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S1 Summary

In this supplementary document, we collect additional plots, proofs of main results in the manuscript,

remaining technical results and additional details on numerical studies. Equations in the main doc-

uments are cited as (1), (2) etc., while new equations defined in this document are numbered (S1),

(S2) etc.

• § S2 provides supportive materials to the main document, including empirical illustrations of

mass-shifting behavior of the tmvn marginal density and an additional mass-shifting theorem

for the tmvn families with unequal variances, and additional graphical illustrations in the

main document.

• § S3 summarizes useful intermediate results for proving main theorems and corollaries in the

manuscript.
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• § S4 collects the proofs of Theorems 2,3 in § 2, Theorem 5 in § 3, Theorem 7 and Theorem 8

in § 4, and Corollary S1 in § S2.2.

• § S5 contains the proofs of all Proposition results which includes Proposition 1 in § 2, Propo-

sition 4 and Proposition 6 in § 3, Proposition S1 in § S4.2, and Proposition S2 in § S4.5.

• § S6 contains the proofs of technical results in Appendix A and the intermediate results in §

S3.

• The rest of auxiliary results used in the proofs are listed in § S7. Finally, § S8 provides

additional empirical details on prior illustration, posterior computation, remaining numeri-

cal results, hyperprior choices and additional sensitivity studies, and diagnostics on MCMC

algorithms.

S2 Supporting materials to the main document

S2.1 Empirical illustration of mass-shifting phenomenon of truncated multi-

variate Normal

We now empirically illustrate the conclusion of Theorem 2 by presenting the univariate marginal

density p̃1,N for different values of the dimension N and the bandwidth K. The density calculations

were performed using the R package tmvtnorm, which is based on the numerical approximation

algorithm proposed in [3] and subsequent refinements in [6, 7, 8]. We consider an N -dimensional

Figure S1: Left panel shows marginal density functions p̃1,N for K = 2 (black), K = 5 (red) and K = 20
(blue) with N = 100. Middle panel shows p̃1,N for N = 10 (black), N = 50 (red) and N = 100 (blue) with
K = 5. Right panel shows p̃1,N for (K,N) = (5, 25) (black), (20, 100) (red) and (50, 250) (blue).

correlation matrix ΣN = (σij) which is K-banded with σii = 1 + σ2
0 with σ2

0 = 10−6 for 1 ≤ i ≤ N
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and σij = ρ|i−j|∧10 for ρ = 0.9 and for all i, j such that 1 ≤ |i− j| < K; and σij = 0 otherwise.1 The

left panel of Figure S1 shows that for N fixed at a moderately large value, the probability assigned

to a small neighborhood of the origin decreases with increasing K. Also, the mode of the marginal

density increasingly shifts away from zero. A similar effect is seen for a fixed K and increasing

N in the middle panel and also for an increasing pair (K,N) in the right panel, where we see the

mass-shifting effect is accentuated as both N,K increase. This behavior perfectly aligns with the

main message of the theorem that the interplay between the truncation and the dependence brings

forth the mass-shifting phenomenon.

S2.2 Mass-shifting phenomenon for the unequal-variance case

In this section we discuss a generalization of Theorem 3 to the case where the scale matrix ΣN

contains unequal variances. Recall θ ∼ NC(µN ,ΣN ). We continue to consider an “approximately”

banded scale matrix ΣN such that for some integer 2 ≤ K ≤ N − 1 there exists a K-banded

symmetric and positive definite matrix Σ′N = (σ′ij) satisfying ‖ΣN − Σ′N‖ . (N logK)−1‖ΣN‖.

Compared to the equal-variance scenario considered in Theorem 3, the unequal variances {σ′ii} will

be taken into account for the assumption on the correlation structure of Σ′N accordingly. We now

provide assumptions and notations required in this case, which are very similar to those of Theorem

5. We let σ′2(1) and σ′2(N) denote the smallest and largest variances of Σ′N separately. Without loss

of generality, we assume σ′211 = σ′2(1). As one can always scale the matrix ΣN such that σ′2(1) = 1,

we assume σ′2(1) = 1 and let σ′2(N) = κ for some constant κ ≥ 1. Here κ can be interpreted as the

ratio of the largest and smallest variances. In addition, we denote by σ′min, σ
′
max the smallest and

largest off-diagonal entries of Σ′N within the K-band, respectively. Again, denote µ∗ = ‖µN‖∞ and

we assume σ′min, σ
′
max ∈ (0, 1).

Corollary S1. (Unequal variance). Fix β ∈ [0, 1). For the mode µN satisfying µ∗ ≤ Cρmin,ρmaxβ ·

Gα(ρmin, ρmax)(logK)1/2, and if (σ′min, σ
′
max, κ) ∈ Qκ, where Qκ takes the same form of Qs in

Theorem 5 by substituting s = κ. Then there exists some large enough integer K0 such that K > K0

1A small nugget term σ2
0 is added such that ΣN is positive definite. Details on (ρmin, ρmax) for all combinations

(N,K) are deferred to §S7.2 of the supplement. Here we denote a ∧ b = min(a, b) for any a, b ∈ R.
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and for any fixed δ > 0 we have

αN,δ ≤ C ′σ′min,σ
′
max,κ

δ (logK)1/2K−(1−β)Gα
(
σ′min/κ, σ

′
max

)
,

where the function Gα is same as defined in Theorem 2 for some α ∈ (0, 1), and the constants

Cρmin,ρmax , C
′
σ′min,σ

′
max,κ

> 0 do not depend on K,N .

