Supplementary material to “A mass-shifting phenomenon of

truncated multivariate normal priors”

Shuang Zhou*!, Pallavi Ray'2, Debdeep Pati*?, and Anirban Bhattacharya$?

1School of Mathematical and Statistical Sciences, Arizona State University, Tempe,
Arizona, 85287, USA
2Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, 46285, USA
3Department of Statistics, Texas A&M University, College Station, Texas, 77843, USA

S1 Summary

In this supplementary document, we collect additional plots, proofs of main results in the manuscript,
remaining technical results and additional details on numerical studies. Equations in the main doc-
uments are cited as (1), (2) etc., while new equations defined in this document are numbered (S1),

(S2) etc.

e § S2 provides supportive materials to the main document, including empirical illustrations of
mass-shifting behavior of the tMVN marginal density and an additional mass-shifting theorem
for the tMVN families with unequal variances, and additional graphical illustrations in the

main document.

e § 53 summarizes useful intermediate results for proving main theorems and corollaries in the

manuscript.

*szhou98@asu.edu

Trayipallavi@lilly.com (This work was done by Pallavi Ray as a former Ph.D. student at Department of Statistics,
Texas A&M University.)

fdebdeep@stat.tamu.edu

Sanirbanb@stat.tamu.edu



§ S4 collects the proofs of Theorems 2,3 in § 2, Theorem 5 in § 3, Theorem 7 and Theorem 8

in § 4, and Corollary S1 in § S2.2.

e § S5 contains the proofs of all Proposition results which includes Proposition 1 in § 2, Propo-

sition 4 and Proposition 6 in § 3, Proposition S1 in § S4.2, and Proposition 52 in § S4.5.

e § SO contains the proofs of technical results in Appendix A and the intermediate results in §

S3.

e The rest of auxiliary results used in the proofs are listed in § S7. Finally, § S8 provides
additional empirical details on prior illustration, posterior computation, remaining numeri-
cal results, hyperprior choices and additional sensitivity studies, and diagnostics on MCMC

algorithms.

S2 Supporting materials to the main document

S2.1 Empirical illustration of mass-shifting phenomenon of truncated multi-

variate Normal

We now empirically illustrate the conclusion of Theorem 2 by presenting the univariate marginal
density py n for different values of the dimension /V and the bandwidth K. The density calculations
were performed using the R package tmvtnorm, which is based on the numerical approximation

algorithm proposed in [3] and subsequent refinements in [6, 7, 8]. We consider an N-dimensional

Figure S1: Left panel shows marginal density functions p1 n for K = 2 (black), K =5 (red) and K = 20
(blue) with N = 100. Middle panel shows py n for N = 10 (black), N = 50 (red) and N = 100 (blue) with
K = 5. Right panel shows p1.n for (K,N) = (5,25) (black), (20,100) (red) and (50,250) (blue).

correlation matrix ¥y = (0;;) which is K-banded with o;; =1+ 08 with 08 =106for1<i<N



and o;; = pli=3IA10 for p = 0.9 and for all i, j such that 1 < |i —j| < K; and 0;; = 0 otherwise.! The
left panel of Figure S1 shows that for N fixed at a moderately large value, the probability assigned
to a small neighborhood of the origin decreases with increasing K. Also, the mode of the marginal
density increasingly shifts away from zero. A similar effect is seen for a fixed K and increasing
N in the middle panel and also for an increasing pair (K, N) in the right panel, where we see the
mass-shifting effect is accentuated as both N, K increase. This behavior perfectly aligns with the
main message of the theorem that the interplay between the truncation and the dependence brings

forth the mass-shifting phenomenon.

S2.2 Mass-shifting phenomenon for the unequal-variance case

In this section we discuss a generalization of Theorem 3 to the case where the scale matrix Xy
contains unequal variances. Recall 8 ~ Ne(un, X ). We continue to consider an “approximately”
banded scale matrix ¥y such that for some integer 2 < K < N — 1 there exists a K-banded
symmetric and positive definite matrix Xy = (0};) satisfying Sy — Zy[| < (Nlog K)~|Ex]].
Compared to the equal-variance scenario considered in Theorem 3, the unequal variances {07, } will
be taken into account for the assumption on the correlation structure of ¥y accordingly. We now
provide assumptions and notations required in this case, which are very similar to those of Theorem
5. We let Jﬁ) and 08\,) denote the smallest and largest variances of ¥’y separately. Without loss
of generality, we assume 072 = 0221). As one can always scale the matrix ¥y such that 0221) =1,

we assume aﬁ) =1 and let UZ\,) = k for some constant k > 1. Here x can be interpreted as the

I o' . the smallest and

ratio of the largest and smallest variances. In addition, we denote by o] i, Opax

largest off-diagonal entries of 3y, within the K-band, respectively. Again, denote p* = ||ptn |0 and

/ /
we assume o, . oo € (0,1).

Corollary S1. (Unequal variance). Fiz 3 € [0,1). For the mode pn satisfying p* < Cp .. omax B -

Go(Pmin, pmax) (log K)Y2, and if (0!, 0% s k) € O, where Q. takes the same form of Qs in

min’ ¥ max’

Theorem 5 by substituting s = k. Then there exists some large enough integer Ko such that K > Ky

! A small nugget term o3 is added such that X is positive definite. Details on (pmin, pPmax) for all combinations
(N, K) are deferred to §S7.2 of the supplement. Here we denote a A b = min(a, b) for any a,b € R.



and for any fired § > 0 we have

.y 5 (10g K)I/QK—(I—ﬁ)Ga (ofnin/n, O’;nax) :

max’

OZN’(s S C;_/

min>?

where the function G, is same as defined in Theorem 2 for some o € (0,1), and the constants

o ', . .>0domnot depend on K,N.

i max ?
Pmin;P: 0] i T maxs

S2.3 Additional plots in the main document

Additional graphical illustrations in the manuscript are summarized in this section.

S2.3.1 Additional plot in § 1
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Figure S2: Monotone function estimation using the basis of [11] and a joint truncated normal prior
on the coefficients. Red solid curve corresponds to the true function, blue solid curve is the posterior
mean, the region within two dotted blue curves represent a pointwise 95% credible interval, and the
green dots are observed data points corresponding to N = 50 (left panel) and N = 250 (right panel).



S2.3.2 Additional plot in § 2
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Figure S3: The region shaded in black depicts Q from the statement of Theorem 2 in § 2 of the main
document.

S2.3.3 Additional plot in § 3
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Figure S4: Scaled posterior scale matriz ¥y = (QJ_Vl + ®T®) ! defined in § 3 of the manuscript of
dimension N = 50 (left), N = 250 (middle) and N = 500 (right).



S2.3.4 Additional plots in § 4
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Figure S5: Same as Figure 2 in the main document for fo with zoomed-in inset plots over x € [0.5,1].



Model fit of function f;:
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Figure S6: Same as Figure 2 for fy.



S3 Intermediate results

In this section, we provide several intermediate results that play important roles in the proofs of
main results in § 2 and § 3. Their proofs are deferred to § S6. We first introduce some notations
which will be used throughout the rest of the paper. For any d-dimensional vector a = [aq, ..., aq]"
we denote its sub-vector by aj;, .i,) = [@iy, - - ., ai,]" for any 1 <y < iy < d. For two vectors a and b
of the same length, let @ > b (a < b) denote the event a; > b; (a; < b;) for all i. For a fixed integer
d > 0 and value p € (0,1), we recall that ¥;(p) denotes a symmetry-compound correlation matrix
with all off-diagonal elements taking on p. A key aspect of the compound-symmetry structure that
we exploit is for X ~ N(0,%4(p)) with p € (0,1), we can represent X; 4 p 2w+ (1= p)'2W;,
where w, W;’s are independent N(0, 1) variables. In addition, we define the matrix $4(c0?2, p) = (0;)
with o5 > 0 for 1 < i < dand 055 = p for 1 < i # j < d and for some 0 < p < minj<;<q 0j;.
Let 0(21) = min<;<q{0y} and a(2d) = maxj<;<a{oii}. At last, we denote p) = (0(21) — p)/p and
Pld) = (0(2 0 p)/p. Similarly, for X ~ N(0,%4(c?, p)), one obtains an equivalent expression as
X; 4 2w+ (04 —p)l/QWi7 fori=1,...,N.

The following Lemma S1 provides a novel comparison result for two-sided Gaussian rectangular
probabilities in moderate or high dimensions, which can be considered as an extension of Slepian’s
inequality summarized in Lemma S4. For a truncated multivariate normal random vector 6 ~
Ne(pn, ¥n) with a mode iy > Oy, a scale matrix X and C = [0, 00)", fix an arbitrary § > 0. A
key ingredient in the mass-shifting theory is to estimate

P0<21<6,20>0,...,Zy 2 0)
P(Z1>0,2,>0,...,Zy >20) ~’

ans =P <9) =

where Z ~ N (un, XnN).
Lemma S2 provides a sandwich bound for the numerator of the ratio in the preceding and
Lemma S3 provides a lower bound for the denominator of the ratio in the preceding. All Lemmas

will be repeated applied in the proofs of theorems in § 2 and § 3.

Lemma S1. (Generalized Slepian’s inequality.) Let X,Y be d-dimensional Gaussian vectors with

finite EX; = EY; and EX? = EY}? for all i and E(X;X;) < E(Y;Y;) for all i # j. Then for any



l1,u1 € R such that £1 < u1 and ue,...uq € R, we have
P(l1 < Xy <up, Xo>ug,..., Xg > ug) <P <Yy <ug, Yo >up,..., Y > ug).

Lemma S2. Let X ~ N(pq, Xq(02,p)), where the mean vector pq is fized with p; > 0 for i =

1,...,d, and $4(0?, p) is the variance-correlation matriz defined as above and we assume 0 < p <
2 .

o1y Fiz any 6 > 0.

(Upper bound). For some « € (0,1) and for sufficiently large d, we have the upper bound

P(0§X1<5,X220,...,Xd20)

—1/2
< _ _ 1/2 1 .
(01 { log(d 1) P ZElilgd Mz}

oxp (= [{2(1— o) log(d — D} — (011 — ) (5 -+ min i — )| '/

~ 260 {(1 — @) log(d — 1)}/ = /2 Zgliigdmr/Z) +exp(—(d — 1)),

where C = {4n(o11 — p)pq) (1 — a)} 2,

(Lower bound). In addition, we have the lower bound

P(0§X1<5,X220,...,Xd20)

> 6 {log(d — 1)} ~1/2 exp{ - [{2(1 + a)log(d — D)}? — (01, — p)_1/2(21£ii£dm - m)r/Q

2
- [2 py {(1+a)log(d — )}!/2 — p~ /2 Z%igdui] /2}7
where C" = {8 (o11 — p)pay (1 + o)}~ 12,
Lemma S3. Assume the conditions in Lemma S2 are satisfied. Define p* = maxi<;j<q{p;}, then
P(X;>0,X2>0,...,X4>0)

w o2 + (2p(g) log d)!/?
T o V2 4 (2p(a) log )12} + 1

exp [— {,u*,o_l/2 + (2p(a) logd)l/Q}Q/Q]



S4 Proofs of main results

In this section, we provide proofs of Theorems 2,3 in § 2, Theorem 5 in § 3, Theorems 7 and 8 in § 4,
and Corollary S1 in § S2.2. We first introduce some notations which will be used for the rest of the
paper. For a constant a € R, we denote by [a] the largest integer that is no greater than a. For two
quantities a, b, we write a < (2) b if a/b can be bounded from above (below) by some finite constant,
and we write a < b when a/b can be bounded from below and above by two finite constants. For
a N-dimensional vector a = [ay,...,aq]", for any subset of indexes A C {1,..., N} we denote a
partition of a based on A by a = [aa, axc]", where ax = {a;,j € A} and axe = {a;,j € A} with
A¢={1,...,N}\A. For a square matrix B, we denote by Apin(B) and Apax(B) the smallest and
largest eigenvalues of B, respectively. For two square matrices A, B of the same dimension, we say
A > B if A — B is positive semi-definite. For two random variables X and Y, We write X 4y

X and Y are identical in distribution.

S4.1 Proof of Theorem 2

There are two main steps that consist of the proof of Theorem 2. The first step is to obtain a
proper upper bound of the marginal probability av 5. The second step is to determine the allowable
magnitude of the supremum norm of the mode pn of the truncated multivariate normal distribution
in order for the obtained upper bound of oy s to decrease to 0 as K, N — oo.

Step 1. By definition,

P(0<Z, <6,2>0,...,Zy >0)

= < -
ans =P <0 = = S >0, 23 0)

(S4.1)

where Z ~ N (un,Xn) where Xy € By x and py is positive component-wise. We now proceed to
separately bound the numerator and denominator on the right hand side of equation (S4.1). Denote
e = miny<j<n(p5) and p* = maxi<j<n (i)

We first consider the denominator in equation (S4.1), and use Slepian’s lemma to bound it from
below. It follows from Slepian’s inequality, see comment after Lemma S4 in § S7.1, that if XY are

d-dimensional Gaussian random variables with E(X;) = E(Y;) and E(X?) = E(Y;?) for all i, and
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E(X;X;) <E(Y;Y;) for all ¢ # j, then

P(X; >0,...,X;>0)<P(Y; >0,...,Y;>0). (54.2)

Figure ST: Left panel: example of Xy with N = 18, K = 3. Right panel: the corresponding block
approximation Y.

The Slepian’s inequality is a prominent example of a Gaussian comparison inequality origi-
nally developed to bound the supremum of Gaussian processes. To apply Slepian’s inequality
to the present context, we construct another N-dimensional centered Gaussian random vector
S ~ N (pn,En) such that (i) Sp.x) < Zp. ks S 2k] = Zikrn):2k] and Sjax1):n) =
Zj2k+1): N, and (ii) the sub-vectors Spy. k], S|(k+1):2k] and S|2x+1): §] are mutually independent.
The correlation matrix Yy of S clearly satisfies (Xn)i; > (EN)U for all i # j by construction.

Figure S7 pictorially depicts this block approximation in an example with N = 18 and K = 3.

Applying Slepian’s inequality, we then have,

P(Z; >0,...,2x >0) > P(S; >0,...,Sx > 0)
=P(S;1: k) = 0) P(S|(k+41): 2] = 0) P(S|2K41): 5] = 0)

=P(Zn. k) 2 0) P(Zj(k41):25) = 0) P(Z|241): 5] = 0). (54.3)

11



Next, we consider the numerator in equation (5S4.1). We have,

P0<Z,<6,75>0,...,Zx >0)
<6, Zp. 1] =0, Zyiei1y-0x) € R, Zyare 11y 3 = 0)

< Z
0<Z1<06,Zp. k) > 0)P(Zi2k41): 5] = 0). (S4.4)

The last equality crucially uses Z]; . k] and Zj3x41). n] are independent, which is a consequence of
Yy being K-banded. Taking the ratio of equations (S4.3) and (S4.4), the term P(Z|2x41). 5] > 0)

cancels so that

< P(0<Z1 <96,Zj3.5) > 0) R (S1.5)
« = . .
N = P(Zy kg > 0)P(Zikc11:25) = 0)

To bound the terms P(Z};. g > 0) and P(Z|x1.2k) > 0) in the denominator of R, we resort to
another round of Slepian’s inequality. Recall that pmin, pmax denote the minimum and maximum
non-zero correlations in ¥y. Let Z” ~ N (i, Xk (pmin)). Also, recall from equation (2.1) that
Yk (pmin) denotes the K x K compound-symmetry correlation matrix with all correlations equal to
Pmin. By construction, for any 1 <i # j < K, E(Z;Z;),E(Zk+iZK+j) > Pmin = E(Z{’Z;-’). Thus,

applying Slepian’s inequality as in equation (54.2),
P(Zp. k) = 0)P(Zic 11057 = 0) > {P(Z" > 0)}°.

The numerator of equation (S4.5) cannot be directly tackled by Slepian’s inequality, we instead
apply Lemma S1. Define a random variable Z' ~ N (ux, Xk (pmax)) and use Lemma S1 to conclude
that P(0 < Z1 <6, 25,5 > 0) <P(0< Z] < 572[,2;[(} > 0).

