AR(1) model mitigates the effect of some

dependencies and global trends that may unduly influence the conclusions. However, the

autocorrelation parameter estimates were frequently small - across all windows considered,

the estimates had a median value of 0.2243, and were smaller than 0.3 in 75% of the windows.

At 5% significance, our test on the raw data rejects the null a total of 113 times out of 146,

while the approximation test rejects a total of 49 times. On the residuals of our AR(1)

model, our methodology rejects 43 times, while the approximation method rejects 20 times.

Nevertheless, these figures should be interpreted with care, as the resulting p-values across

different windows are dependent.

There are cases where our test indicates anomalies in seemingly stable periods. In these

periods, while hard to see in aggregated data, we thus have some evidence that some mu-
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nicipalities have larger-than-usual values. This does not necessarily lead to a nationwide

outbreak, since local measures, such as a restricting access to specific nursery homes, might

have been taken to prevent further spread. As our data is aggregated per municipality and

local measures are very hard to identify, we cannot to take this into account in our analysis.

Remark 1. When the p-values of our test are small as above, one would ideally like to

subsequently identify the anomalous municipalities. We refer to the ending of Section 5.6 for

a discussion on the possibilities when one would like to identify anomalous municipalities.

Remark 2. With respect to the exclusion of “clear” outliers, there are some natural alterna-

tives to the approach above:

A. Remove obvious anomalies using the permutation distribution of the maximum stream

mean on the raw data. Next, fit the AR(1) model on the remaining raw data, and

apply the methodology on the residuals. In the results, we refer to this approach as

“approach A”.

B. First, fit an AR(1) model on the data. Then, identify obvious anomalous streams

using the permutation distribution of the maximum stream mean on the residuals.

If the stream mean of the residuals is larger than the 95% quantile, we remove the

corresponding stream from our original raw data. Fit a new AR(1) model on the

remaining raw data streams. Use our methodology on the residuals following from the

second model fit. In the results, we refer to this approach as “approach B”.

Compared to the previous approach, the first option avoids labeling streams as “obvious”

anomalies based on the AR(1) model. The second option avoids using our methodology on

residuals that arose from an AR(1) model fit which was unduly influenced by the presence

of “obvious” anomalies.

The results do not qualitatively change compared to the results in the main text when these

variations are considered. The results are presented in Figure 3.
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(a) Results following approach A.

0 20 40 60 80 100 120 140 160

Time in days since 13th of March

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p-
va

lu
e

0

500

1000

1500

2000

2500

3000

N
um

be
r 

of
 d

ai
ly

 d
ia

gn
os

es

HC-permutation
HC-approximation
Number of daily diagnoses

(b) Results following approach B.

Figure 3: The p-values of our permutation higher criticism test and the higher criticisms test
using normal approximations for a window of the previous five days, along with the total
number of daily diagnoses in the Netherlands. For each test 105 permutations were used.
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