S2.3 Additional plots in the main document

Additional graphical illustrations in the manuscript are summarized in this section.

S2.3.1 Additional plot in § 1

Figure S2: Monotone function estimation using the basis of [11] and a joint truncated normal prior
on the coefficients. Red solid curve corresponds to the true function, blue solid curve is the posterior
mean, the region within two dotted blue curves represent a pointwise 95% credible interval, and the
green dots are observed data points corresponding to N = 50 (left panel) and N = 250 (right panel).
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S2.3.2 Additional plot in § 2

Figure S3: The region shaded in black depicts Q from the statement of Theorem 2 in § 2 of the main
document.

S2.3.3 Additional plot in § 3

Figure S4: Scaled posterior scale matrix ΣN = (Ω−1
N + ΦTΦ)−1 defined in § 3 of the manuscript of

dimension N = 50 (left), N = 250 (middle) and N = 500 (right).
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S2.3.4 Additional plots in § 4

Model fit of function f2:

Figure S5: Same as Figure 2 in the main document for f2 with zoomed-in inset plots over x ∈ [0.5, 1].

6



Model fit of function f4:

Figure S6: Same as Figure 2 for f4.
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S3 Intermediate results

In this section, we provide several intermediate results that play important roles in the proofs of

main results in § 2 and § 3. Their proofs are deferred to § S6. We first introduce some notations

which will be used throughout the rest of the paper. For any d-dimensional vector a = [a1, . . . , ad]
T

we denote its sub-vector by a[i1 : i2] = [ai1 , . . . , ai2 ]T for any 1 ≤ i1 < i2 ≤ d. For two vectors a and b

of the same length, let a ≥ b (a ≤ b) denote the event ai ≥ bi (ai ≤ bi) for all i. For a fixed integer

d > 0 and value ρ ∈ (0, 1), we recall that Σd(ρ) denotes a symmetry-compound correlation matrix

with all off-diagonal elements taking on ρ. A key aspect of the compound-symmetry structure that

we exploit is for X ∼ N (0,Σd(ρ)) with ρ ∈ (0, 1), we can represent Xi
d
= ρ1/2w + (1 − ρ)1/2Wi,

where w,Wi’s are independent N (0, 1) variables. In addition, we define the matrix Σd(σ
2, ρ) = (σij)

with σii > 0 for 1 ≤ i ≤ d and σij = ρ for 1 ≤ i 6= j ≤ d and for some 0 < ρ < min1≤i≤d σii.

Let σ2
(1) = min1≤i≤d{σii} and σ2

(d) = max1≤i≤d{σii}. At last, we denote ρ̄(1) = (σ2
(1) − ρ)/ρ and

ρ̄(d) = (σ2
(d) − ρ)/ρ. Similarly, for X ∼ N (0,Σd(σ

2, ρ)), one obtains an equivalent expression as

Xi
d
= ρ1/2w + (σii − ρ)1/2Wi, for i = 1, . . . , N .

The following Lemma S1 provides a novel comparison result for two-sided Gaussian rectangular

probabilities in moderate or high dimensions, which can be considered as an extension of Slepian’s

inequality summarized in Lemma S4. For a truncated multivariate normal random vector θ ∼

NC(µN ,ΣN ) with a mode µN ≥ 0N , a scale matrix ΣN and C = [0,∞)N , fix an arbitrary δ > 0. A

key ingredient in the mass-shifting theory is to estimate

αN,δ = P(θ1 ≤ δ) =
P(0 ≤ Z1 ≤ δ, Z2 ≥ 0, . . . , ZN ≥ 0)

P(Z1 ≥ 0, Z2 ≥ 0, . . . , ZN ≥ 0)
,

where Z ∼ N (µN ,ΣN ).

Lemma S2 provides a sandwich bound for the numerator of the ratio in the preceding and

Lemma S3 provides a lower bound for the denominator of the ratio in the preceding. All Lemmas

will be repeated applied in the proofs of theorems in § 2 and § 3.

Lemma S1. (Generalized Slepian’s inequality.) Let X,Y be d-dimensional Gaussian vectors with

finite EXi = EYi and EX2
i = EY 2

i for all i and E(XiXj) ≤ E(YiYj) for all i 6= j. Then for any
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`1, u1 ∈ R such that `1 < u1 and u2, . . . ud ∈ R, we have

P
(
`1 ≤ X1 ≤ u1, X2 ≥ u2, . . . , Xd ≥ ud

)
≤ P

(
`1 ≤ Y1 ≤ u1, Y2 ≥ u2, . . . , Yd ≥ ud

)
.

Lemma S2. Let X ∼ N (µd,Σd(σ
2, ρ)), where the mean vector µd is fixed with µi ≥ 0 for i =

1, . . . , d, and Σd(σ
2, ρ) is the variance-correlation matrix defined as above and we assume 0 < ρ <

σ2
(1). Fix any δ > 0.

(Upper bound). For some α ∈ (0, 1) and for sufficiently large d, we have the upper bound

P(0 ≤ X1 < δ,X2 ≥ 0, . . . , Xd ≥ 0)

≤ Cδ
{

log(d− 1)− ρ−1/2 min
2≤i≤d

µi

}−1/2

· exp
(
−
[
{2(1− α) log(d− 1)}1/2 − (σ11 − ρ)−1/2

(
δ + min

2≤i≤d
µi − µ1

)]2
/2

−
[
2 ρ̄(1) {(1− α) log(d− 1)}1/2 − ρ−1/2 min

2≤i≤d
µi

]2/
2
)

+ exp(−(d− 1) α),

where C = {4π(σ11 − ρ)ρ̄(1) (1− α)}−1/2.