Substituting these bounds in equation (S4.5), we obtain

P(0<Z| <6,25>0,...,Z} >0)

R<R =
- {P(Z] >0,...,Z} > 0)}?

(S4.6)

The primary reduction achieved by bounding R by R’ is that we only need to estimate Gaussian
probabilities under a compound-symmetry covariance structure.

Using the upper bound result of Lemma S2 by letting = pg, 055 =1 for 1 <i < K, p = pmax

12



and p(1) = Pmax = (1—Pmax)/Pmax, for sufficiently large K such that p* < \/(1 — Pmax)(1 — a)log(K — 1)
and for any « € (0, 1), we have
P0< 21 <6,25>0,...,Z% >0)

2
< 012 (1~ ) Tog(K ~ 112 = {21 e (= [(2man(1 = ) o = D)2 = /2] 2
—(1—a)log(K — 1)> +exp{—(K — 1)“}. (S4.7)

Next, applying Lemma 53 with a = p*, o; = 1 for all ¢, p = pmin and p(n) = Pmin = (1-—

Pmin)/ Pmin, one can lower bound the denominator of equation (54.6),

x —1/2 _ 1/2

it (2Pmin log K o ) )

I[D( [qu} > 0) > M_f/n;m E Pmin log K) 5 exp [_ {M pmillf2 + (2min logK)l/Q} /2}
{1 Pzt~ + (2Pmin log K)1/2}7 41

(S4.8)

Combining equation (S4.7) and equation (5S4.8) leads to the upper bound on R’ in equation
(54.6),

2
R' < 6(log K)'/? exp { - [<2ﬁmax<1 — a)log(K —1))/* — u*/péffx} /2= (1—a)log(K —1)
_ 2
+ [u*pmilf + (2pmin log K)*/ 2} }

2
+ 4 Prin logKexp{ —(K-1)*+ [,u,*p;lilf + (2Pmin log K)l/Q] } (54.9)

Since (Pmin, Pmax) € Q, we have puin/{2(1 — Pmin)} > Pmax, or equivalently, 2pmin < 1/pmax. Thus,
we can always find o > 0 such that (1 — @)/pmax — 2 Pmin > 0. Fix such an «, and substitute in
equation (S4.9). By choosing K| large enough so that for any K > Ky, the second term on the
right hand side of equation (S4.9) is smaller than the first term; this is possible since the second
term decreases exponentially while the first does so polynomially in K.

Step 2. To complete the proof, it remains to determine the condition on gy such that the obtained
upper bound of ay ;s in equation (54.9) decreases to zero along with K under the assumptions.
Since for sufficient large K the first term on the right hand side of equation (54.9) dominates, it
suffices to determine the feasible values of gy such that the exponent of the first term of the upper

bound in equation (54.9) is negative under the assumption (pmin, Pmax) € Q, which is equivalent to

13



un € S, where

S:= {MN € (0,00 {[2Bmax(1 — ) log(K — 1)]"/2 — p./pl{2}? /2

+ (1 —a)log(K — 1) = 2[u* prtl” + (2pmin log K)'/2]* > 0, for (pmin, pmax) € Q}.

min

With some simplifications one can find a condtion subset ScC S for w*, where

S = {,u* € (0,00) :alog(K —1) —b pu*/log K > 0,

,U* < min {\/(1 - Pmax)(l - a)ypmin} V log(K - 1)’ for (pminvpmax) € Q}7

(S4.10)

with

1 201 — ) (1 — P 31 — o
& 9 fmin, and p— V2= )1 = pma) |y V20— ponin). (S4.11)

Pmax Pmax Pmin

a =

We now determine feasible values of p* in S. It is straightforward that b > 0. As discussed
in Step 1, given (pmin, Pmax) € Q there exists some o € (0,1) such that a = G4 (pmins Pmax) >
0. Fix such an «, for any 8 € [0,1) and any (pmin,Pmax) € Q, as long as choosing p* <
Bmin{1/b, /(1 — a)(1 — pmax)/a, pmin/a}a/log(K — 1) for sufficiently large K, we have a log(K —
1) —bu*vIog K > a(1 — B)log(K — 1). Substitute the lower bound in the first term of the right

hand side of equation (S4.9), we then obtain the desirable upper bound ay s < 6(log K)¥/2 (K —

1)~ (=A)G pmin.pmax) - for sufficiently large K and some a € (0,1). Finally, taking C” =

Pmin,Pmax

min{1/b, /(1 — @)(1 — pmax)/a; pmin/a} completes the proof of Theorem 2.

S4.2 Proof of Theorem 3

We now prove Theorem 3 based on Theorem 2. The key observation is that if the scale matrix can
be approximated by a banded matrix well enough in operator norm, then the marginal probability
an,s of the truncated normal changes only up to a constant when the associated scale matrix is
replaced by its banded approximating matrix. We formulate this result as follows. Define random

vectors Z ~ Ne(pn,Xn) and Z' ~ Ne(py, Xly), where C = [0,00)" and the mode py = {u;}

14



with p; > 0 for j = 1,...,N. Also both Xy, ¥/ are non-negative and X'y is K-banded for some

integer 2 < K < N — 1.

Proposition S1. For Z ~ Ne(un,Yn) and Z' ~ Ne(pn,XYy) where C = [0,00)Y, if py is a
non-negative fized vector, and for sufficiently large N, K if there exists some ¢ < (N log K)™! such

that || En — 2\ || S ellEn ||, then for any fived 6 > 0, we have
P0<Z; <) =<P(0< 7] <6).

The proof of Proposition S1 is deferred to § S5.4. An application of Proposition S1 and Theorem

2 immediately yields the result of Theorem 3.

S4.3 Proof of Theorem 5

Proof of Part (a). Part (a) of Theorem 5 is an immediate application of Proposition S1 and Corol-
lary S1 by taking p* = 0,8 = 0. To sece that, recall , ~ N(0,Sy) and define 6, ~ N(0,Zy).
Given |Zxy — Syl < (Nlog K)~![|Sx]| and by applying Proposition S1, then for any fixed § > 0
one obtains II(0 < 6, < §|Y) =< I(0 < 6. < §|Y), by applying Proposition S1. Follow-
ing similar notations and assumptions in Corollary S1, denote 6(21) = minj<;<q 0, and define
0. = éc/&(l) and one have 0/, ~ N(O,E’N) where E’N = f]N/&(Ql). Define § = 6/G 1y, then we have
(0 < 0. < 6) =11(0 < 9731 < §). Then applying Corollary S1, we obtain the desired upper bound

of II(0 < 6.1 < §), which yields the result in Part (a).

Proof of Part (b). We now provide a detailed proof of Part (b) of Theorem 5. We still follow
the main line of arguments in the proof of Theorem 2, that we first obtain a proper upper bound
of the marginal posterior probability, then analyze the relation between the posterior mode and
the obtained upper bound. However, the posterior mode is a random vector under the true data-
generating process, thus bounding the posterior mode leads to a high probability result, which is
different from Step 2 of the proof of Theorem 2.

Let X ~ N (pn, Zy) with py = Dy®TY and Sy = (7@ + Q31! and let X ~ N (uy, Sy)
where Sy is K-banded and satisfies |[Sy — Syl < (Nlog K)7!|| x| by Proposition 4. Re-

call 5(21)75(2N) denote the smallest and largest diagonal elements of SN separately. Define X'~

15



Ny, ), where iy = uN /Gy = (pij) and S o= iN/&?l). Therefore Xy = (p;;) is also K-
banded. Under the assumptions, we have p1; = 1 denoting smallest diagonal element of EIN and
Kk = &(QN) / &(21) is the largest diagonal element of EI’N Also recall that pmin and pmax denote the
smallest and largest positive off-diagonal entries of 5 , respectively. For any fixed & > 0, define

Now we are ready to bound the marginal posterior probability I1(0 < 6; < § | Y) for any fixed
§ > 0. Define X¢ = X' — iy ~ N (Oy, Xy) with fiy = ¥, ®TY. By definition,

PO< X, <8,Xy>0,....,Xy>0]Y)
P(X,>0,Xy>0,...., Xy >0]Y)

<IP(0<5€{gé,X§>o,...,55;(20\Y)

]P)(X[/lK] 2 O)P(X[/(K+l):2K] >0 | Y)
PO < X{+ i <6,X5+ i >0,..., X5 +fix >0]Y)

P(XG. g + fi:x) = 0)P(Xf e 1)y0p) + Birr1)2m) = 01Y)

(0< 0, <6|Y)<

. (S4.12)

The first inequality is an immediate application of Proposition S1. To arrive at the second inequality
we first apply the change of variables X' =X /&) and then apply the same technique used in
obtaining the upper bound of R; in equation (S4.53) in the proof of Corollary S1, with an application
of Lemma S1 and Lemma S4.
Bounding the posterior mode. Note that py is a Gaussian random vector under the true data-
generating distribution denoted by Py. Under the true model, one obtains the marginal distribution
of the mode py ~ N(0,Xy®T®Yy) with Uy = (®T® + Q~1)~L. Assuming N = o(n) and under
Assumptions 1 and 2, one obtains Cy '(N/n) Iy < Xy < C{'(N/n)In, where Cy, Cy are constants
defined in Assumption 1. Simple calculations lead to facts Y xy®T®YXy < Xy and ||[EyPTPX N —
SNl < IENQTISN| < (Coro)™H(IN/n)?, where )¢ is same as in Assumption 2. Combining these
results yields a sharp sandwiched bound Xy — (Cag) "1 (N/n)%Iy < Xn®TOXy < Y. Then, for
sufficiently large N,n we have Xy®T®Xy = X x + o(N/n)In. Then we have for sufficiently large
N,n, iy = un/6(1) NN(ON,EN/(}?I)).

Since the ratio in the last line of equation (S4.12) depends on the sub-vector B1:2K), as follows
we define a high probability set of fi[1.2f), using the concentration property of Lipschitz functions
of dependent Gaussian random variables. We remark that the result can be easily applied to sub-

vectors of py over different dimensions. For any integer 2 < K < [N/2], it is well known that
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maxi<;<as {ji; } is a Lipschitz function of {fi;,i = 1,...,2K} with the Lipschitz constant o> =

,max
max<;j<oi {var(fi;)} < a(zN) / 6(21). Now applying the concentration inequality of a Lipschitz function
of Gaussian random variables, for any ex > 0, we have

P{ mag i - (i)
g e B mag 7

> eK/z} < 2exp {—€% /(807 max)} (S4.13)

It is easy to show that E(maxi<;<ox{fii}) = O(y/log(2K)) by using Sudakov’s minoration and
Slepian’s lemma (see, e.g., Theorem 3.14 in [12]) for sufficiently large K. To simplify the com-
putation, we proceed with a slightly different representation by introducing a positive constant
M = M(K) that may depend on K such that E(maxi<;j<ox{fti}) = v2Mlog K for sufficiently
large K. Also note that — minj<j<ox{fti} = maxj<;<or{—fi} 4 max<;<2k {fl; }, by the symmetry
of fiy about the origin. Fix such an M, take ex = (2 log K)1/2 for some small constant 0 < v < M
to be chosen later, and choose another sufficiently small constant 5 € (0,1), we define the following

event

A={ e R VEOT =) T08 K <~ min s < VAT )R K, [ < (210 )02
YA

Note that based on the event A, there exists 7' € (7, M) such that for the set defined as

A = {,1 eRE:V/2(M —+)]logK < — Jmin i + fin < V2(M +~')log K} : (S4.14)
RS
We have A C A’ and

P(A°) < QK /(207 max) +2P(|fu| > (2log K)(l—,B)/Z)

< 3(2log K)1=A)/2 exp{—cy(log K )}, (S4.15)
where ¢y = &(21)/ 0?,. The second inequality holds by applying (S4.13) and applying Lemma S7 for

sufficiently large K.

Then combining results in equations (S4.12), (S4.14) and (S4.15), we have with at least Po-
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probability of 1 — 3(21log K)(l_’g)/2 exp{—co(log K)l_ﬂ} )

I0<6; <d|Y) <
Ui eaPO<X{+ 1y <6, X5+ i >0,..., X5 + fig > 0)

infy, et {P(X g + s = Opk)) } 0o e {P(XE L geyan) + B2k = O k):2k]) }
(S4.16)

Bounding TI(0 < 61 < 0 | Y). The rest of the proof follows a similar line of arguments in proving
Corollary S1 in § S2.2. To bound the denominator of the obtained upper bound in equation (54.16),
we first bound the term infy e 4 P(Xf x + k] > Ox). Recall X ~ N(0k, Siy) with Sy) =
(pij). Define Y ~ N(0g, ¥%), where the covariance matrix X% = (p};) such that pj; = pj; for
i=1,...,Kand p}; = pin for 1 <i# j < K. Then we have E(Y;Y}) < E(X¢X§)for 1 <i#j<K
and IE()ZZ) = E[()fo)Q] for 1 <47 < K. Then by Lemma S4 we obtain the lower bound

P(X{.x) + Bpx) > Ok) > P(Yix) + Byux) > Ox).

Then applying Lemma S3 by taking d = K, p = pmin, (k) = (F—Pmin)/Pmin and @ = maxg, e a{fi},

for sufficiently large K, we have

_inf P <57[1;K} + Bk 2 OK) > inf P (37[11(] > max {ﬂi}1K>
B2k EA B2 EA B2k €A

_1/2 1/2
( (I/<) +,0m1r{ (M+,7/)1/2)\/logK o ( (11/(2)+ﬁm11n/2(M+’Y/)1/2)2
B (pz/Z)+pm111{2(M+’y’)1/2)2logK+1 '

(S4.17)

The second inequality is attained by taking maxp, . ea{fii} = V2(M + +')1log K under the set
A’. We obtain a same lower bound for the term infp, g en ]P)()Z[C(KH):QK} + Bk +1)2K] = OK) as
the leading constants M,~’ are universal for {fi; : 1 <i < 2K}.