(Lower bound). In addition, we have the lower bound

P(0 ≤ X1 < δ,X2 ≥ 0, . . . , Xd ≥ 0)

≥ C ′δ {log(d− 1)}−1/2 exp
{
−
[
{2(1 + α) log(d− 1)}1/2 − (σ11 − ρ)−1/2

(
min

2≤i≤d
µi − µ1

)]2/
2

−
[
2 ρ̄(1) {(1 + α) log(d− 1)}1/2 − ρ−1/2 min

2≤i≤d
µi

]2/
2
}
,

where C ′ = {8π(σ11 − ρ)ρ̄(1) (1 + α)}−1/2.

Lemma S3. Assume the conditions in Lemma S2 are satisfied. Define µ∗ = max1≤i≤d{µj}, then

P(X1 ≥ 0, X2 ≥ 0, . . . , Xd ≥ 0)

≥
µ∗ρ−1/2 + (2ρ̄(d) log d)1/2{

µ∗ρ−1/2 + (2ρ̄(d) log d)1/2
}2

+ 1
exp

[
−
{
µ∗ρ−1/2 + (2ρ̄(d) log d)1/2

}2
/2
]
.
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S4 Proofs of main results

In this section, we provide proofs of Theorems 2,3 in § 2, Theorem 5 in § 3, Theorems 7 and 8 in § 4,

and Corollary S1 in § S2.2. We first introduce some notations which will be used for the rest of the

paper. For a constant a ∈ R, we denote by [a] the largest integer that is no greater than a. For two

quantities a, b, we write a . (&) b if a/b can be bounded from above (below) by some finite constant,

and we write a � b when a/b can be bounded from below and above by two finite constants. For

a N -dimensional vector a = [a1, . . . , ad]
T, for any subset of indexes A ⊂ {1, . . . , N} we denote a

partition of a based on A by a = [aA, aAc ]
T, where aA = {aj , j ∈ A} and aAc = {aj , j ∈ Ac} with

Ac = {1, . . . , N}\A. For a square matrix B, we denote by λmin(B) and λmax(B) the smallest and

largest eigenvalues of B, respectively. For two square matrices A,B of the same dimension, we say

A ≥ B if A − B is positive semi-definite. For two random variables X and Y , We write X d
= Y if

X and Y are identical in distribution.

S4.1 Proof of Theorem 2

There are two main steps that consist of the proof of Theorem 2. The first step is to obtain a

proper upper bound of the marginal probability αN,δ. The second step is to determine the allowable

magnitude of the supremum norm of the mode µN of the truncated multivariate normal distribution

in order for the obtained upper bound of αN,δ to decrease to 0 as K,N →∞.

Step 1. By definition,

αN,δ = P(θ1 ≤ δ) =
P(0 ≤ Z1 ≤ δ, Z2 ≥ 0, . . . , ZN ≥ 0)

P(Z1 ≥ 0, Z2 ≥ 0, . . . , ZN ≥ 0)
, (S4.1)

where Z ∼ N (µN ,ΣN ) where ΣN ∈ BN,K and µN is positive component-wise. We now proceed to

separately bound the numerator and denominator on the right hand side of equation (S4.1). Denote

µ∗ = min1≤j≤N (µj) and µ∗ = max1≤j≤N (µj).

We first consider the denominator in equation (S4.1), and use Slepian’s lemma to bound it from

below. It follows from Slepian’s inequality, see comment after Lemma S4 in § S7.1, that if X,Y are

d-dimensional Gaussian random variables with E(Xi) = E(Yi) and E(X2
i ) = E(Y 2

i ) for all i, and
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E(XiXj) ≤ E(YiYj) for all i 6= j, then

P(X1 ≥ 0, . . . , Xd ≥ 0) ≤ P(Y1 ≥ 0, . . . , Yd ≥ 0). (S4.2)

Figure S7: Left panel: example of ΣN with N = 18,K = 3. Right panel: the corresponding block
approximation Σ̃N .

The Slepian’s inequality is a prominent example of a Gaussian comparison inequality origi-

nally developed to bound the supremum of Gaussian processes. To apply Slepian’s inequality

to the present context, we construct another N -dimensional centered Gaussian random vector

S ∼ NN (µN , Σ̃N ) such that (i) S[1 :K]
d
= Z[1 :K], S[(K+1) : 2K]

d
= Z[(K+1) : 2K] and S[(2K+1) :N ]

d
=

Z[(2K+1) :N ], and (ii) the sub-vectors S[1 :K], S[(K+1) : 2K] and S[(2K+1) :N ] are mutually independent.

The correlation matrix Σ̃N of S clearly satisfies (ΣN )ij ≥ (Σ̃N )ij for all i 6= j by construction.

Figure S7 pictorially depicts this block approximation in an example with N = 18 and K = 3.