Now we upper bound the numerator of the ratio in equation (S4.16). Again, define Z ~
N(0g, ¥ ) where ¥ = (p;) satisfies pj; = p;; for 1 <i < K and p;; = pmax for 1 <i # j < K.
Then E(Z;Z;) > E(X¢XS) for 1 < i # j < K and E(2?) = E[(X{)?] for 1 < i < K. Applying
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Lemma S1 leads to, for any 1 € A,

P(0 < X{+fin <8, X5+ fig > 0,..., X§ + fix > 0)

<PO<Zi+1<06,Zo+fi2>0,..., 25 + fix >0).  (S4.18)

Next step is to obtain an upper bound for the right hand side of the preceding. Let d = K
0(21) =01 = 1, p = Pmax and py = (1 — Pmax)/Pmax, for sufficient large N, K and for some
a € (0,1), applying Lemma S2 implies

sup P(0<Zi+ iy <06, Z0+jiz >0,...,Zk + fix > 0)
B2 €A

2 2
. < (1—a My 1—a) pmax b
< (s (1 — @) + 7 (M — )} log(i6 — 12 OV} oo B0}

4 oD (S4.19)

The supremum of the probability attains when —mino<;j<x fi; + fi1 = \/ 2(M —~+")log K and there-

fore the inequality holds. The above bound in equation (S4.19) is simplified as é is fixed and is

dominated by /2(M —v')log K for sufficiently large K.
Now applying results in equations (S4.17),(5S4.18) and (S4.19) to equation (S4.16), we obtain
the upper bound of the marginal posterior probability II(0 < 6; < § | Y). With Py-probability at

least 1 — 3(2log K)1=#)/2 exp{—co(log K)'~?}, we have

M0<6;, <6|Y)<Ci

KsPmin;Pmax

o 2(51/2 +\/@)2
+ O i 108 K - e DT T Y i (S4.20)
here C=~ . = = {5 1 — M — 1/2 /0 4" _1/2
where Cz 5in max = 1Pmax ( Q) + P Y2/ O i 20 C S {pmmH
~1/2
Pt (M + )/},

To complete the proof it remains to show that under the condition (pmin, fmax, k) € Q and under
set A’, there exist constants 7,7’ > 0 such that the desired bound is attained given 3, M > 0 for
sufficiently large K > 0. Again, for sufficiently large K, the term e~ (K —1Da decreases exponentially

fast so the second term of the right hand side of equation (54.20) is negligible compared to the first
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terms. Similar to the proof of Theorem 2, we first find sufficient conditions of (,~') such that the
first term on the right hand side of equation (S4.20) decreases with K under the assumptions. To

that end, for sufficiently large K, and for the defined M and some « € (0,1), we define the set of

v, as

T={G e oo 6an {vizas J‘M}Z{\/ﬂ—ﬁniax)(l—au =)’

1 — Pmax Pmax Pmax

z M ++'? o
_ 2{\/ — Pmin + \/ — 7 } > 0, for (Pmin, Pmax; k) € Q,g}.
Pmin Pmin

It is easy to see that (v,7') € T ensures the first term of the upper bound in equation (S4.20)

decreases with K. With some calculations one can obtain a subset 7' C T, where

T = {m’) € (0,00) ® (3, M) :aM + WA + ¢ — (ay + /7)) > 0,

for (ﬁmin, Pmax, ’%) € in}?

with
11—« 11—« 2 , l1l—« 11—« 2
a= — + — — = , a = — + — + =,
Pmax 1 — Pmax Kmin Pmax 1 — Pmax Pmin
b o 1-a +\/(1—a)(1—ﬁmax)_2,/g—;3mm
1 — Pmax Pmax Pmin ’

1- ﬁmax Pmax Prmin

b,:2< o V0-a) ﬁmax)+2\/k—ﬁmin>

e Lz 2R uin) (S4.21)

Pmax Pmin

Then under 77, it can be shown that the first term of the upper bound in equation (S4.20) is
bounded above by a multiple of (log K)1/QK_{“M"’I"/M“‘C_(“W“‘HW)}. Thus the rest of the proof is
to show that the set 77 is not empty. It suffices to show there exist v,~" such that 4" € (v, M) and
aM+bv/M > o'y +V /4 for large enough K and for the defined M. First, note that the assumption
(Pmins Pmax, &) € Qx leads to ¢ > 0 for some « € (0,1) and this implies ppax > 1/2. Fix such an «,

then it implies a > 0 based on ppax > 1/2. In addition, applying the inequality a + b > 2v/ab for

a,b > 0 to the first two terms of b implies b/2 > 2(\/(1 — &)/ Pmax — \/ — Pmin)/Pmin). Further
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we can show that /(1 — a@)/v/pmax > \/ — Pmin)/Pmin given ¢ > 0 and ppax > 1/2. Therefore,

under the assumptions in Theorem 5 we have a,a’,b,b’,c > 0. Then by choosing 7/ > 0 such that

max{7', v~} < min{M, (aM + bV M)/{2(a’ +')}} and choosing any v < 7' yields the result
[0 <6, <6|Y) < d(log K)/2K—°

with at least Pg-probability 1—3(2log K)=#/2 exp{—co(log K)' =P} for K > Ky, where c is defined
n (54.21), Ky is a sufficiently large integer and ¢y = 5(21)/0%1. We then complete the proof of Part

(b).

S4.4 Proof of Theorem 7

" C4(0,1)

Write the joint prior € | 7, A ~ Ng(0n, 72AXA), where A = Diag({\1,. .., An}) with );
and 7 > 0 is some fixed constant which may depend on n to be chosen later. The posterior
distribution is expressed as £|7,A,Y ~ ANe(py,Q71) with py = Q71®TY and Q7! = (@7 +
A~1Y"1A=1/72). For simplicity, we adopt the same notation introduced in Section 3, and abuse
the notation ay s to denote the marginal posterior probability over (0,d) for any fixed 6 > 0, i.e.,
let ans :=II(0 < & < 0|7, Y). It suffices to show that for any fixed ¢ > 0 and for some sequence
{7n}, there exists a lower bound on Eg(ay,s) which goes to 1 as n — 00,7, — 0 almost surely,

where Eq(-) denotes taking expectation with respect to the true data generating function.

We first obtain a lower bound of av 5. Denote E=E6—puy ~ N (0N, Q71). Tt is easy to see that

P(llpenlloo < &1 < 8+ lnlloos &2 > llpenlloos =+ o Ex > nlloo | 7a, Y)
P& > —llpnlloo, S2> —llnlloos -+ 5 & > —llunlloo [ 70, Y)

anes >

= P. (S4.22)

Then Eg(an,5) > Eo(P). To proceed, we shall first state two high probability results for the posterior
scale matrix Q! and posterior mode py separately.

Bound ', The idea is to show that the posterior scale matrix is dominated by the prior scale
matrix with high probability in the presence of a sufficiently small global shrinkage prior. We
first bound the operator norm of the matrix AXA with high probability. For some small constant
B € (0,1), let 7, = O(n~Y0=A)) then denote Aq = {|[AZA| < N/(n72" %)}, we shall show
P(Aq) > 1 — \/nN72 . Under Assumption 1, we have Cy(n/N)Ix < ®T® < Cy(n/N)Iy for

21



constants C7,Cy > 0. And under Assumption 2, there exists A\g > 0 such that

-2 . 2\ . (A-ly—lA—1/.2y < ~1y—1p-1/-2) ~ -2 -2y
AoT, 1g1§nN()\] ) < Amin(AT XA/ 7)) < Anax (AT XA/ ) < (1 Xo)T 1%%}3\[()\3)

Given the above result, one can show

-2 . '—2>—2,3T>>< -2 . -2y 5 2,3)
P(dor” min (A7%) > 7,727 ]|) > B(Ao7,? min (A7) > Con/(NT)

— H;,lzl{IP’()\j < \/W)}

~ (1 —\JnrE /(C’éN))N

>1—/C5 nNm 2, (S4.23)

for some constant C% > 0. The third line of the preceding uses the fact that for A; ~ C4(0, 1),
for sufficiently large a > 0 one has II\(\; > a) = a~! for j = 1,...,N. The last line uses the
inequality (1—z)" > 1 —na for any z € [0,n1) and the fact that vaN7. ” = O(N/n) by choosing
7w = O(n~Y(=A) Under the set Ag, one can easily see that Q' ~ 72AXA for sufficiently
large n, N. This result indicates that the prior matrix employed with the global-local shrinkage
parameters dominates the posterior scale matrix with high probability, and essentially shrink the
posterior scale matrix to a zero matrix.

Bound ||ppn]|oo- We now state the concentration property of ||y ||co under the true data generating
function. First note that puy ~ N (On, TAAXAPT®AYA). Under Assumption 1 and under the
set Ag, it is easy to show that |[T*ASAGTOALA| < 7272 ||ASA|. It is well know that ||y ||ee =
maxi <;<n(|u;]) is a Lipschitz function with the Lipschitz constant denoted by o2, = T2 t28 |AZA],
under the set Aq. Further, one can show that Eo|lpn]lec < MOT,}LJFB\/W for some
constant My > 0. Then apply the concentration inequality of the Lipschitz function of Gaussian
variables, choosing ty = 2Myra ™’ [AXA]log N one can obtain Py(||pn|e > tn) < 2N~2. For
convenience, we denote Ay, = {[[ttn oo < tn} with P(AS) < 2N 2.

Now we are ready to bound Eq(P) from below. Denote A = An N .A,. Then one has Py(A) >
P(Aq) —Po(A7) 21—/ nNta % —2N-2 based on the above result and equation (S4.23). Then
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under set A, one can obtain

>P(tn<§1<5+tn7 52>tn7 "'7§~N>tn) ‘:Pl
B P(§1 > —tp, 52 > —tp, -, €N > _tn)

Then
Eo(P) > Eo(P'1.4) > Po(A) inf P

It suffices to bound inf 4 P’. By change of variables, let & = £/(7,||[AZA||Y/?) and & ~ N (0, 0 1)

with ||Q'~1|| < 1. Denote ¢, = 2Myr\/log N, then it is straightforward to see that

P(t), <& < 6/(mlASA|Y2) + 1, &b >, -+, &y > 1)
P(gi > —tp, gé > _t;w T 5?\7 > —t%)

inf P/ = .
A

It is easy to see that by choosing 7, =< O(n~Y(1=5) we have t!, — 0 and §/(r,||AXA|Y/?) >
5 ” n/N — oo for any fixed § > 0, as n, N — oco. Then,

i inf P — P0SE 00 620, -, Ey 20)

= 1.
n,N—oo A P(&iZO, %ZO’?&VZO)

Combining the above result with the result that lim,, y_oc Po(A) = 1 completes the proof of Theo-

rem 7. Note that in the theorem, we let o = (1 — 8)~1 — 1.

S4.5 Proof of Theorem 8

In this section, we prove equations (4.6) and (4.7). We shall first provide a detailed proof of equation
(4.6). As the proof of equation (4.7) is similar to that of (4.6), we omit some details and only
highlight the difference. We begin by introducing some new notations used in the proof. For two
densities p, ¢ that are absolutely continuous with respect to the Lebesgue measure i, the Kullback—
Leibler divergence between p and g is defined as K L(p, q) = [ plog(p/q)dp and the V-divergence is
defined as V (p, q) = [ plog®(p/q)du. Denote by foi(x) = 2/(m(1+22%))1(x > 0) the density of the
default half-Cauchy distribution C4(0,1). Denote Py = N(fo,03l,) and Py = N(V6,0%L,). We
denote by II(-) the joint prior distribution for (6, X,0?), and we use I x(-), Hgx(-), IIx(+), I (-) to
denote priors for (6, \), 8|\, A, 02 separately. Recall that the prior for § conditioning on \ is restricted

to the set C, for computational convenience, we also define the unconstrained parameter denoted
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by 6 where ¢/|X ~ N (0n,7*AQNA) and we denote by Ilg\(-) the corresponding unconstrained
prior. Then we have g\ () = Hgx(-)Le(-) /g A (C) given any A > Oy. For any 1 < j < N, when
Aj = 0 the prior IIp |, (-) = do(*) is degenerated to a Dirac measure at 0. In addition, we define the

marginal prior of # by integrating A > Oy out,

_ Lyso Hora (0) L (O)TL(A)dA
Lrs0 Jo g (O)TI(A)dOdN

Ic(6) (S4.24)

the denominator is the normalizing constant denoted by M.

Bounding Mc. It is easy to check that the scale matrix Qn = (wj;) induced from a Gaussian
process with a Matern kernel in § 4.1 satisfies Assumption 2 with some Ay, a9 > 0, which indicates
that the scale matrix 2y is approximately banded. Thus to bound Mg, we will first construct a
strictly banded symmetric and positive definite matrix Q' that approximates Qy well. Then we
apply similar techniques to €y used in deriving the equation (S4.3) in the proof of Theorem 2 to
bound M.

Based on Proposition 4, one can show that there exists a K-banded symmetric positive definite
matrix O = (wj;) such that |Qy — Q| < (Nlog K)~', as long as the band width K 2 (log N)" for
some ¢ > 0. To simplify the analysis, we assume that 'y, has equal variances and it is non-negative.
We remark that the analysis can be extended to unequal-variance case, with an applications of

/

techniques used in proving Corollary S1. Denote w}, = o2 for 1 < i < N and assume w/ ., =

min

ming <, jj<x{w;;} € (0, 0’?). Then the following Proposition provides a lower bound of M.

Proposition S2. Assume Qn satisfies Assumption 2, and for some integer K = O(N) there exists
a K-banded symmetric and positive definite matriz Vy such that | — Q|| < (Nlog N)~L. Also
assume Yy has equal variances and is non-negative. Then there exists some constant to > 2 such
that

Me 2, (log N)~t0/2N 10,

/ —

where wmin - (0-12 - w;nin)/w;nin'

/
min

The proof of Proposition S2 is deferred to § S5.5. We remark that as we assume w’ . does not

change along with N, Proposition S2 posits the lower bound of Mg decreases at a polynomial rate
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as N goes to infinity. And choosing K = O(N) serves a technical purpose of controlling the lower
bound of M¢. For convenience, we denote the obtained lower bound by M/, = (log N)_tO/QN_toa’;nin
in Proposition S2.

We are now ready to prove equations (4.6) and (4.7).
Proof of equation (4.6). Following the seminal work of [9], it suffices to show that under the
conditions in Theorem 8, for the defined sequence of {e,}, there exist a sequence of sieves {F,}

over the parameter space of (#,0%) and a sequence of test functions {¢,} satisfying the following

conditions:
T1{(0,02) : KL(Py, Px) < ne2; V(Py, Py) < ne2} > e~1n, (S4.25)
TI(FC) < e, (S4.26)
Eo(¢n) < e, sup B o2 (1 — ) S e”n, (S4.27)

(0,0%)EFn:]|0—00||>Mioov/ Nen,
or|o?—oi|>03en

for some constants ci, co, c3, M7 > 0.

Part I. We first verify condition (S4.25) by following a similar line of arguments in [1]. We have

2 2 2
nlo og] , Ifo— W0

KL(Py,Py) =~ |2 —1—-1log 2| + 2"

(Po, Pn) 2 [02 o8 02] + 202 7
n|[(o2\* o8 o3 || fo — 0O
V(P). Pv)=— | [ 2 1920 o ‘

(Po, Pr) = 5 [(Uz> + 2| T2 2

Similar to [1], define
o2 2
51:{02 U—g— —logg<6%},

and

) _—
o Moo o2

o 2 2 o 2
62:{(0’02):!% VO oo = ] <n}

It is easy to see that {KL(PO,PN) < ne%; V(Py, Pn) < ne%} O Bi N Bs. Further we define gl =

{02 :02/(14€,) < 0? < 02} and it is also easy to see that By C By. Since 02 ~ IG(ag, by), we have

2
70 2 2 2
(0,2)7aoflefbo/o' > (03)*a0*16*bo(1+6n)/00 Z efclnen

)

1, (By) > T, (B) x/

o5/(1+en)
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for some constant C7 > 0 and for sufficiently large n. Conditioning the set B2 on By, we have

%6 — fol?

2 2
(1+en) < = V0 — foll”.
o2 " o3

Thus II(By | By) > e (|| W0 — fol|* < ne2). Applying the triangular inequality and Lemma 1, we

have

10 — fol|* < 2|T(0 — 00)||> + 2 | ¥bp — fol?
S0 = 00)[1% +n [T — foll%

< W (0 — 6o)|1* + nea.
Then it suffices to bound e (|| ¥ (0 — 6p)||* < ne2). Next, we can show

(8 — 60)1I* < Awmax (L) 16 — bo]|* < n[|6 — 6o} -

The second inequality in the preceding uses Assumption (A2) that Apax(¥T¥) < n/N and Cauchy-
Sehwarz inequality 6 — 60 < VA8 — fofl1. Then Te([(8 — 60)]> < ne2/2) > e (|6 doll, <
€n/2). To proceed, we consider two cases separately: (i) 0 < sp < N and (ii) so = N.

Case (i). Recall 0 = [0s,,0s¢] and 0y = [fos,,Oosc]. To simplify the notation we let 61 =
054,02 = Osc and let Bo1 = 0os,, 002 = Opsg. Similarly, for the unconstrained 0 = | 19079{53] we
denote 07 = 0,05 = 0’8. Accordingly, we have A = [Ag;, Ase] with As, = {\;,j € So} and
Ase = {)j,j € S§} and we partition the diagonal matrix A with Ay = diag({\;,j € So}) and
Ay = diag({);,j € S5}). Now we partition the prior scale matrix Qn = [Q11 Q12; Q21 Q22], where
Q1 = (wij) for 4,5 € Sp, Q12 = (wijy) for i € Sp, j € S§ with Qo1 = QF, and Qop = (w;;) for 4, j € S§.

Denote the unconstrained prior 6 ~ N (0, 72AQA) conditioning on A, we write it in the form of

A1Q11A1 A1Qq0A
10,05 | A~ A | 0,72 | A AR (4.28)
AoQa1 A1 AaQaoAs

Then for some sufficiently small constant a,, > 0 that may depend on (N,n) and will be chosen
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later, for some Co > 0, we have

([0 — boll1 < Caen)
> Tlp 7 (/|07 = Bo1l1 < (C2 — 1) €5, [|05]|c0 < €0/ (N — 50),6" > On)/Tlg 1(65 > Os5)

> Hg/ ( |91 901”1 (CQ - 1) en,gl > OSO, /\50 >0 ‘ ||92||1 < Gn,e, > 056 mm{)\ } > an>
A0 (16501 = €0/ 00,65 > Ogpmin{3,) > 0,)/1065 = O}
0

= P1 . P2 (8429)

The first inequality holds based on the fact Ily z(¢" € C) < Tlgr z(03 > Og¢). Thus, to lower bound
I (]|6 — Ooll1 < Cae€yp) it suffices to lower bound P; and P» in the preceding, separately.