Applying Slepian’s inequality, we then have,

P(Z1 ≥ 0, . . . , ZN ≥ 0) ≥ P(S1 ≥ 0, . . . , SN ≥ 0)

= P(S[1 :K] ≥ 0)P(S[(K+1) : 2K] ≥ 0)P(S[(2K+1) :N ] ≥ 0)

= P(Z[1 :K] ≥ 0)P(Z[(K+1) : 2K] ≥ 0)P(Z[(2K+1) :N ] ≥ 0). (S4.3)
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Next, we consider the numerator in equation (S4.1). We have,

P(0 ≤ Z1 ≤ δ, Z2 ≥ 0, . . . , ZN ≥ 0)

≤ P
(
0 ≤ Z1 ≤ δ, Z[2 :K] ≥ 0, Z[(K+1) : 2K] ∈ RK , Z[(2K+1) :N ] ≥ 0

)
= P

(
0 ≤ Z1 ≤ δ, Z[2 :K] ≥ 0

)
P
(
Z[(2K+1) :N ] ≥ 0

)
. (S4.4)

The last equality crucially uses Z[1 :K] and Z[(2K+1) :N ] are independent, which is a consequence of

ΣN being K-banded. Taking the ratio of equations (S4.3) and (S4.4), the term P(Z[(2K+1) :N ] ≥ 0)

cancels so that

αN,δ ≤
P(0 ≤ Z1 ≤ δ, Z[2 :K] ≥ 0)

P(Z[1 :K] ≥ 0)P(Z[K+1 : 2K] ≥ 0)
= R. (S4.5)

To bound the terms P(Z[1 :K] ≥ 0) and P(Z[K+1 : 2K] ≥ 0) in the denominator of R, we resort to

another round of Slepian’s inequality. Recall that ρmin, ρmax denote the minimum and maximum

non-zero correlations in ΣN . Let Z ′′ ∼ N (µK ,ΣK(ρmin)). Also, recall from equation (2.1) that

ΣK(ρmin) denotes the K ×K compound-symmetry correlation matrix with all correlations equal to

ρmin. By construction, for any 1 ≤ i 6= j ≤ K, E(ZiZj),E(ZK+iZK+j) ≥ ρmin = E(Z ′′i Z
′′
j ). Thus,

applying Slepian’s inequality as in equation (S4.2),

P(Z[1 :K] ≥ 0)P(Z[K+1 : 2K] ≥ 0) ≥ {P(Z ′′ ≥ 0)}2.

The numerator of equation (S4.5) cannot be directly tackled by Slepian’s inequality, we instead

apply Lemma S1. Define a random variable Z ′ ∼ N (µK ,ΣK(ρmax)) and use Lemma S1 to conclude

that P(0 ≤ Z1 ≤ δ, Z[2 :K] ≥ 0) ≤ P(0 ≤ Z ′1 ≤ δ, Z ′[2 :K] ≥ 0).

Substituting these bounds in equation (S4.5), we obtain

R ≤ R′ =
P(0 ≤ Z ′1 ≤ δ, Z ′2 ≥ 0, . . . , Z ′K ≥ 0)

{P(Z ′′1 ≥ 0, . . . , Z ′′K ≥ 0)}2
. (S4.6)

The primary reduction achieved by bounding R by R′′ is that we only need to estimate Gaussian

probabilities under a compound-symmetry covariance structure.

Using the upper bound result of Lemma S2 by letting µ = µK , σii = 1 for 1 ≤ i ≤ K, ρ = ρmax
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and ρ̄(1) = ρ̄max = (1−ρmax)/ρmax, for sufficiently largeK such that µ∗ ≤
√

(1− ρmax)(1− α) log(K − 1)

and for any α ∈ (0, 1), we have

P(0 < Z ′1 ≤ δ, Z ′2 ≥ 0, . . . , Z ′K ≥ 0)

≤ δ [{2ρ̄max (1− α) log(K − 1)}1/2 − µ∗/ρ1/2
max]−1 exp

(
−
[
{2ρ̄max(1− α) log(K − 1)}1/2 − µ∗/ρ1/2

max

]2
/2

− (1− α) log(K − 1)

)
+ exp{−(K − 1)α}. (S4.7)

Next, applying Lemma S3 with a = µ∗, σii = 1 for all i, ρ = ρmin and ρ̄(N) = ρ̄min = (1 −

ρmin)/ρmin, one can lower bound the denominator of equation (S4.6),

P
(
Z ′′[1:K] ≥ 0

)
≥

µ∗ρ
−1/2
min + (2ρ̄min logK)1/2{

µ∗ρ
−1/2
min + (2ρ̄min logK)1/2

}2
+ 1

exp
[
−
{
µ∗ρ

−1/2
min + (2ρ̄min logK)1/2

}2
/2
]
.

(S4.8)

Combining equation (S4.7) and equation (S4.8) leads to the upper bound on R′ in equation

(S4.6),

R′ . δ(logK)1/2 exp
{
−
[
(2ρ̄max(1− α) log(K − 1))1/2 − µ∗/ρ1/2

max

]2/
2− (1− α) log(K − 1)

+
[
µ∗ρ

−1/2
min + (2ρ̄min logK)1/2

]2}
+ 4 ρ̄min logK exp

{
− (K − 1)α +

[
µ∗ρ

−1/2
min + (2ρ̄min logK)1/2

]2}
. (S4.9)

Since (ρmin, ρmax) ∈ Q, we have ρmin/{2(1− ρmin)} ≥ ρmax, or equivalently, 2ρ̄min < 1/ρmax. Thus,

we can always find α > 0 such that (1 − α)/ρmax − 2 ρ̄min > 0. Fix such an α, and substitute in

equation (S4.9). By choosing K0 large enough so that for any K > K0, the second term on the

right hand side of equation (S4.9) is smaller than the first term; this is possible since the second

term decreases exponentially while the first does so polynomially in K.

Step 2. To complete the proof, it remains to determine the condition on µN such that the obtained

upper bound of αN,δ in equation (S4.9) decreases to zero along with K under the assumptions.

Since for sufficient large K the first term on the right hand side of equation (S4.9) dominates, it

suffices to determine the feasible values of µN such that the exponent of the first term of the upper

bound in equation (S4.9) is negative under the assumption (ρmin, ρmax) ∈ Q, which is equivalent to
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µN ∈ S, where

S :=

{
µN ∈ (0,∞)N :

{
[2ρ̄max(1− α) log(K − 1)]1/2 − µ∗/ρ1/2

max

}2
/2

+ (1− α) log(K − 1)− 2
[
µ∗ρ

−1/2
min + (2ρ̄min logK)1/2

]2
> 0, for (ρmin, ρmax) ∈ Q

}
.

With some simplifications one can find a condtion subset S̃ ⊂ S for µ∗, where

S̃ :=

{
µ∗ ∈ (0,∞) : a log(K − 1)− b µ∗

√
logK > 0,

µ∗ ≤ min
{√

(1− ρmax)(1− α), ρmin

}√
log(K − 1), for (ρmin, ρmax) ∈ Q

}
,

(S4.10)

with

a =
1− α
ρmax

− 2 ρ̄min, and b =

√
2(1− α)(1− ρmax)

ρmax
+ 2

√
2(1− ρmin)

ρmin
. (S4.11)

We now determine feasible values of µ∗ in S̃. It is straightforward that b > 0. As discussed

in Step 1, given (ρmin, ρmax) ∈ Q there exists some α ∈ (0, 1) such that a = Gα(ρmin, ρmax) >

0. Fix such an α, for any β ∈ [0, 1) and any (ρmin, ρmax) ∈ Q, as long as choosing µ∗ ≤

βmin{1/b,
√

(1− α)(1− ρmax)/a, ρmin/a}a
√

log(K − 1) for sufficiently largeK, we have a log(K−

1) − b µ∗
√

logK ≥ a(1 − β) log(K − 1). Substitute the lower bound in the first term of the right

hand side of equation (S4.9), we then obtain the desirable upper bound αN,δ . δ(logK)1/2 (K −

1)−(1−β)G(ρmin,ρmax), for sufficiently large K and some α ∈ (0, 1). Finally, taking C ′ρmin,ρmax
=

min{1/b,
√

(1− α)(1− ρmax)/a, ρmin/a} completes the proof of Theorem 2.

S4.2 Proof of Theorem 3

We now prove Theorem 3 based on Theorem 2. The key observation is that if the scale matrix can

be approximated by a banded matrix well enough in operator norm, then the marginal probability

αN,δ of the truncated normal changes only up to a constant when the associated scale matrix is

replaced by its banded approximating matrix. We formulate this result as follows. Define random

vectors Z ∼ NC(µN ,ΣN ) and Z ′ ∼ NC(µN ,Σ′N ), where C = [0,∞)N and the mode µN = {µj}
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with µj ≥ 0 for j = 1, . . . , N . Also both ΣN ,Σ
′
N are non-negative and Σ′N is K-banded for some

integer 2 ≤ K ≤ N − 1.

Proposition S1. For Z ∼ NC(µN ,ΣN ) and Z ′ ∼ NC(µN ,Σ′N ) where C = [0,∞)N , if µN is a

non-negative fixed vector, and for sufficiently large N,K if there exists some ε . (N logK)−1 such

that ‖ΣN − Σ′N‖ . ε‖ΣN‖, then for any fixed δ > 0, we have

P(0 ≤ Z1 ≤ δ) � P(0 ≤ Z ′1 ≤ δ).

The proof of Proposition S1 is deferred to § S5.4. An application of Proposition S1 and Theorem

2 immediately yields the result of Theorem 3.

S4.3 Proof of Theorem 5

Proof of Part (a). Part (a) of Theorem 5 is an immediate application of Proposition S1 and Corol-

lary S1 by taking µ∗ = 0, β = 0. To see that, recall θc ∼ N (0,ΣN ) and define θ̃c ∼ N (0, Σ̃N ).

Given ‖ΣN − Σ̃N‖ . (N logK)−1‖ΣN‖ and by applying Proposition S1, then for any fixed δ > 0

one obtains Π(0 ≤ θc1 ≤ δ |Y ) � Π(0 ≤ θ̃c1 ≤ δ |Y ), by applying Proposition S1. Follow-

ing similar notations and assumptions in Corollary S1, denote σ̃2
(1) = min1≤i≤d σ̃ii, and define

θ̃′c = θ̃c/σ̃(1) and one have θ̃′c ∼ N (0, Σ̃′N ) where Σ̃′N = Σ̃N/σ̃
2
(1). Define δ̃ = δ/σ̃(1), then we have

Π(0 ≤ θ̃c1 ≤ δ) = Π(0 ≤ θ̃′c1 ≤ δ̃). Then applying Corollary S1, we obtain the desired upper bound

of Π(0 ≤ θc1 ≤ δ), which yields the result in Part (a).

Proof of Part (b). We now provide a detailed proof of Part (b) of Theorem 5. We still follow

the main line of arguments in the proof of Theorem 2, that we first obtain a proper upper bound

of the marginal posterior probability, then analyze the relation between the posterior mode and

the obtained upper bound. However, the posterior mode is a random vector under the true data-

generating process, thus bounding the posterior mode leads to a high probability result, which is

different from Step 2 of the proof of Theorem 2.