We now bound Py in equation (S4.29). First, define sets A = {(05, Asc) : [|05]lcc < €n/(N —
50), 05 > Oge, minjese{\;} > an} and A = {)g, : maxjes, {\;} < Caa,/(2Kos0)} for some constant
Ko > 0 to be determined later. Based on equation (S4.28), we have E(6|65) = A1Q12905, A5 6%,
Under Assumption 2, there exists some constant Ky such that HQHQQ_QIHOO < Ky. Then under the

set AN A, one can obtain

IE(67165) [l < soKomax{A;}/ min{X;}(N — 50) (|05 00 < Kosoa, max{);}e, < (Co—1)en/2.
JESo JES§ JjE€So

(S4.30)
Then, we lower bound P, as
Py > Ty \(]|0] — 01][1 < (Co — 1) €n, 0] > 05, As, € A | A)
= Ty (1161 — E(65163) + E(61]0) — bou 11 < (C2— 1) €. 67 > O,
max{\;} < Caan/(2Kos0) | A)
JESo
> Hjeso{ﬂmj <|§j —0p,| < (O3 — 1)en/(250),0; > (Co — 1)en/{2(N — s0)},
)\j < CQ(In/(2KOSO)) }, (84.31)

where 0, = 0, —E(0,|65) ~ N (0, T 27, Q0 )Al) and Q) = Qg4 —91292_21221. To derive the second

inequality, first note that {6; > ||E(6)|6})|le} C {0 > 0} for j € So. Then following a similar
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argument in deriving equation (54.30), one can show ||E(0]|65)]lcc < (C2—1)e,/{2(N —s0)}. Then
{52 > (C2 = 1)en/{2(N —s0)},j € So} C {07 > 0,7 € So} and thus the last inequality in equation
(S4.31) is attained.

To bound the last preceding in equation (S4.31), we use a similar proof of Theorem 1 in [4]. For

any a > 0, we have

/oa \/217m = : oA = KT B (1 a™)a/2) > (K'/2)log{L + 2{(1 +a7%)a /27

for some constant K’ > 0, and Fy(-) is the exponential integral function. Then for any j € Sp,
under the Assumption (A3), applying the lower bound in the above display with a = Ca,/(2Kyso),

for any j € Sy we have

Héj,)\j{’éj — 00].’ S (CQ — l)en/SQ,éj Z (CQ — 1)6n/{2(N — 80), /\j S Cgan/(2K80)}

02

/Cgan/(ZKS()) / 1219 1/2 3 /g>\2
> 2rT A7) e TN Al for(N)dA
> e CDen Ve, j 7JC+\N\g J
A=0 9j€ [max (90]. - (0223(1)> =, (26(?\;,1;0) )’90j+ (0225(1)) ]

2
> (C2 = Dey T > () (54.32)

480 [1 + {Cgan/(zKoso)}_Q]En

where 7/ = 7’(6%))_1/ 2 and p is some positive constant. The second inequality in the above display

holds based on a similar argument in the proof of Theorem 3.3 in [17]. The last inequality holds by

/
min

2+tow!

min) | where © L+a)

choosing a, < N —( is defined in Proposition S2 and by choosing 7 =< n~(

for some constant 0 < o < p and E,, < n¢ for some 0 < ¢ < a. Then with bounds in equations

(S4.31) and (S4.32), we have shown Py > e~ for some constant ¢z > 0.

Next, we shall obtain a lower bound of . Note that it is equivalent to upper bound the term

LT85 = 055, Ay = 05 \{185oc < en/ (N — 50),6) > O miyesg (4} > an})
1-P = .
H(% > Oge, Age > 053)

(S4.33)

We first bound the denominator of equation (S4.33). A direct application of Proposition S2 for
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(03, Ase) leads to

/

TI(65 > Osg, Asg > Og¢) 2 {log(N — s9)} 7/2(N — ) /0%min, (54.34)

for positive constants to, @, . defined in Proposition S2.
Now we bound the numerator of equation (54.33) by a union bound of the probability. First we

have

g ({05 > 055 s > 05 [\ {108l < 0/ (N — 50). 0} > 05, min{A;} > a
0

< 2Ty (16310 > en/(N = 50)) + T (minfAs) < an )} (54.35)

We first bound the first term on the right hand side of equation (5S4.35). For some b,, > 0 that may

depend on n, N, define the set Ay = {Age : maxjese{A;} < by}. Then we have
Ty A([102]loc = €n/(N = 50)) < g a([102]loc = €n/(N = s0) | Ax) + I (AS). (54.36)

Recall 0’2|)\58 ~ N (ON_s, T2A2022A2). Then under the set Ay we have || AoQ22As| < )\61 b2, where
A is defined in Assumption 2 and we have A\, > Amax(2n3). It is easy to show that conditioning
on Age, 0, is a sub-Gaussian random vector with parameter A, 17263. Then by the concentration

property of maximum of sub-Gaussian random variables, we have
M (163 o > €0/ (N — 30) | 42) < 2exp { B b g e, (54.37)

for some constant ¢ > 0. The last inequality holds by the fact that

E((165lo0 | Ax) < 2\/)\81 log(N = s0) bp7 = o(en/(N — 50)),

by choosing 7 =< n~(1%®) for some constant o > 0 and choosing b, =< 7~ 'n~1/2, and by N = o(n)
under Assumption (Al).

Now to bound the second term on the right hand side of equation (S4.36), note that for large
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enough by, we have ITy(\; > b,) < b, ! for any 1 < j < N. Then we have

N—sg
cy ) _ N =50\, _1\k _ 7—1\N—so—k
(417 = T (a3} 2 ) = 3 (M )y

R e(N — so) ‘ 1/2
> ( - ) < p-(1/2+a) (S4.38)
k=1
by choosing b, =< 77'n~%/2 and N = o(n). Then combining results in equations (S4.36),(S4.37) and
(S4.38) leads to

g (165]]0c > €n/(N = 50) S 0", (S4.39)

for some constant 0 < g’ < min{1/2 + a, c4yne2}. Now to bound the second term on the right hand
side of equation (S4.35), note that TI(\; < a,) < ay, for a, < N~2+0%mn) and for any 1 < j < N.
Then
I oy B R ki1 _ . \N—so—k Ry _ k< n—(1+to@ly,)
A(jnelgé{)\]} < an) = kz ( i )an(l an,) < ; (e(N —sp)an)" SN .

(S4.40)

/

where ¢,/ . are defined in Proposition S2. Combining results in equations (S4.34), (54.39) and

(54.40) and the assumption N = o(n), the numerator of the ratio on the right hand side of equation

(S4.33) is upper bounded by a multiple of N~ +%%uin) Then, we obtain Py > 1—4(log N)~*/2N~1

for sufficiently large N. Further, combining this result with the lower bound of the term P; yields
I1(||0 — 6|1 < Coen) > Py - Py > exp(—cane?){1 — 4(log N)~t0/2N—11,

for some constant cg > 0. We then complete verifying the condition (54.25).

Case (ii). Conditioning on )\, we write the prior of # in the matrix notation as 8’ | A ~ N (0, 72AQA).
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Then

HC(HH - 00”1 < 02 En) > H9/7/\(||0/ — 00”1 < 02 6,,,1,6/ > ON)/HQ/)\(O/ > ON)
= H@’A(“ﬁil {16} — 80,] < C2€,/N, 0 > 0})

)\m N/2 R )
Z<AM) 2,105, 5, (105 — 80, < C2en/N,0; > 0), (54.41)

where §j|)\j ~N (0,7’2)\?) with 77 = A\,,7. Then applying the result used in proving Theorem 3.3
in [18], for j =1,..., N,

12
T —(1+a)
)

M5, 5, (105 — 60, < Caer/N,0; > 0) 2 o =<
n

2

for some constant o/ > 0. The last result is arrived by choosing 7 < n=(+®) and E, < nP for some
constant 3 € (0, a).

We then complete the verification of condition (S4.25) by combining cases (i) and (ii).
Part II. Next we verify the condition (S4.26). We first construct a sequence of sieves {F,} that

satisfies condition (54.26). Define

Fn = {(970.2) . |S| < Tso,O < o2 < enE%/ao}’ with TS0 = (So +p0)]lso<[N/2](30) + N]lsoz[N/2}(50)a

(S4.42)

where the integer 0 < py < [N/2] — so for sop < [N/2], and recall ag is the shape parameter of

inverse-Gamma prior on o2. Then, applying the union bound of probability yields
T(F) < 2Mp (18] = (s0 + po) + 1) + 2Tz (02 = et/

We now bound Ty x(|S| > (so + po) + 1). We define the threshold 7, = €,/v/N. For any set S with
|S| =sfor1<s<N,

e(05 > N, j € 8305 <, j € 8°) < Mg A(0f > 0, j € 5505 < mnyj € S€)/ Mg

S H@’,)\<0;' Z 7771;.7 S S)/M/C7
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where M, denotes the lower bound of normalizing constant M¢ obtained by Proposition S2. Let
7" = 7y/Amax(Qs), where Qg = (w;;) for all 4,5 € S is a |S| x | S| sub-matrix of Q. For any j € S,
we have

2,

m X Q o0 //
T (0] > ) < | 2mex(25) Py e g e Oy
InlIl QS Nn

2/7T€ nn/ 2b2 //2)
~ M/ (bnT")

+ b 1 < 764n6n/(50+p0+1)

for some constant ¢4 > 0. Under Assumption 2, the term \/)\max(QS)/Amin(QS) < )\61 for Ao
defined in Assumption 2. The last inequality in the above display is obtained by choosing 7 such
that 7 =< n~(+%) and choosing b, = 77'/\/n, we then have exp{—n2/(2627"*)}/[nn/(but")] <

~

e=canen/(so+Po+1) for some constant ¢4 > 0. Then combining the preceding, we have

N
N . .
Moa1S] > (ot o)+ 0= 30 () )61 2 s € Si16 <m0 #5115 = B
k=(so+po)+1
al N
< Y (D)mwezmiesm

k=(so+po)+1
N e k
< (log N)'0/2 N0 <€C4n6%/(80+po+1)>
N( g ) k_z (80+p0)+1
—(So+p0)+1

2

S emeinen, (S4.43)

for some constant ¢ > 0. Recall ¢y, ., are positive constants defined in Proposition S2.

min

Now we bound II(62 > e"/%). Since 2 ~ IG(ag, by), we have

b

H 2 ne%/ao _ > _ aOO > 2 —(a0+1) —b0/0'2d 2 S4 44

s2(0”>e )= e~ T(ag) 2/0(0) e o (S4.44)
enen/a enen/a

a%0 & 2
< 0 / (02)7(a0+1)d0.2 = e~ n
F(ao) ene%/ao

Combing results in equations (S4.43) and (S4.44), we arrive at IL(FS) < e~ with ¢p = min{c}, 1},
then we have verified condition (54.26).
Part III. Now we show the existence of test functions {¢,} that satisfy condition (54.27). To

that end, we consider a similar construction of test functions in the proof of Theorem 1 of [15].
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For any nonempty subset S C {1,..., N}, define the (restricted) ordinary least squares estimator

s = 6 == (VLUs) "ULY, and 6% = Y"(I, — Hs)Y/(n — |S|) where Hg = Ug(UL¥g) 1 WE.
When S = {1,...,N}, then Og = (UTW)~1PTY is the ordinary least squares estimator. Recall
Ts, = (S0+p0)Lsy<[n/2)(50) + N1y >[n/2(S0) defined in equation (S4.42). Similar to the construction
of test functions in [15], define ¢, = max{¢},, bn}, where

= max n{ués — 0ol| > 5 00 \/ﬁen},
{5950,|5/<Ty}

n = max ]1{’6’%—0’02’26,50'(2)671}.
{SDS07‘SISTSO}

for some constants cs,c5 > 0, and recall that the set Sy contains indexes of pseudo-true nonzero
coordinates.

Recall 6y denotes the pseudo-true coefficient vector, and denote the bias term by § := Wl — fo.
Under the true distribution, we have Y; = fo(x;) + €, where ¢; ~ N'(0,03) i.id., for i = 1,...,n.

For brevity, we use ¢ to denote the random error term {¢;}. Given the definition of 6%, we have

~2 2 /2
Efop(z)]l{\as — 09| > ¢ (foen}

= ]Pfoﬁ(z)(’ET(In — Hs)é“ + QET(IH — Hs)(s + (5T(In — HS)(S‘ > Cg(n — ‘S’)En)
Applying Lemma 1, we obtain

0" (In — Hs)d < [|0]* < (n = |SDII8]3 S (n = 1SDep < (n—[S])en,

e'(In = Hs)d < [lellll6]l S v/ (n — [S]en [le]-

According to [18], one can show P(|2e (I, — Hg)8| > (n—|S|)en) < e for some constant cg > 0.

Also with a similar discussion in Theorem A.1 of [15] we arrive at

Efo,aéﬂ{!&?s — 00’ > ¢ Ugen} < em%ne, (S4.45)
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for some constants ¢ > 0. Under the true data generating distribution,
165 — bos || < [[(TEWs) T WES| + [|(PEWs) " Wiel| < GV Nen + (U5 Ts) ™ Wiel),

for some constant ¢, > 0. The last inequality holds based on [|(¥EWg) " WES|| < (nki/N)~1\/nko/N|5|| <
c6\/]v €n by Assumption (A2) and Lemma 1 in the manuscript. Again, similar to the proof of The-

orem A.1 in [15], one can show

Pro.0z (105 = Osoll = e VNG €0) < Pp, oz (I(WEWs) ' Wh el = ¢ 00 VNen) (S4.46)

< P<X|S| > Cs ne, ) <e —cg nex,
for some constants 7, ¢, cf > 0. The random variable X\QS\ follows a chi-square distribution with
the degree of freedom |S|. The last inequality in equation (S4.46) holds since |S| < ne? and
Amax(PEPs) ™) = (kin/N)~! under Assumption (A2). Combining the bound results in equations
(S4.45) and (S4.46), we have

Bpo2(@n) <Eg 2 > (¢n+én)

{5250,9|<Tso }

< ]Ef0703 Z + Z (‘b;z +¢~5n)

{5250,[S|<(s0+p0),s0<[N/2]}  {5D50,[IN/2]<|S|<N,s0=[N/2]}

< {(30 + po) (So ]Ip()) +[N/2] ([N]\/[ﬂ) } (e‘cé nen 4 e~ "5721)

5 (6(30+P0)10gN _’_6{6[N/2}}10gN> (6766 ne2 _{_6706 ne;, ) < 670671’6 (8447)

for some positive constant ¢ < min{cf, ¢¢}. The third inequality arrives based on the fact that
the total number of models S with |S| > [IN/2] is same as the total number of the corresponding
complement models S¢ of size that is no greater than [N/2]. The first inequality in the fourth line of
the preceding holds due to the fact that (so+po) log N < ne2, since pg < [N/2]—so when so < [N/2],
and the fact when sy > [N/2], one obtains e[N/2]log N < ne2. Then, the final inequality result in

the preceding is easily obtained by choosing ¢¢ < min{cg, ¢
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Now we verify the second part of the condition (54.27). Define the set
Co = {116 = b0l = Mioov/Ney, or 02/0F < (1= en) /(1 + e0), or 0* /o = (1+ €n)/(1 - €n) }

Then, according to Lemma D.2 in [1], we have

sup Ego2(1—¢n) < sup  Eyo2(1— ¢n).
(9,0’2)6‘;”:“9790||ZM10'0\/N677,7 (9,0’2)€Cn
or |02—0(2)\20(2)en

Again, following a similar discussion in the proof of Theorem A.1 in [15], define sets

Cn = {02/08 <(1—¢)/(14e,) or 6®/op > (1+¢€,)/(1— en)},

. = { 10 — 60| = MyooV/Ney, and o2 = o—g}. (S4.48)
And we have C,, € C, UC/,. Similar to [15], one can show

sup  Ep2(1—¢n) < sup Ego>(1 = én)
(6,02)ECLNFr (6,02)€(CLUC)NF,

< max sup Eg o2 (1 — én), sup Eg2(1 — ) ¢
(6,02)eC,NFy, (6,02)eCNFyn

To proceed we consider two cases: (i) sop < N and (ii) so = N, separately.
Case (i). Now let S = {0 :|0;/0| > an} U Sy satistying |S| < N, and denote S¢ = {1,..., N}\S.