Let X ∼ N (µN ,ΣN ) with µN = ΣNΦTY and ΣN = (ΦTΦ + Ω−1
N )−1, and let X̃ ∼ N (µN , Σ̃N )

where Σ̃N is K-banded and satisfies ‖ΣN − Σ̃N‖ . (N logK)−1‖ΣN‖ by Proposition 4. Re-

call σ̃2
(1), σ̃

2
(N) denote the smallest and largest diagonal elements of Σ̃N separately. Define X̃ ′ ∼
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N (µ̃N , Σ̃
′
N ), where µ̃N = µN/σ̃(1) = (ρ̃ij) and Σ̃′N = Σ̃N/σ̃

2
(1). Therefore Σ̃′N = (ρ̃ij) is also K-

banded. Under the assumptions, we have ρ̃11 = 1 denoting smallest diagonal element of Σ̃′N and

κ̃ = σ̃2
(N)/σ̃

2
(1) is the largest diagonal element of Σ̃′N . Also recall that ρ̃min and ρ̃max denote the

smallest and largest positive off-diagonal entries of Σ̃′N , respectively. For any fixed δ > 0, define

δ̃ = δ/σ̃(1).

Now we are ready to bound the marginal posterior probability Π(0 < θ1 < δ | Y ) for any fixed

δ > 0. Define X̃c = X̃ ′ − µ̃N ∼ N (0N , Σ̃
′
N ) with µ̃N = Σ̃′NΦTY . By definition,

Π(0 < θ1 < δ | Y ) .
P(0 ≤ X̃1 ≤ δ, X̃2 ≥ 0, . . . , X̃N ≥ 0 | Y )

P(X̃1 ≥ 0, X̃2 ≥ 0, . . . , X̃N ≥ 0 | Y )

≤
P(0 ≤ X̃ ′1 ≤ δ̃, X̃ ′2 ≥ 0, . . . , X̃ ′K ≥ 0 | Y )

P
(
X̃ ′[1:K] ≥ 0

)
P
(
X̃ ′[(K+1):2K] ≥ 0 | Y

)
=

P(0 ≤ X̃c
1 + µ̃1 ≤ δ̃, X̃c

2 + µ̃2 ≥ 0, . . . , X̃c
K + µ̃K ≥ 0 | Y )

P
(
X̃c

[1:K] + µ̃[1:K] ≥ 0
)
P
(
X̃c

[(K+1):2K] + µ̃[(K+1):2K] ≥ 0 | Y
) . (S4.12)

The first inequality is an immediate application of Proposition S1. To arrive at the second inequality

we first apply the change of variables X̃ ′ = X̃/σ̃(1) and then apply the same technique used in

obtaining the upper bound of R1 in equation (S4.53) in the proof of Corollary S1, with an application

of Lemma S1 and Lemma S4.

Bounding the posterior mode. Note that µN is a Gaussian random vector under the true data-

generating distribution denoted by P0. Under the true model, one obtains the marginal distribution

of the mode µN ∼ N (0,ΣNΦTΦΣN ) with ΣN = (ΦTΦ + Ω−1)−1. Assuming N = o(n) and under

Assumptions 1 and 2, one obtains C−1
2 (N/n) IN ≤ ΣN ≤ C−1

1 (N/n) IN, where C1, C2 are constants

defined in Assumption 1. Simple calculations lead to facts ΣNΦTΦΣN ≤ ΣN and ‖ΣNΦTΦΣN −

ΣN‖ ≤ ‖ΣNΩ−1ΣN‖ ≤ (C2λ0)−1(N/n)2, where λ0 is same as in Assumption 2. Combining these

results yields a sharp sandwiched bound ΣN − (C2λ0)−1(N/n)2IN ≤ ΣNΦTΦΣN ≤ ΣN . Then, for

sufficiently large N,n we have ΣNΦTΦΣN = ΣN + o(N/n)IN. Then we have for sufficiently large

N,n, µ̃N = µN/σ̃(1) ∼ N (000N ,ΣN/σ̃
2
(1)).

Since the ratio in the last line of equation (S4.12) depends on the sub-vector µ̃[1:2K], as follows

we define a high probability set of µ̃[1:2K], using the concentration property of Lipschitz functions

of dependent Gaussian random variables. We remark that the result can be easily applied to sub-

vectors of µN over different dimensions. For any integer 2 ≤ K < [N/2], it is well known that
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max1≤i≤2K{µ̃i} is a Lipschitz function of {µ̃i, i = 1, . . . , 2K} with the Lipschitz constant σ2
µ,max =

max1≤i≤2K{var(µ̃i)} ≤ σ2
(N)/σ̃

2
(1). Now applying the concentration inequality of a Lipschitz function

of Gaussian random variables, for any εK > 0, we have

P
{∣∣∣ max

1≤i≤2K
µ̃i − E

(
max

1≤i≤2K
µ̃i

)∣∣∣ > εK/2
}
≤ 2 exp

{
−ε2K/(8σ2

µ,max)
}
. (S4.13)

It is easy to show that E(max1≤i≤2K{µ̃i}) = O(
√

log(2K)) by using Sudakov’s minoration and

Slepian’s lemma (see, e.g., Theorem 3.14 in [12]) for sufficiently large K. To simplify the com-

putation, we proceed with a slightly different representation by introducing a positive constant

M = M(K) that may depend on K such that E(max1≤i≤2K{µ̃i}) =
√

2M logK for sufficiently

large K. Also note that −min1≤i≤2K{µ̃i} = max1≤i≤2K{−µ̃i}
d
= max1≤i≤2K{µ̃i}, by the symmetry

of µ̃N about the origin. Fix such anM , take εK = (2γ logK)1/2 for some small constant 0 < γ < M

to be chosen later, and choose another sufficiently small constant β ∈ (0, 1), we define the following

event

A =

{
µ̃ ∈ R2K :

√
2(M − γ) logK ≤ − min

1≤i≤2K
µ̃i ≤

√
2(M + γ) logK, |µ̃1| ≤ (2 logK)(1−β)/2

}
.