Then, with the same argument in the proof of Theorem A.1 in [15] we have

SUP E9,02(1 - én) < SuP P{\Xi_|§|(m) — (TL — ‘5”)| > (7’], — ’S’)En} < 6_67’%%,
(0,02)eCrNFp (0,62)eCnNFn

(S4.49)

for some constant ¢z > 0. Here Xi—| 3 (m) denotes a non-central chi-square random variable with the
non-central parameter m = 936 \IIEC (I-Hg)Vg g/ o2. It is easy to show there exists some constant
ko > 0 such that m < nkoeZ, based on the fact that ||¥g.0s.| < Amax (Ve U ge) VN [0ge [loo <

Vnks €,, by Assumption (A2) with choosing S = S¢ and kg > 0 is the constant defined therein.
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Next, we have

sup  Ep2(l—¢) < sup P (|(¥ 1\IIT Y — 05l < ooV en>

(0,02)eC!NFy (0,02)eC!NFp

S sup P
2)eC!NFy

J(WEwg) 1w Eel| > VNe,)

(6,02)€C,NFn

< sup P (
< sup P <X‘2 52 > nkie? ) < 6_6/7"6%,
(0,62)eC!NFp

for some constant ¢ > 0, and X‘2§| denotes a centered chi-square random variable of the degree of
freedom |S| < ne2. The second inequality holds based on the following facts that 05 — O3l >
10 =60l — N(eno/N), and [[(P305) M WEP 505 || < \/Amax((WEWg)_l)Amax(WT Ve )VN|[05 1 <
VIN/(kin)}nkse, < v Nep, by Assumption (A2). Then we complete verifying condition (S4.27)
for Case (i).

Case (ii). The arguments are very similar to Case (i), except S¢ = (). Then

sup Eye(l—¢n) < sup P{x3 y—(n—N)| > (n—N)ey} <e "%, (S4.50)
(G,UQ)EC’nﬂFn (0,02)€C~'nﬂ]:n
where Xif  is a centered chi-square random variable with the degree of freedom n—N for N = o(n).

And, following a similar argument in Case (i) yields

sup  Epe(l-¢) < sup P ([(FTW) O] > [0 - 6ol - VNe)
(0,62)€C!,NFn (0,62)€C!,NFn

< sup P (H(qﬁqf)—lqﬂgu > \/Nen)

(0,02)€C! NFn

ot 2
< sup P (X%v > nklei) < 676/7716”,

(0,02)€C,NFn
for some constant & > 0.
Combining Cases (i) and (ii) we have verified the second part of condition (5S4.27). Therefore
we have shown results in equation (4.6).

Proof of equation (4.7). We now verify equation (4.7) to complete the proof of Theorem 8. The
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proof of equation (4.7) is very similar to that of equation (4.6). In particular, the proof of condition
(S4.25) can be applied directly here, and since we construct the same sieves F,, thus condition
(S4.26) is satisfied. We shall verify the condition (S4.27) by showing the existence of test functions

{¢n} such that

By 02(Cn) S €0, (84.51)

sup B2 (1 — (o) S e, (S4.52)
(0,02)EFn:||¥0— fo||>Mi00+/TEn,
or|o2—cd|>02en

Similar to [15], consider the test function ¢, = max{¢’,,(,}, where
! = :H_ { ‘IJ é _ > } 7
n {s;sﬁ{l\%}\{gno} [[Ws0s — fol| > ¢s o0v/ney

= max 14162 — 0¢?| > ¢k o2e
" (5550, |SI< sy} {lo5 = o™l 2 s ovent}

for some constants c¢s, ¢5 > 0. The argument for deriving exponential upper bounds for type I errors
of {, remains the same as in (S4.45), therefore we omit it here.
We now derive the exponential error bounds for ¢/, under the true data generating function. For

any S € {S:5 D S0,|S| <Ts,}, then we have

1T s0s — foll* < [ Ws(bs — bos)|* + nl[Tbo — fol%
S Ts(Bs — bos)|) + ne2

< (nky/N)||0s — Oos]|> + ne,

where the constant ko > 0 is defined in Assumption (A2). The first inequality holds as we assume
S D Sp, Oose = On_ |5 and Wgelpse = On_|5- The second and third inequality use Lemma 1 and

Assumption (A2), respectively. Thus,

Pfo,ag (H\Ilsés - fOH 2 Cs UO\/ﬁen) < ]P)fo,og (HéS — 950H Z kz_lcg Uo\/]ven> R

for some constant 0 < ¢f < ¢5. The inequality is obtained based on a similar argument used to

derive equation (54.46). Combining the above result with the result in equation (54.46) and results
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in equation (54.45), and following a similar argument of deriving the result in equation (54.47)
yields the desired bound in equation (S4.51).
Now we show equation (S4.52). Similarly, Recall the set C,, defined in equation (S4.48) and

define the set,

Dl = {||\I/0 — foll > Myogv/ne,, and o? = 0‘(2)} .

With a same argument, one can show

sup Ego2(1 = (n)
(0,02)EFn:|| ¥~ fo||>Mioo+/nen,
or |02 —oi|>02en

< max { sup Eg 2 (1 - Cn)s sup Eg 2 (1 — C,’Z)} )
0,62)eCnNFr (0,0%)€D,NFn

The argument of bounding SUD (g »2)e ¢ Eg 2 (1 — fn) is same as the the proof of the result in

equation (54.49), therefore we omit it here. It remains to bound sup(g ,2)cpr 7, Eo,02(1 — ;). We

proceed to consider two cases: (i) sp < N and (ii) so = NNV, respectively.

Case (i). Again, let S = {0 :(0;/0| > a,} U Sy satisfying |S| < N, and denote S¢ = {1,..., N}\S.

Applying Lemma 1, we have

sup By o2(l—¢p)
(6,62)eDl,NFy

< s P (W)W > [Wshg — Wbygll — s (WEVS) T WIW b5 — Ve
(6,02)€D!,NFn

< sup P (H(\Ilg(\IJE\IIS)A\I/E el > \/ﬁen> < e onen,
(0,02)eD!,NFy,

for some constant c3 > 0. The second inequality holds by the facts that ||Wg0z — Wgf5| >
)\min(\IJE,\I/E)Hﬁg — 0y5ll 2 /ne, under Assumption (A2). And ||\IJ§(\IIE\IJ§)_1\I/§\II§CO§C|| <

”\IIS‘CHS'CH § \/nkgen.

Case (ii). The argument follows a similar line of the one in Case (i), except S = {1,..., N} and
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5S¢ = (. Tt is easy to show

sup  Ep2(1—-¢,) < sup P ([[(L(ET0) 0T || > || W0 — Vo — v/ney) -
(8,62)eD! N Fr (0,02)eD;NFn
With same calculations, one can show sup g ,2yepr nz, Eo,02(1 — ¢) < e~ for some constant
c3 > 0.
We then complete the proof of equation (4.7) by combining Case (i) and Case (2), and therefore

we complete the proof of Theorem 8.

S4.6 Proof of Corollary S1 in § S2.2

The proof of Corollary S1 follows a similar line of arguments in the proof of Theorem 2. We shall first
adopt similar techniques used in the Step I of the proof of Theorem 2 to obtain an upper bound of
an,s and then directly show such upper bound decreases to 0 along with K. Under the assumption,
there exists a K-banded approximating matrix ¥, = (agj) € By k to the scale matrix Xy = (035)
such that ||y — X[ < (Nlog K) 7YX y||, for some integer 2 < K < N — 1 and sufficiently large
N. Also, recall we assume 0621) = 1 and we denote 05\]) =k > 1. Denote pmax = (1 — 000 )/Ohax
and Py min = (k — ol; ) /0. Recall the matrix Sy (02, p) = (04;) with 05 > 0fori=1,...,N
and o;; = p for some p < minj<;<n{oyi} for any 1 <i# j < N.

Fix an arbitrary 6 > 0, recall an s = P(0 < 6; < §), where § ~ N¢(pn, Xn). Define independent
N-dimensional random vectors Z ~ N (pun,Xn) and Z' ~ N (pn, X). Again, by definition,

() P0<Z{<06,2,>0,...,Z}y >0)

NS = TR(Z > 0,2 > 0,..., 2% > 0)

(i4) P(0 < Z] < 0,2}y, ) = Ok)

{2k 2 %) B(Zcsr-0m 2 O)

~ Ry (S4.53)

The inequality (i) holds by using the result P(0 < 6; < ¢) < P(0 < 6] < 0) in Proposition S1. The
inequality (ii) follows by applying Lemma S1 to the numerator and applying Slepian’s lemma to
the denominator of the ratio in the first line of equation (S4.53). The details are same as in the
derivation of inequalities (54.3) and (S4.4) in the proof of Theorem 2.

Following the line of argument in the proof of Theorem 2, we apply another round of Lemma
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S1 to the numerator of R; and Lemma S4 to the denominator of R; and obtain an upper bound of
Ry which can be expressed as a ratio of probabilities associated with equicorrelated normal random
vectors. Then we can proceed by applying Lemma S2 and Lemma S3 to arrive at our final upper
bound. To that end, define Z’ ~ N (psc, S (02, pmax)), then we have E(Z2) = B(Z/?) for 1 <i < K
and E(Z;Z}) < E(Z’ZJ’) for all 1 <i,j < K. Similarly, define Z” ~ N (px, L (02, pmin)), then we
have E(Z?) = E(Z/?) for 1 < i < 2K and E(Z/Z!) < E(Z/Z}) for all 1 < 4,j < 2K. Applying

Lemma S1 to the numerator of R; and applying Slepian’s lemma to the denominator of R;, we have

P(0<Z, <68,Z,>0,..., 24 >0)

< Rll - A Al I lrdls :
P(Z{ >0,..., 2} > 0)P(Z},, >0,..., 25, >0)

Now apply the upper bound result of Lemma 52 with d = K, u = pur, p(1) = Pmax to the numerator
of R} and apply Lemma S3 with d = K, u = p, P(K) = Pr,min t0 both probability terms in the
denominator of the ratio R], separately. Then, we obtain a similar result as in equation (S4.9) with

replacing pmin by Pk, min-

2
R, < 6(log K)V/? exp{ - [(Qﬁmax(l — ) log(K —1))Y/2 — u*/prln/fx} /2—(1-a)log(K —1)
_ 2
| Prin” + (2Pein log K)'/2] "}

2
+ 4 s, min log K exp { —(K-1)"+ [u*pgilf + (205,min log K)l/ﬂ } (54.54)
where p, = mino<j<n{p;} and p* = ||pf|oo. The rest of the proof is same as Step 2 of the proof of

Theorem 2. One can find a set & which takes the same form of S defined in equations (S4.10) and

(S4.11) by taking

\/2(1 _a)(l _Pmax) 49 2</€_pmin).

Pmax Pmin

b=b, =

Then fixing an « € (0,1) such that a = G (pmin, Pmax) > 0, choosing

p* < Bmin {1/bm \/(1 —a)(1- Pmax)/avpmin/a} ay/log(K —1)

for sufficiently large K, and letting C =min {1/bx, /(1 — @)(1 — pmax)/@, pmin/a} leads to

Pmin,Pmax

the desired bound of Corollary S1.
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S5 Proofs of Propositions

We first introduce some notations that are used in the proof. Recall that for a NV x N matrix A, we
denote \;(A) as its jth eigenvalue, and denote Apin(A) and Apax(A) as the minimum and maximum

of eigenvalues, respectively. For a matrix A, we define its operator norm as || A|| = {Amax(ATA)}1/2.

S5.1 Proof of the Proposition 1
Now we derive the k-dimensional marginal density function. We denote %) = (61,...,0,)" and

N —k) — (Ok+1,-.-,0Nn)". We partition ¥ into appropriate blocks as

Yk ok Yk N—k
YN = ’

YN—kk XN—kN—k

We also partition its inverse matrix Xy,

o~ ikk ik N—k
EN — » ’

Yk, N—k XN—kN—k

Then the k-dimensional marginal py (01, ..., 0k) is

N/2
(z7) e [T [ om (- @S0
T

_ 99" gka_k gIN—k) 4 g(N—k )T ZN—k,N—k Q(N_k))/Q} AN —F)
L\ k2 Y L\ N-R/2 o
= <> exp { — o ) Sy ™® /2} - T 11[000)(0)(%) {(En_pni}Y
~1
T [ = 1B v (07 — i B 00 22}

k/2
= <27T> exp{—0®)" 5y 00 )2} P(X v, < Sivge g 0F)) - T 1g 00 (65).
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where

S 1 1 S 1
Dk = B g+ Bk Lk, N—k LNk, N—k DN —k,k 2 g
_ . _
2k, N—k = U}, 2k,N—k 5N —k,N—k

ika,ka = (UN-kN—k — EN—kk E;Zi SkN—k)
and XN—k ~ NN—k(ON—k, i]:fl—k,N—k)‘

S5.2 Proof of Proposition 4

We repeatedly apply Newmann series and Lemma S8 in § S7 to construct the approximation matrix
to the posterior scale matrix . Under Assumption 2, we have the prior covariance matrix Qy €
M(Xg, a, k) for some universal constants A\g,,k > 0. Then for any ¢ € (0,A0/2), by choosing

r > log(C/e€)/a, one can find a r-banded symmetric and positive definite matrix 2y, such that
Q8 — Qn || <e. (S5.1)
Now we let M = Apax(2n ) and m = Apin(Qn,-). Given (S5.1), we have
INdo—e<m<M<1/A+e. (S5.2)

By choosing { = 2/(M + m), simple calculation gives ||Ix — & Qn || < 1. We now apply Newmann
series to construct a polynomial of Qy, of degree ni, defined as Q1= £ Z?;O(I — £Qn, ), for

some integer n1 > 0 to be chosen later. Applying Lemma S8 in § S7, we have
[958 = 7 < mg T (o —€), (85.3)

where kg = (M —m)/(M+m). Applying Lemma S8 we guarantee ! is (ny r)-banded and positive

definite. Combining results in (S5.2) and (S5.3), we have

Ao/ (1+ Xo0€) — £ /(Mo = €) < Anin(Q7Y) < Amna (271 < 1/ (Mo — €) + 6 /(Ao — ). (S5.4)
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Now we let £~ = Q-1 4+®7®. Under Assumption 1 we have X! is k-banded with k = max{n, r, ¢}.

We then define \; = )\max(i_l) and Ay = )\min(i_l). Thus, given (S5.4), we have
C1(n/N)+Xo/(1+ Xoe) — 55" /(Ao — €) <Ay <A < Ca(n/N)+1/(Xo—€) + ' /(Mo — ),

for constants 0 < C7 < (9 < oo in Assumption 2.
We first consider the case where N/n — a for some constant a € (0,1), as n, N — oo. For

sufficiently large n, N, we obtain
C{a—l—)\g/(l—l—)\oe)§5\N§/~\1§C’§a+1/()\0—6), (S5.5)

for constants C}, C) satisfying C] < C7 and Cy < .
Secondly, we consider the case where N/n — 0 as n, N — oo. In this case, n/N dominates in

the eigenvalues of y-L Thus, for sufficiently large n, N, we have
Cl (n/N) S :\N S 5\1 S CQ (n/N) (85.6)

Now we apply Lemma S8 one more time to construct the approximation matrix to the inverse
of 71, Again, by taking v = 2/(A; + Ay), we have ||[Iy —v3 7| < 1. Now we define ¥/ =

v Z’j":lo(IN — ifl)j for some positive integer mq. Also, it follows
IS = )| < &1/, (85.7)

where & = (A} — Ax)/(A1 + Ay). By construction ¥/ is (m; k)-banded.