Note that based on the event A, there exists γ′ ∈ (γ,M) such that for the set defined as

A′ =
{
µ̃ ∈ RK :

√
2(M − γ′) logK ≤ − min

2≤i≤K
µ̃i + µ̃1 ≤

√
2(M + γ′) logK

}
. (S4.14)

We have A ⊂ A′ and

P(Ac) ≤ 8K−γ/(2σ
2
µ,max) + 2P(|µ̃1| ≥ (2 logK)(1−β)/2)

≤ 3(2 logK)(1−β)/2 exp{−c0(logK)1−β}, (S4.15)

where c0 = σ̃2
(1)/σ

2
11. The second inequality holds by applying (S4.13) and applying Lemma S7 for

sufficiently large K.

Then combining results in equations (S4.12), (S4.14) and (S4.15), we have with at least P0-
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probability of 1− 3(2 logK)(1−β)/2 exp{−c0(logK)1−β} ,

Π(0 < θ1 < δ | Y ) ≤

supµ̃[1:2K]∈A′ P(0 ≤ X̃c
1 + µ̃1 ≤ δ̃, X̃c

2 + µ̃2 ≥ 0, . . . , X̃c
K + µ̃K ≥ 0)

inf µ̃[1:2K]∈A′
{
P
(
X̃c

[1:K] + µ̃[1:K] ≥ 0[1:K]

)}
infµ̃[1:2K]∈A′

{
P
(
X̃c

[(1+K):2K] + µ̃[(1+K):2K] ≥ 0[(1+K):2K]

)} .
(S4.16)

Bounding Π(0 < θ1 < δ | Y ). The rest of the proof follows a similar line of arguments in proving

Corollary S1 in § S2.2. To bound the denominator of the obtained upper bound in equation (S4.16),

we first bound the term inf µ̃[1:2K]∈A′ P(X̃c
[1:K] + µ̃[1:K] ≥ 0K). Recall X̃c ∼ N (0K , Σ̃

′
N ) with Σ̃′N ) =

(ρ̃ij). Define Ỹ ∼ N (0K ,Σ
′
K), where the covariance matrix Σ′K = (ρ′ij) such that ρ′ii = ρ̃ii for

i = 1, . . . ,K and ρ′ij = ρ̃min for 1 ≤ i 6= j ≤ K. Then we have E(ỸiỸj) ≤ E(X̃c
i X̃

c
j ) for 1 ≤ i 6= j ≤ K

and E(Ỹ 2
i ) = E[(X̃c

i )
2] for 1 ≤ i ≤ K. Then by Lemma S4 we obtain the lower bound

P(X̃c
[1:K] + µ̃[1:K] ≥ 0K) ≥ P(Ỹ[1:K] + µ̃[1:K] ≥ 0K).

Then applying Lemma S3 by taking d = K, ρ = ρ̃min, ρ̄(K) = (κ̃−ρ̃min)/ρ̃min and a = maxµ̃[1:2K]∈A′{µ̃i},

for sufficiently large K, we have

inf
µ̃[1:2K]∈A′

P
(
Ỹ[1:K] + µ̃[1:K] ≥ 0K

)
≥ inf

µ̃[1:2K]∈A′
P
(
Ỹ[1:K] ≥ max

µ̃[1:2K]∈A′
{µ̃i}1K

)

≥

(
ρ̄

1/2
(K) + ρ̃

−1/2
min (M + γ′)1/2

)√
logK(

ρ̄
1/2
(K) + ρ̃

−1/2
min (M + γ′)1/2

)2
logK + 1

K
−
(
ρ̄
1/2
(K)

+ρ̃
−1/2
min (M+γ′)1/2

)2
.

(S4.17)

The second inequality is attained by taking maxµ̃[1:2K]∈A′{µ̃i} =
√

2(M + γ′) logK under the set

A′. We obtain a same lower bound for the term infµ̃[1:2K]∈A′ P(X̃c
[(K+1):2K] + µ̃[(K+1):2K] ≥ 0K) as

the leading constants M,γ′ are universal for {µ̃i : 1 ≤ i ≤ 2K}.

Now we upper bound the numerator of the ratio in equation (S4.16). Again, define Z ∼

N (0K ,Σ
′′
K) where Σ′′K = (ρ′′ij) satisfies ρ′′ii = ρ̃ii for 1 ≤ i ≤ K and ρ′′ij = ρ̃max for 1 ≤ i 6= j ≤ K.