Now we estimate K. For large enough N, n in the first case, we can upper bound

(C5 = C1)a+1/(Ao —€) — Ao/(1 + Aoe)
(CL+Ca+1/(No—€)+ No/(1+ Aoe)’

K< KL=

The inequality holds since the map x — (1 — z)/(1 4+ z) is non-increasing in = € (0,1). Combing
this with the result in (S5.5) and taking 2 = Ay /)1 leads to the expression of x;. Based on (S5.7),

we have ||Z — X/|| < &7 /{Ca+ Mo/ (1 + \oe)}. For N,n in the second case, following a similar
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line of argument, we have || — /|| < #™! N/(Cyn) with & = (Co — C1)/(Ca + CY).

We recall the posterior scale matrix ¥ = (ijl + ®T®)~!. Then we have

ISy - %) < |Ex - S|+ £ - |
< IZNIIRN = Qa1+ 195, — 7 DIZ) + 12 - 2|

< =N IIIEN(er e+ o k) + |15 — 3|

where ¢ = ||Q_1||||Q;V1r|] and ca = 1/(Ag — €). The first inequality follows from the triangular
inequality and the second inequality follows from the identity ||[A~! — B=1|| = || A7L|||A— BJ|| B}
for invertible matrices A, B. The last inequality follows from results in (S5.1) and (S5.3).

For N, n in the first case, |Sy]| and ||S|| are upper bounded by some constants that are free of

n, N given (S5.5). Then we obtain
B = S| < C'e+ g T+ AT,

where C" = max{cy, ca, Cf a+ Ao/(1 + Xoe) }/{Cl a + Xo/(1 + Aoe) }2.
For N,n in the second case, for sufficiently large N,n we have |Ey|| < (N/n) given (S5.6).

Then we have
ISy = X < C"{(N/n)*(e+ s H) + (N/n)a™ 1},

where C" = C’fZ max{cy, cz,C1}. Letting k = max{ko, k1,~5}, nop = min{ni,m}, and ., =

(e + k™t {(N/n) for N < n yields the result in Proposition 4.

S5.3 Proof of Proposition 6

Given the prior § ~ N¢(On,Xy), denote by Il¢(+) the prior distribution measure. Denote the
set by B, = {||®0 — fo| < nV/N}, for some constant > 0. Denote by Py = N(®6,1,) and
Py = N(fo,1,), then define the Kullback—Leibler neighborhood of fy of radius a,, as Bk r,(fo, an) =
{0 € RN : KL(Py, Pn) < na2,V(Py, Py) < nal}, where the definitions of KL(P,Q),V(P,Q) can

be found in the proof of Theorem 8 in §54.5. Applying Lemma 1 in [5], it suffices to show there
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exists a sequence {a,} satisfying a;,, — 0 and na? — co as n — oo, then

_ 2

e (Bn)/Me(BrL(fo, om)) < €20, (S5.8)
Under the same context in § 3 of the manuscript, for the true function fy(x) = 0 for = € [0, 1],
we assume the pseudo-true parameter 6y = Ox and [fo(x1), ..., fo(zn)]" = Pby, based on a proper
basis expansion such as defined in equation (A.1) in Appendix A of the manuscript. Then, for ®

satisfying Assumption 1, one can show that

126 — foll > 196 — Dol > v/ Auin(@7D) 6 — b0l| > /Crn/N| 0],

where C > 0 is the constant defined in Assumption 1. The preceding implies Il¢(B,,) < I¢(||0 —
0ol < 7701_1/2 \/N2/n), for sufficiently large N.

Let oy, < (N/n)'/? and na? = N. Then, following a similar argument in the proof of Theorem
8, we have

Brr(fosan) D {0 € RY 1 |0 < C;'VNay, },

where Cs is the constant defined in Assumption 1.
Then, to show equation (S5.8), it suffices to show that there exists a constant > 0 such that

e ([|6]] < tn)

= o(e~2nen )
me(le] <r) ¢ (85.9)

where r, = Cy'Nn='/2t, = nCl_l/an_l/Q. Define § ~ N(Oy,Xy) and denote by TI(-) its
distribution measure, then for any measurable set A one has II¢(A) = II(ANC)/II(C). It is easy to
see that the above quotients are equivalent to

II([|6]| < tp, 6 > On)
I([|0]] < 75,60 > ON)

(S5.10)

We first bound the numerator of equation (S5.10) from above. Denote Ay = Apax(X) and A, =

Amin(2), by Assumption 2, A\, Ays are bounded from zero and infinity, and do not change along
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with n, N. Then it is bounded from above by

AM N/2 1 _ Lol
(0| < t,) < <> / S Py Y
(el ) Am 10 <tn (2mAnr)N/2

AM NIzt Am x%_le_%
= (2 ——d
(Am> /o 2N2D(N/2) "
_ B/

= T(N/2+1) (85.11)

The second line arrives by using the definition of a chi-square random variable with the degree of
freedom N.

We now bound the denominator of equation (S5.10) from below. Note that

([|0]| < 7n,0>0x) >T1(0<60; <7,/VN,j=1,...,N)

A\ V2 Y4
> (2 AR e Tmdrs
- (m) = Vi
—r2/(2A\m) 7“721 N2

With results in equations (S5.11) and (S5.12), we now bound the term in equation (S5.10) from

above by

2\ N/2 N/2
e <7rAMtn> I( - < exp{r%/(2/\m) — Nlog(rn/tn)/2} = 0(672%&%):

the first inequality uses the Stirling’s approximation as I'(N/2 + 1) > veN{N/(2¢)}/2. Then
the final result of the preceding is attained by choosing sufficiently small > 0. We then verified

equation (55.9) and complete the proof of Proposition 6.

S5.4 Proof of Proposition S1

(=). We first show P(0 < Z; < §) < P(0 < Z] < 0) for any fixed § > 0. Define the set
C,={z RN :2; > —p;,j=1,...,N} for any fixed vector pn € [0,00)". For any § > 0,

define Cs = C, N {0 < z1 < ¢}. Define two N-dimensional random vectors X ~ N (0,Xy) and
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X' ~ N(0,%Y). By definition, we have

P(X € Cy)

w

(S5.13)

First we lower-bound the denominator of the ratio in equation (S5.13). Given ||Ex — X | < || Zn]|,

for some ¢ to be chosen later, simple calculation leads to Z;,l < 2’1\71 + EHEE\?HIN- Then we have

P(X €C,) = / (2m) N2 |22 N T g

i

> / (2r) V2|8 |12 37T O el e gy

i

> e NS /|EN]) PB(X € a1 A), (85.14)

where A = {X' : | X'||2 < Py/||S%'||} for some Py > N to be chosen later. Next, to bound
P(X" € C,N.A), we shall show that there exist Py,e > 0 such that P(X’' € A°) < P(X' € C,). Then
there exist some 7 € (0, 1) such that P(X’ € C,NA) > P(X' € C,)—P(X' € A°) > (1-n)P(X' € Cp).
To that end, we bound P(X’ € A°) from above and bound P(X’ € C,,) from below separately.

We first bound P(X’ € A°). Note that

P(X" € A) =P(|X'|* > Py /[B5"1) < PUSNIlIZoll* > P/l 1)

<P(|Z]* > ¢ Py}) S em N, (S5.15)

where Zg ~ N (Oy,Iy) and ¢,c; > 0 are some constants. Note that || Zp||? is a chi-square random
variable with the degree of freedom N, the last inequality is obtained by applying the concentration
result of a N-dimensional chi-square random vector.

Next we bound P(X’ € C,) from below. Since ¥y = (p;) is a K-banded matrix and under the
assumption that the entries of 'y are positive within the band, we adopt the same block approzima-

tion technique used in the proof of Theorem 2. Define the random vector X” ~ N (0n, X\ (plin))

/o /
i = Pmin

where X\ (0l,) = (pf;) satisfies pj; = pf; for 1 <4 < N and p for all 4, satisfy-

ing 1 < |i—j| < K —1. Denote 05\,) = maxi<i<n{p};} and 0221) = minj<;<n{p;}. Then by
applying Slepian’s inequality, we have P(X’' € C,) > P(X” € C,). Now let m = [N/K] > 1.

d

Define the random vector Z” such that (i), Z[/E1+(ifl)K):iK} = X[/ElJr(ifl)K):iK] fori =1,...,m
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d .. .
and Z[lzl+sK):N] = X[/E1+sK):N]' And (ii), the sub-vectors {Z[/EI—F(Z'—I)K):Z'K]’Z = 1,...,m} and
Z[’szK):N] are mutually independent. Then we have E{(X/)?} = E{(Z/)?} for 1 < i < N

and E(X]'X]) > E(Z/Z}) for all 1 <i # j < N. For sufficiently large N, K, we have

P(X'e€C,) >P(X" €C,) >P(Z" > u*1n)

= T2 {P(Z[(1 4 i—1ykyir) = W L) IP(Z (1 pmicyn] 2 B IN—mK)

> (log K)~ (M2 =020 S oxp(—cyN log K), (S5.16)

for sufficiently large K, N, where f_’/(N) = (05\,) — Pin)/ Py 5 = maxi<;<n |p;| is a finite and
positive constant under the assumption, and cy > 0 is some constant. The first and second in-
equalities hold by applying Slepian’s inequality, the third inequality is obtained by applying Lemma
S3 by taking d = K, a = p*, p = pi;, and pg) = f_’/(N)v which leads to P(Z[lzu(i—l)K):iK] >
wlg) = (log K)_I/QK_H(N), fori=1,...,s. A same lower bound is obtained for ]P’(Z[’ZHmK):N] >
W lNn_mi). Comparing the result in equation (S5.16) with result in equation (S5.15), it is obvious
that choosing Py > coN log K leads to P(X' € A®) < nP(X’ € C,,) for some constant n € (0,1) and

for any positive integer N. Combining this result with equations (S5.14) and (S5.16), we obtain
P(X €Cy) 2 e ™A(IE /18] 2 (1 = nP(X € Cp), (S5.17)

for some constant n € (0,1).

Now we bound the numerator of the ratio in equation (S5.13). Similarly, we have

P(X €Cs) < / (21) V2|2 | V237 SR el IR /2 g
Cs

< V(B |/|EN )X € Cs) + (X € A (55.18)

Next, we shall show P(X’ € A°) < P(X' € Cs). To proceed, we consider the defined random vector

48



Z" above, since (373 (pln))i; < (Xy)ij for all ¢ # j, then applying Lemma S1 leads to

B(X' € Cs) 2 P(Z" € Cs) 2 P~ < 20 <6 — i, 28 > oy, Zy > —pw)
> P~ < 2 <6, ZY > it 2 > i)

AT AP(Z {14 i1y 1) = K )YP(Z(1 gy vy = T IN—mi)

> (log K)~0mH0/2(K — 1)~ 076 Pin 0 > exp(—e3 N log K),

where /3/(1) = (ag) — Phin)/ Py @ € (0,1) and ¢3 > 0 are some constants. The third inequality

holds based on an application of the lower bound of Lemma S2 with d = K, p = p;;, and p(1) = ﬁl(l)
to bound P(—uy < Z7 <6 — 1,25 > p*, ..., Z} > p*) from below and a same lower bound for
]P)(Z[/EKH):N] > 1*1y_k) as in deriving equation (S5.16). Again, it is easy to see that by choosing
Pn Z Nlog K we have P(X’ € A°) < P(X' € Cs). With this result and equation (55.18), we obtain

the upper bound for the numerator of the ratio in equation (S5.14) as

P(X € C5) < 2e5PN2(|2y|/ 128 ) 2R(X € Cs). (S5.19)

Now combining results in equations (S5.17) and (S5.19), by choosing & < c¢Py' for some constant

c > 0, we obtain

P(X € Cy)

B(XcC,) (S5.20)

for some n € (0,1).

(<). We now follow a similar line of arguments to show P(0 < Z; < §) 2 P(0 < Z] < 9). It
suffices to lower bound the ratio in equation (S5.13). We first bound the denominator of the ratio
in equation (S5.13) from above. With a similar calculation as in equation (S5.18), one can show

that

P(X €C,) < e2(Sh|/[En) P H{P(X € C) + P(X! € A%}

< 2PN 21|/ 12N ) YER(X € C). (S5.21)

The second inequality adopts the fact that P(X’ € A°) < P(X’' € C,). Now to lower bound the
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numerator, with a similar calculation in equation (S5.14), we have

P(X € C5) = e =212 |/|Sn ) {P(X € C5) — P(X' € A%)}

> (1= n)e ™ 2(Sy|/[Ex)PR(X € Cs), (55.22)

for some constant i’ € (0,1). Again, the second inequality uses the result that P(X’' € A°) < P(X’ €
Cs). Then there exist some i’ € (0,1) such that P(X’ € Cs)—P(X’ € A°) > (1—7/)P(X’ € Cs5). Then
combining results of equations (S5.21) and (S5.22) and by choosing e < ¢Pj' for some constant

c>0,

P(X € Cs)

BXcC,) (S5.23)

N c1— IP(X/EC5)
>{2(1 —n")e} 1IP’(X’7€CH)'

Combining results in equations (S5.20) and (S5.23), we complete the proof of Proposition S1.

S5.5 Proof of Proposition S2

First note that the scale matrix Qx defined in § 4.1 is a correlation matrix. Also it is easy to verify
that Qy satisfies Assumption 2 that Qn € M (g, Ao, k) for some constants ag, \g > 0. Given any
fixed 7, \, recall the unconstrained parameter 6’ | A\ ~ N (0n,72AQxA). Next, by applying Propo-
sition 4, one can construct a K-banded approximating matrix {y such that ||Qy — Q|| < e]|Qn||
by choosing K > log(1/¢). Here we choose K = O(N) and then the condition ¢ < (Nlog K)™! is
satisfied. Since ||| = O(1) under Assumption 2, we have [|Qy — Q| < ¢/(Nlog N)~! for some
constant ¢ > 0. Define 6” |\ ~ N (0y,72AQA), then by Proposition S1, one can show that for

any fixed A > Oy, there exists some constant C’ > 0 such that
PO >0n]|)\) > C' PO >0pn]|N).

We now lower bound P(6” > Oy |\) for any fixed A\ > Oy. To that end, we adopt the block
approzimation technique in the proof of Theorem 2. First recall that we assume w), = o'? for

1 <4 < N and ' denotes the smallest off-diagonal positive elements of Q’N Then define

Qy = (@) with @); = ¢ for 1 < i < N and &f; = wly, for all i,j satisfying 1 < |i — j| < K.

min

And we assume w! ;< ¢’?>. Then define the random vector § ~ N (Oy, TQASN)’NA) given the same

min
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fixed \, we have E(6;0;) < E(8! 07) for all 1 <i # j < N. We now construct a new random vector

using the block approzimation technique. Recall that K = O(N) and we denote mo = [N/K] > 1.

Now define the random vector # such that éf(1+z‘K)-(1+i) K 4 5[(1“[{):(1“)1@ fori =0,...,mp—1
~ d .

and 0{(1+moK)2N} = 0/(14moKk):N]- And also the sub-vectors {9[(1-1-1[() (et = 050nymo — 1}

and 6/ are mutually independent. Then we have E(/2) = E(6?) for 1 < i < N and

[(1+moK):N]
E(é;é;) < E(;0;) for 1 <i# j < N. Then applying Lemma S4,

Me =Ex{I1(0 > On | A)} > Ex{II(0 > On | A)} > Ex{II(§' > 0x | N)}

= Ex{I2% ' TL(0 14 im0 (1) = OK I A1 g i) = ON—moic [ A) - (S5.24)

The second equality holds by the definition of §’. To proceed, we first bound P(éhz K = Ox | )\)
from below, similar arguments can be applied to bounding the rest of probability terms of (S5.24).

Note that Val‘(é;-) = 7°X0" and cov(0],0") = 72N\

i 0] for all 1 < 4,5 < K. Then we use the

min

equivalent expression of §' as

(9'—7')\ <\/1wmmwi+ mmW) i1=1,..., K,

where {w;}, W are independently and identically distributed standard normal random variables.

For any fixed \,7 > 0, we have

(@ >0, 0 > 0]0) = A (/1= s + (JolyW) 20,0 =1, K | A}
=T1((/1 = Wy wi+ (JulyyW = 0, =1, K)

> (log K)_1/2K_wx/nin,

where & . = (0" —w! . )/w! . The last inequality holds by applying Lemma S3. Following similar
arguments, we obtain IP’(G[(HZK) :(1+4)K] = Ok |A) 2 (log K)~ V2K =@ for 4 = 1,...,mo — 1 and
P(é[(l—i-moK):N] > 0N _mox | ) > (log K)~%/2K~®min. Combining these results with (S5.24), then we

have

Me 2 (log K)~(mot)/2 fg=(mot1)&r;,
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Since the above lower bound is decreasing in K and my is a constant, substitute K = N/mg in
the above lower bound leads to the desired result M¢ > (log N)~(mo+1/2 N=(mo+1)@ns - By taking

to = mg + 1 completes the proof.

S6 Proofs of technical results

S6.1 Proofs in Appendix A

Proof of Lemma 1. For any function f € C[0,1] and f’ is Lipschitz, then there exists some finite
constant L > 0 such that |f/'(z) — f'(y)| < L|z — y| for any =,y € [0,1] and x # y. Now denote its
expansion with respect to basis expansion (M) under a grid {u;} by fn(x). Given the definition of

fn and applying the fundamental theorem of calculus to f, we have for any z € [0, 1],

fN(w)—f(w)IZ‘{f /quj sk = {10+ [ 515

x| N-1 N—1
< / f'(uj)h(s) = f'(s) h;(s)|ds
o 153 =
+ N—1
< [ 3 1)~ S lhs)ds < oxL
7=0

The second inequality holds for the facts |f/(u;) — f/(s)| < L|s —u;| and hj(s) # 0 for |s —u;| < on
for any 1 < j < N. The inequality holds uniformly for any = € [0, 1], therefore we complete the

proof.

Proof of Lemma 2. We first show the upper bound. For any nonempty set S € {1,..., N}, recall
Vg is a n x |S| sub-matrix of ¥ with columns ¥;,j € S and denote an arbitrary |S|-dimensional

vector by 05 = {0; € R, j € S}. Note that Wgfg is a n x 1 vector, we have
n IS n 1S 15|
sos? =3 (Swa) <3 (2w 202) < o 05112 & (n/ )]

i=1 Nj=1 i=1 \j=1

for sufficiently large N. The second inequality is obtained by applying Cauchy-Schwarz inequality,

and the third inequality holds by the fact that | ¥||s < dn by construction, and oy = 1/(N — 1).
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Now we prove the lower bound. Note that under the assumption min;; |x; —u;| > 5%/ 2, we have

Ui > 20(5]1\,/2 forall 1 <4,5 < N. Then
n IS| 2 n o
[wss]? =3 (ij) > 3 (2e Y22 052 ~ 4/ N) 051

i=1 “j=1 i=1

for a fixed constant ¢ > 0 and for sufficiently large N. Then we complete the proof.

Proof of Lemma 3. For any 0 < a < b < 1, determine the largest integer 0 < ji < N — 1 such

that (on < a and the smallest integer 0 < jfg < N —1 such that b < ujr Then the shortest interval

contains [a,b] is [uj,u; ]. By restricting the function to be non-decreasing, one has 6; > 0 for
1 S
j=1,...,N. Given the construction in (M), the flatness of f over the interval [a,b] is equivalent
to
Js
f'@) =" biialu(z) =0,
1=,

for z € [a, b]. Tt implies ;41 = 0 for all [ = ji,...,j5. Then we complete the proof.

S6.2 Proof of Lemma S1

We first prove the result for centered multivariate normal vectors. For random vectors X ~
N(O,Zx) and Y ~ N(O,Ey), to show ]P)(fl < X1 < up, Xo > uo,..., Xg > ud) < P(gl <

Y1 <wg, Yo > ug, ..., Yy > uy), it suffices to show

P(Y1 > w1, Ya > ug, ..., Yg > ug) — P(X1 > up, Xo > ug, ..., Xqg > uq)
(S6.1)

<P(Yr > 0,Ys > ug, .., Yg > ug) — P(X1 > 01, Xo > ug, .., Xg > ug).

We define d-dimensional indicator functions G(z) = ]l[uhoo)(a:l)H;l:Q Ly, 00)(7;) and F(x) =

Lig, 00y (1) H?:Q L(y; 00)(7;), then it is equivalent to show
E{G(Y)} — B{G(X)} < B{F(Y)} ~ E{F(X)}. (6.2)

We now construct non-decreasing approximating functions of G, F with continuous second order

derivatives respectively. Let v € C?(R) be a non-decreasing twice differentiable function with
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v(t) =0 for t <0, v(t) € [0,1] for t € [0,1], and v(¢t) = 1 for t > 1. Also, choose v so that

|V']|sc < C' for some universal constant C' > 0. For n > 0, we define m,(x) = v(nz). It is clear that

my(z) approximates 1o oy () for large 1. In fact, for any  # 0, limy 00 my(7) = Lo o0)(2)-
Given the above, let ¢7(z;) = v{n(z; —u;)} for j = 1,...,d, and f = v{n(z — &)}, f] =

v{n(xzj; —uy)} for j =2,...,d. Define

g"(x) =_1g](z;) and [(z) = T0]_, f] ().

It then follows that ¢"7 and f" provide increasingly better approximations of G and F' as n — oc.

It thus suffices to show

E{g"(Y)} - E{g"(X)} <E{f"(YV)} - E{/"(X)}, (56.3)

for sufficiently large > 0 to be chosen later. We henceforth drop the superscript n from ¢ and f
for notation brevity.

We proceed to utilize an interpolation technique commonly used to prove comparison inequalities
(see Chapter 7 of [16]). We construct a sequence of interpolating random variables based on the

independent random variables X, Y":
Sy =1 —-tH)Y2X +ty, telo,1].

Specifically, we have Sop = X, S1 =Y, and for any ¢ € [0, 1], S; ~ N (O, %) where &y = (1—t2)Sx +

t2%y. For any twice differentiable function h, we have the following identity

1
E{h(Y)} — E{h(X)} = /O %E{h(é})}dt. (S6.4)

Applying a multivariate version of Stein’s lemma (Lemma 7.2.7 in [16]) to the integrand in equation

(S6.4), one obtains

(St) |- (S6.5)
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To show equation (56.3), we define the difference A = [E{f(Y)} —E{f(X)}| - [E{9(Y)} —E{g(X)}].

We further decompose A as

A= B{SON} - B{FCON - [Blo(1) - B{o(X))]
1 d d
- [[a{ Sriss0) - LBts0) )

_ /01 dt {t g:E{{E(EE) — E(XiX;)} (afjéij (Se) = 8:2289:6]- (St)ﬂ }
- 2/01 dt {t gE{{E(Yﬂ?) — E(X1X;)} (%(Sﬂ - 62251:]- (&;))] }
I /01 dt {t Z.;QE[{E(E}G) - E(XiX;)} (aj;“ij(st) B aasa;qz:j(St)>] }

= A1 + As.

The second equation follows from (5S6.4) and the third equation follows from (56.5). First we show
A; > 0. Since E(Y1Y;) > E(X1X;) for all j > 1, it suffices to show that for any fixed ¢ € [0, 1] and

forany j =2,...,d,

D1:E< Of gy 9 (St)>>0.

6901835]- B 81‘13$j -

We consider a generic interpolating random variable S ~ N (0, f]) by dropping the t-subscript; let

¢(s1,...,8q4) denote its probability density function. Then we have

Dlz/ / LF(s)F1(55) — 6(51)(57)} Tl i) S(s1, - 50) sy - . dsa

:/_OO.../_OO [/_Oo{f{(sl)—gi(sl)}gb(sl,...,sN)dsl £1(5) e s fi(sy) dsa - dsa.

To guarantee D; is non-negative we need the integral over s; to be non-negative. Based on the
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definition of f; and gi, the integral over s; can be simplified to

|10~ i)} s sw) s

li1+1/n ui+1/n

:/4 {171/(77(81—El))}qﬁ(sl,...,sN)dsl—/ {771/(77(51—ul))}¢(817...,sN)d51
1/

= /0 ! nv' (ns1){o(s1 + 01, 82,...,8N) — d(s1 +u1, s2,...,5n)}ds1. (S6.6)

Let us denote the inverse of the covariance matrix X as

-1 -1
i_l . E11 E12
-1 -1
E21 222

where il_ll is a scalar. To check the non-negativity of the last line in equation (S6.6), we now

estimate the term

P(s1+41,52,...,5q) — l@d=E)+2s1 (wr—£1)} /24 (w1 —01) T3 52
¢($1 +u1, S2,. .., Sd)
where 33 = (s2,...,54)". Since s; € [0,1/n], we have s1 (u1 — ()}STE > 0. We denote j =

max{i‘,l—;} as the largest element of il_zl. Then, one can choose 7 large enough such that
(w1 +0) S = 2(d = 1)p/n >0,

to guarantee D; > 0. For example n = 4(d — 1) 5311 /(uy + £1) satisfies the above inequality.
Now we show Ay > 0. We have E(Y;Y;) > E(X;X;) for all 4,5 = 2,...,d. For any i,j > 2, for

any fixed ¢t € [0, 1], we define

a2f 829 I

Since f1 — g1 > 0, and fj{ > 0 for all 5 > 1, it follows that Dy > 0 and thus Ay > 0. Combining
with the non-negativity of A; completes the proof for centered case.
Now we consider the non-centered multivariate normal vectors. Consider X ~ N (u, Xx) and

Y ~ N(,Sy). Define X := X —pand Y :=Y — . Let {4 = 4 — py, and uj = uj — p; for
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j=1,...,d. Then it is equivalent to show IP’(El < )~(1 < 1y, XQ > U9, ... ,)Nfd > 1ug) < ]P’(ll < 171 <
uy, Yy > Ug, . .. ,EN/d > 1g), which has been proved in the centered case. Thus we complete the proof

of Lemma S1.

S6.3 Proof of Lemma S2

Recall X ~ Ny(p,Xq(0?,p)), where p is a non-negative fixed mean vector and X4(c?, p) = (045)
denotes a variance-correlation matrix with o;; > 0 for 1 <i < N and 05 = pfor 1 <@ # j < d.
Recall 0(21) = minj<;<q pii, and under the assumption we have p < 0(21).

Define X’ := X — u, we will repeatedly use its equivalent expression
X’L{:pl/2w+(0ii_p)l/2v‘/’ia L= 17"'aN7 (867)

where w, W;’s are independent standard normal variables.

Proof of the upper bound. Recall p1) = (0(21) —p)/p. For any fixed § > 0, and for o € (0,1) we have

P(O§X1<5,X220,...,Xd20)

PO < X]+m <6,X5+p2>0,..., X+ pg > 0)

. < l/2 172 <5 12 > 1/2 1v7 )
P( pr <pFwt (o1 —p) WL <6 —pa,ptw 2H<1a<><d(0u p) =W zrglgduz

IP’({ — < p1/2w + (011 — p>1/2 Wy <6 —p,w> f)(l/) 2@?<XdWi — p—1/2 Qrglgd,u }

U [2121?<z><dW > {2(1 — a)log(d — )}1/2] [2rga<xdW <{2(1 — a)log(d — )}1/2})

< IP)[* < P2 w (011 — p)PW <6 — pw > {20y (1 - o) log(d — 1)}/ *p‘1/22rgligdui

+P[ max Wi < {2(1 — a)log(d — )}1/2}

2<i<d

=P+ PB. (86.8)

First, we estimate P, in (S6.8). For a sufficiently large d and fixed u;’s, it is easy to see that
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i < {2(1 —a)log(d—1)}/? for i = 1,...,d. Then applying the expression of X in (S6.7), we have

—p|wi e { ~n/lon - )2 - (Gp_p>/w (6~ 1)/ (11— )% - ((,p_p)/w} \

w > {2,6(1) (1 —«)log(d — 1)}1/2 —p 12 22112[1“ }

P[w > {2 ﬁ(l) (1 — Oé) IOg(d — 1)}1/2 - P_1/2 221112(#%}

<P[Wie (—mlon—p) 7~ [{20 - 0)log(d ~ D' — (11— ) min p].

(6= m)(on = p) " = [{200 = o) log(d = DI — (o1 — )"/ min ] )|

Bz {270 (1) los(d ~ 1} 72 i )

< {2n(on = o)} exp (= [0+ gmin i — p)ows = )2 = (201 - ) logld — D} f2)

—1
|(260) (1~ @) log(d — )}~ p™/* min ]

- exp ( — [2p1) {(1 — @) log(d — DY2 - p71/2 2121£1d,u1] /2) (S6.9)

The last inequality follows from Lemma S7 in § S7.

Now we move to estimate the term P» in (56.8). We have,

P, Wi < (21— a)log(d — 1}?] = (1 = P[22 {2(1 — @) log(d — 1}7])"

<oxp (— (d—1)P[Z = {2(1 - a) log(d — 1)}/2])

< exp(—(d— 1)), (S6.10)

where Z ~ N(0,1). Then combining bound results in (56.9) and (S6.10), for sufficiently large d we

attain the desired upper bound

o8



P(O§X1<5,XQZO,...,XdZO)

1/2

exp (— [2(1 — ) log(d - R (5 in s — )| /2

- [2 py {(1 — @) log(d — 1)}/2 - */221%13&%} /2)+exp(—(d—1)°‘), (S6.11)

where C' = {4m (011 — p)p(1) (1 — a)}~1/2 for some a € (0,1).

Proof of the lower bound. The lower bound is derived in a similar manner, thus we omit details and

only state the different steps. Using the expression (56.7), we arrive at

P(0§X1<5,X220,...,Xd20)

>P({ = < pPwt (=)' P <8 w0 > o oo, Wi o7 zri“?d“’}

N [ max, W; < {2(1 + «)log(d — 1)}1/2D

2<i<

> IP’{— 1 < p1/2w+ (011 —p)1/2 Wy <6 —p1,w> {25(1) (14 «)log(d — 1)}1/2 —p71/2212121£ldﬂ

< o /2| _. p/ . p!
P{Qrglaécdw {2(1+a)log(d —1)} ] : Py - Py.

Following a similar argument, we can bound P; by

P} > §{2n(011 — p)} /2 exp{ - [{2(1 +a)log(d — 1)}2 — (o1, — p)_l/Q( min ju; — ,ul)]Q/Z}

2<i<d
(270 0+ @)togl@— 1372 = 7% min ]
- exp ( - [2 py (1 + a)log(d — 1)}1/2 —p- 1/2 2Iéllildlu, } /2) (S6.12)

for some « € (0,1). By using the lower bound in Lemma S7,

Py=(1-P[Z>{2(1+a)log(d— 1)}/2])"" > exp (— (d— 1) P[Z > {2(1+ a) log(d — 1)}'/?])

>exp(—(d—1)7%) >1/2, (S6.13)
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for sufficiently large d and for some a € (0,1). Combining (56.12) and (S6.13) leads to

P(O§X1<5,XQZO,...,XdZO)

> C'5 {log(d — 1)} 2 exp { — [{2(1 + ) log(d ~ 1)}'/* ~ (011 - p>*1/2(2glgduz w)] /2

— [200) {01+ @) logld — D} = 572 in i f2}, (56.14)

where C' = {87 (011 — p)pa) (1 + «)}~Y2. By combining (S6.11) and (S6.14) yields the sandwich

bound in Lemma S2.

S6.4 Proof of Lemma S3

Recall X = X — p, then it suffices to lower-bound P(X’ > 11*14). Recall that p(q) = (O'(Qd) —p)/p.

We now show that for any scalar a > 0, we have

ap”'/? + (2 pa log N)'/?

P(X' > aly) >
{ap=1/2 + (2 p(4) logd) 1/2} +1

1 2
exp [— 2{ap_1/2 + (2 p(a) 1ogd)1/2} } (S6.15)

where recall that 1, denotes a N-dimensional vector of ones. By taking a = max;j<;<q{u;} leads to
the desired lower bound.

Now we prove the lower bound in (S6.15). First,

P(X >aly) = IP’(pl/Qw + (05 — )2 W; > a, fori=1,... ,d) (S6.16)
=E(Plw> p V2 a— (04— p)'PWit,i=1,....d| Wi,...,Wql)

DE{P(w=p2[a+ max{(o — p)'*Wi}] | Wa,.... Wy)}

= E{l — ‘b(apl/Q + ﬁzé; max Wz) },

where W = [Wy,..., Wy]™. Here, (i) holds since —W; 4 W; for i =1,...,d and max;<;<q(—Wj) 4
maxi <i<d(Wi).

We now proceed to lower bound the right hand side of the last equation in (S6.16). To that end,
we define g(a,b) = 1— @(apfl/Q—i—p%C/l) b), where g : Ry xR — [0, 1]. Importantly, g is non-increasing
function of a,b for a,b € R, and ¢ is a convex function of (a,b) for a,b > 0. For any fixed a > 0,

since g(a, max; W;) is non-increasing in max; W;, we have g(a, max; W;) > g(a, max; |W;|). We then
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apply Jensen’s inequality,

oo g W) } 2 o B g Wl)} 2 ot 1w ).

The last inequality holds by applying Lemma S6 in § S7. To lower bound g{a, (2log d)l/ 2} we apply

Lemma S7 in § S7. Eventually, we obtain

—-1/2 = 1/2
ap + (2p(d) lOg d) —1/2 _ 1/22
E a, max |W; > exp | —1a + (2 logd 2|.
{o( max | )} for 12 1 (G log )17} 4 1 p[—{ar (27(a) logd)'/}° /2]

(S6.17)

Taking a = p* completes the proof.

S7 Auxiliary results

S7.1 Technical results

Lemma S4. (Slepian’s lemma) Let X,Y be centered Gaussian vectors on R%. Suppose IEXZ«2 = EYi2

for all i, and E(X;X;) <E(Z;Z;) for all i # j. Then, for any x € R,

IF’( max X; §:1:> SIP’( max Y; Sm).
1<i<d 1<i<d

We use the Slepian’s lemma in the following way in the main document. We have,

]P’(Xlzo,...,XdZO):IP’( min Xi20> :IP’< max Xigo),
1<i<d 1<i<d

where the second equality uses X 4 _X. We use Slepian’s inequality to arrive at equation (S4.2)

in the main document.

Lemma S5. (Lemma 3.1 in [1/].) Let X ~ N(0,%;) and Y ~ N(0,%s). For any set D € RY, if

31 — Yo is positive semi-definite, then

P(Y € D) < (|21]/]22))?P(X € D).
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Lemma S6. Let Zy,...,Zy be iid N(0,1) random variables. Then we have

Civ/2log N <E maXNZi <E max |Zi] < +/2log N. (S7.1)
i=1,..., i=

for some constant 0 < C7 < 1.

Lemma S7. (Mill’s ratio bound) Let X ~ N(0,1). We have, for x > 0, that

where ®(+) is cumulative distribution function of X.

Lemma S8. (Lemma 2.1 in [2]) Let matriz A be k-banded, symmetric, and positive definite. We

denote M = ||A|| and m = 1/||A7Y||, and for n € Ny, we define
By =S (1 -7 AY, (572
=0

where v = 2/(M +m). Then B, is a symmetric positive definite (nk)-banded matriz, also, |A~! —
Byl < ™ m, k= (M —m)/(M +m) < 1.

S7.2 Correlation (puin, Pmax) in Figure S1

Table S1: Values of (pmin, Pmax) for (N, K) considered in Figure S1

N K pmin  Pmax
100 2 0.43 0.48
Case | 100 5 0.295 045
100 20 0.154 0.23
10 5 0.447 0.68
Case 11 50 5) 0.30 0.46
100 5 0.295 0.45
25 5 0327 0.50
Case IIT 100 20 0.154 0.23
250 50 0.057 0.08
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S8 Additional details on the numerical studies

S8.1 Prior draws

We consider equation (4.1) and the prior specified in § 4. Prior samples on both 6§ and & of dimension

N = 100 were drawn. Figure S8 shows prior draws for the first and third components of both 8 and
€.

Prior draws of &, Prior draws of 2

1.0 15 20
1
10
|

0.8
1
5
|

0.0

0 20 40 60 80 100 0 20 40 60 80 100

Prior draws of 8 Prior draws of 24

15 2.0 25
20
1

1.0

05

00

0 20 40 60 80 100 0 20 40 60 80 100

Figure S8: Showing prior draws from distribution of 6 (left panel) and & (right panel). Top and
bottom panels correspond to first and third components respectively, for both 8 and &.

S8.2 Posterior Computations

We now consider model (4.2) and the prior specified in § 4. Then the full conditional distribution

of 6

1 = 1
70| Y, (N T,0) exp{ — Tﬂ”y — \IIAHIQ} exp{ - 2T20TK_19} Lc,(0)
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can be approximated by

1~ eno 0;
7r(0|Y,(,)\7T70)o<exp{—M|Y—\I/>\9||2} exp{ 550K 19}{ H 1+ eno i }

=1
N+l 0;
1~ ) Cemli 1 .

where 7y is a large valued constant, Y=Y - (1, and ¥, = WA. The above is same as equation

<.

(5) of [13] and thus falls under the framework of their sampling scheme. For more details on the

sampling scheme and the approximation, one can refer to [13].

Note that A\j ~ C4(0,1), j=1,..., N, can be equivalently given by A; | w; ~ /\/'(O,wj_l)]l()\j >
0), wj ~G(0.5,0.5), j=1,...,N. Thus the full conditional distribution of X can be approximated
by:

1 ~ ) N+1 en/\/\j 1 .

where 1) plays the same role as ng, w = (wq,...,wn)T, W = diag(wy,...,wy), ¥y = VYO and

© = diag(fy,...,0n). Thus, A can be sampled efficiently using algorithm proposed in [13].

S8.3 Additional numerical studies and plots of model fits

In this section, we provide details on model comparisons and additional plots discussed in § 4.3
of the main documents. First, we discuss the improvement due to the shrinkage. Specifically, the

variants of tMVN model considered are:

e tMVN with fixed hyperparameters: We set A = Iy and 7 = 1 in (4.2), and also fix v
and £, so that we have a truncated normal prior on the coefficients. This was implemented
as a part of the motivating examples in the introduction. We fix v = 0.75 and ¢ so that the

correlation k(1) between the maximum separated points in the covariate domain equals 0.05.

e tMVN with hyperparameter updates: The only difference from the previous case is that v

and £ are both assigned priors described previously and updated within the MCMC algorithm.

e tMVN with global shrinkage: We continue with A = Iy and place a half-Cauchy prior on

the global shrinkage parameter 7. The hyperparameters v and ¢ are updated.
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e DGL-tMVN: This is the proposed procedure where the \;s are also assigned half-Cauchy

priors and the hyperparameters are updated.

Figures S9, S10, S11 and S12 display the model fits of functions f1, fo,f3 and fy respectively
based the on four variants of tMVN priors discussed above. The figures suggest that the tMVN prior
with fixed hyperparameters leads to a large bias in the flat region. Adding some global structure to
it, for instance, by updating the GP hyperparamaters and adding a global shrinkage term improves
prediction around the flat region. However it still lacked the flexibility to transition from the flat
region to the strictly increasing region. By including component-wise local parameters additionally

(i.e. the DGL-tMVN) improves the overall prediction and performs the best, both visually and also

in terms of MSPE.

tMVN with fixed hyperparameters tMVN with hyperparameter updates
-
00 02 04 06 08 10 00 02 04 06 08 10
MSPE= 1121 MSPE = 0.654
tMVN with global shrinkage DGL-tMVN
=+ - _—
T T T T T T
0.0 02 04 06 08 1.0 0.0 02 04 06 08 10
MSPE = 0.462 MSPE = 0.018

Figure S9: Out-of-sample prediction accuracy for fi using the four variants. Red solid curve cor-
responds to the true function, black solid curve is the mean prediction, the region within two dotted
blue curves represent 95% pointwise prediction interval and the green dots are 200 test data points.
MSPE values corresponding to each of the method are also shown in the plots.
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tMVN with fixed hyperparameters

tMVN with hyperparameter updates

0.0 02 04 06 08 1.0
MSPE= 0.196
tMVN with global shrinkage

04

0.6 0.5

MSPE = 0.009

Figure S10: Same as Figure S9,
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0.0 02 0.4 06 08 L0
MSPE= 0.012
DGL-tMVN

- 4

& -

04

0.6 0.3 L0

MSPE = 0.008

now for the function fo.



tMVN with fixed hyperparameters tMVN with hyperparameter updates

00 02 04 06 08 10 00 02 04 06 08 10
MSPE = 0.04 MSPE= 0.016
tMVN with global shrinkage DGL-tMVN

0.0 02 04 0.6 0.8 1.0 0.0 02 04 0.6 0.8 1.0

MSPE= 0.018 MSPE = 0.009

Figure S11: Same as Figure S9, now for the function fs.
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tMVN with fixed hyperparameters tMVN with hyperparameter updates

MSPE = 0.011 MSPE = (.01
tMWVN with global shrinkage DGL-tMVN
e 'h e
. rF: F-
s ] ] T T | i 1 ] T T |
(h.0h 0.2 0.4 .6 0.5 L0 0.0 0.2 04 .6 0.5 L0
MSPE = 0.003 MSPE = 0.006

Figure S12: Same as Figure S9, now for the function fy.
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S8.4 Performance of bsar

Consider the simulation set-up specified corresponding to the four variants of tMVN priors in §
4.3. Figure S13 shows the out-of-sample prediction performance of bsar, developed by [10], and

implemented by the R package bsamGP.

T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10

MSPE = 0.01 MSPE = 0.014

MSPE = 0.018 MSPE = 0.008

Figure S13: Figure portraying out-of-sample prediction accuracy using bsar for f1 (top left), fa (top
right), fs (bottom left) and fy (bottom right). Red solid curve corresponds to the true function, black
solid curve is the mean prediction, the region within two dotted blue curves represent 95% pointwise
prediction interval and the green dots are 200 test data points. MSPE wvalues corresponding to each
of the method are also shown in the plots.
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S8.5 Sensitivity studies

In this section, we provide the results of the sensitivity studies mentioned in the manuscript.
Choice of covariance kernel: Consider the simulation set-up specified corresponding to the
four variants of tMVN priors in § S8.3. For squared-exponential kernel with length-scale parameter
¢ > 0, we place a compactly supported prior ¢ ~ 1/(0.2,1) to ensure that the correlation between
the furthest two points in the covariate domain ranges from 1079 to approximately 0.5. Figures
S14, S15, S16 and S17 show the out-of-sample prediction performance based on squared-exponential

covariance kernel.

tMVN with fixed hyperparameters tMVN with hyperparameter updates

0.0 02 04 06 08 1.0 0.0 02 04 06 08 10
MSPE = 1.109 MSPE = 0.725
tMVN with global shrinkage DGL-tMVN
w
=T - -
Lo B e —
I I I I I I
00 02 04 06 08 1.0
MSPE = 0479 MSPE = 0.013

Figure S14: Out-of-sample prediction accuracy for f1 using the four variants and squared-exponential
kernel. Red solid curve corresponds to the true function, black solid curve is the mean prediction,
the region within two dotted blue curves represent 95% pointwise prediction interval and the green
dots are 200 test data points. MSPE walues corresponding to each of the method are also reported.
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tMVN with fixed hyperparameters tMVN with hyperparameter updates

0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0
MSPE= 0.172 MSPE= 0.012
tMVN with global shrinkage DGL-tMVN

0.0 02 04 0.6 0.5 1.0 0.0 02 04 0.6 0.3 L0

MSPE = 0.016 MSPE= 0.01

Figure S15: Same as Figure S1/ for the function fo.
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tMVN with fixed hyperparameters tMVN with hyperparameter updates

00 02 04 06 08 10 00 02 04 06 08 10
MSPE = 0.037 MSPE= 0.019
tMVN with global shrinkage DGL-tMVN

0.0 02 04 0.6 0.8 1.0 0.0 02 04 0.6 0.8 1.0

MSPE= 0.018 MSPE= 0.012

Figure S16: Same as Figure S1/ for the function f3.
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tMVN with fixed hyperparameters tMVIN with hyperparameter updates

] qr"‘:_ ]
— o —
MSFE = 0.003 MSPE = 0.003
tMVN with global shrinkage DGL-tMVN
R q'li'\-‘ R
= rf" =
MSPE = 0.01 MSPE = 0.01

Figure S17: Same as Figure S14 for the function fy.
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Choice of priors on v and {: Consider the simulation settings specified corresponding to
the four variants of tMVN priors in § 4.3. We placed compactly supported priors on v and ¢ of a
Matérn kernel as: v ~ U(0.05,2) and ¢ ~ U(0.05,2). Figure S18 shows the out-of-sample prediction

performance based on the choices of priors on v and /.

T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10

MSPE = 0.018 MSPE = 0.007

MSPE = 0.003
MSPE = 0.078

Figure S18: Qut-of-sample prediction accuracy using DGL-tMVN prior for fi (top left), fo (top right),
f3 (bottom left) and fa (bottom right) using Matérn kernel with v ~ U(0.05,2) and ¢ ~ U(0.05,2).
Red solid curve corresponds to the true function, black solid curve is the mean prediction, the region
within two dotted blue curves represent 95% pointwise prediction interval and the green dots are 200
test data points. MSPE walues corresponding to each of the method are also reported in the plots.
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Choice of 6, for simulation studies: Consider the variant of DGL-tMVN prior described in
§ 4.4. We used § = 1.2 and § = 1.8 for the sensitivity study and applied on simulation example of

function f4 in § 4.3. Figure S19 shows the estimation accuracy for estimating function fy.

MSPE = 0.081 MSPE = 0.076

Figure S19: Estimation accuracy based on 6, = 1.2 (left panel) and 6, = 1.8 (right panel) for fitting
function fq in § 4.5. The black solid curve is the posterior mean, the region within two dotted blue
curves represent 95% pointwise credible interval and the green dots are the observed data points.
The MSPE values are shown in the sub-plots.
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Choice of 6, for real data analyses: Consider the variant of DGL-tMVN prior described in

§ 4.4. We used 0 = 0.3, 6 = 0.7, and § = 1 for the sensitivity study and applied on the real data

sets described in § 5. Figures S20 and S21 show the estimation accuracy for these two data sets.

15

14
|

15

14
|

log income
13

12

log income
13

12

T T T T T T T
50 60 20 30 40 50 60

age age
WAIC =348.185 WAIC = 345.611

wn

13 14

log income

12

T T T T
20 30 40 50 60

age
WAIC = 346.28

Figure S20: Estimation accuracy based on 6. = 0.3 (top left panel), 6 = 0.7 (top right panel), and
d; = 1 (bottom panel) for the age and income data set used in § 5. The black solid curve is the
posterior mean, the region within two dotted blue curves represent 95% pointwise credible interval
and the green dots are the observed data points.
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Figure S21: Same as figure S20 for the LiDAR data set.
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S8.6 Diagnostics of MCMC samples

Here we provide results on the mixing behavior and computational efficiency of the Gibbs samplers

based on the DGL, IGL, and tMVN priors respectively, as discussed in § 4.3. Figure S22 shows the

boxplots of the effective sample sizes (ESS) and Table S2 reports the Monte Carlo standard errors

(McSE) of the MCMC samples of predicted function values based on 200 test points averaged over

25 replicates. Figure 523 and Table S3 provide the same for the real data sets discussed in § 5.

Table S2: The averaged standard deviations of MCMC samples of estimated function values over
200 test points and 25 replicates based on three different priors compared to the averaged standard
deviations of the replicated response points for functions f1, fo, f3 and fj4

DGL IGL tMVN  SD(response)
f10.00955 0.003389 0.009092 1.7520
fo 0.00673 0.001664 0.004581 0.7610
f3 0.00974 0.002348 0.005817 1.0117
fa0.01444 0.002180 0.006978 1.5171
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Figure S22: Boxplots of averaged effective sample sizes of estimated function values over 200 test
samples based on DGL, IGL and tMVN over 25 replicated data sets for functions fi (top left panel),

f2 (top right panel), f3 (bottom left panel) and f4 (bottom right panel).
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Figure S23: Boxplots of effective sample sizes of estimated function values of models with DGL and
tMVN for the Age and income data (top left panel) and LiDAR (top right panel).

Table S3: Monte Carlo standard errors in estimating function values of models with DGL and tMVN
against the standard deviation of the observed values for different data sets

DGL tMVN  SD(response)
Age-income  0.0016  0.0016 0.6363
LiDAR  8x10™* 0.0014 0.2825
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