Then E(ZiZj) ≥ E(X̃c
i X̃

c
j ) for 1 ≤ i 6= j ≤ K and E(Z2

i ) = E[(X̃c
i )

2] for 1 ≤ i ≤ K. Applying
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Lemma S1 leads to, for any µ̃ ∈ A′,

P(0 ≤ X̃c
1 + µ̃1 ≤ δ̃, X̃c

2 + µ̃2 ≥ 0, . . . , X̃c
K + µ̃K ≥ 0)

≤ P(0 ≤ Z1 + µ̃1 ≤ δ̃, Z2 + µ̃2 ≥ 0, . . . , ZK + µ̃K ≥ 0). (S4.18)

Next step is to obtain an upper bound for the right hand side of the preceding. Let d = K,

σ2
(1) = ρ′′11 = 1, ρ = ρ̃max and ρ̄(1) = (1 − ρ̃max)/ρ̃max, for sufficient large N,K and for some

α ∈ (0, 1), applying Lemma S2 implies

sup
µ̃[1:2K]∈A′

P(0 ≤ Z1 + µ̃1 ≤ δ̃, Z2 + µ̃2 ≥ 0, . . . , ZK + µ̃K ≥ 0)

≤ δ̃ [{ρ̄max (1− α) + ρ̃−1
max(M − γ′)} log(K − 1)]−1/2 ·K

−
{

(1−α)+
√

M−γ′
1−ρ̃max

}2

−
{

(1−α)ρ̄max+
√
M−γ′
ρ̃max

}2

+ e−(K−1)α . (S4.19)

The supremum of the probability attains when −min2≤i≤K µ̃i+ µ̃1 =
√

2(M − γ′) logK and there-

fore the inequality holds. The above bound in equation (S4.19) is simplified as δ̃ is fixed and is

dominated by
√

2(M − γ′) logK for sufficiently large K.

Now applying results in equations (S4.17),(S4.18) and (S4.19) to equation (S4.16), we obtain

the upper bound of the marginal posterior probability Π(0 ≤ θ1 ≤ δ̃ | Y ). With P0-probability at

least 1− 3(2 logK)(1−β)/2 exp{−c0(logK)1−β}, we have

Π(0 ≤ θ1 ≤ δ̃ | Y ) ≤ Cκ̃,ρ̃min,ρ̃max δ̃ log(K)1/2K
−
{

(1−α)+
√

M−γ′
1−ρ̃max

}2

−
{

(1−α)ρ̄max+
√
M−γ′
ρ̃max

}2

+2

(
ρ̄
1/2
min,κ+

√
M+γ′
ρ̃min

)2

+ C ′ρ̄min,κ,ρ̃min
logK · e−(K−1)α K

2

(
ρ̄
1/2
min,κ+

√
M+γ′
ρ̃min

)2

, (S4.20)

where Cκ̃,ρ̃min,ρ̃max = {ρ̄max (1 − α) + ρ̃−1
max(M − γ′)}1/2/C ′ρ̄min,κ,ρ̃min

and C ′ρ̄min,κ,ρ̃min
= {ρ̄1/2

min,κ +

ρ̃
−1/2
min (M + γ′)1/2}2.

To complete the proof it remains to show that under the condition (ρ̃min, ρ̃max, κ̃) ∈ Qκ̃ and under

set A′, there exist constants γ, γ′ > 0 such that the desired bound is attained given β,M > 0 for

sufficiently large K > 0. Again, for sufficiently large K, the term e−(K−1)α decreases exponentially

fast so the second term of the right hand side of equation (S4.20) is negligible compared to the first
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terms. Similar to the proof of Theorem 2, we first find sufficient conditions of (γ, γ′) such that the

first term on the right hand side of equation (S4.20) decreases with K under the assumptions. To

that end, for sufficiently large K, and for the defined M and some α ∈ (0, 1), we define the set of

γ, γ′ as

T =

{
(γ, γ′) ∈ (0,∞)⊗ (γ,M) :

{√
1− α+

√
M − γ′

1− ρ̃max

}2

+

{√
(1− ρ̃max)(1− α)

ρ̃max
+

√
M − γ′
ρ̃max

}2

− 2

{√
κ̃− ρ̃min

ρ̃min
+

√
M + γ′

ρ̃min

}2

> 0, for (ρ̃min, ρ̃max, κ̃) ∈ Qκ̃
}
.

It is easy to see that (γ, γ′) ∈ T ensures the first term of the upper bound in equation (S4.20)

decreases with K. With some calculations one can obtain a subset T ′ ⊂ T , where

T ′ =
{

(γ, γ′) ∈ (0,∞)⊗ (γ,M) : aM + b
√
M + c− (a′γ′ + b′

√
γ′) > 0,

for (ρ̃min, ρ̃max, κ̃) ∈ Qκ̃
}
,

with

a =
1− α
ρ̃max

+
1− α

1− ρ̃max
− 2

κ̃min
, a′ =

1− α
ρ̃max

+
1− α

1− ρ̃max
+

2

ρ̃min
,

b = 2

(√
1− α

1− ρ̃max
+

√
(1− α)(1− ρ̃max)

ρ̃max
− 2

√
κ̃− ρ̃min

ρ̃min

)
,

b′ = 2

(√
1− α

1− ρ̃max
+

√
(1− α)(1− ρ̃max)

ρ̃max
+ 2

√
κ̃− ρ̃min

ρ̃min

)
,

c =
1− α
ρ̃max

− 2(κ̃− ρ̃min)

ρ̃min
. (S4.21)

Then under T ′, it can be shown that the first term of the upper bound in equation (S4.20) is

bounded above by a multiple of (logK)1/2K−{aM+b
√
M+c−(a′γ′+b′

√
γ′)}. Thus the rest of the proof is

to show that the set T ′ is not empty. It suffices to show there exist γ, γ′ such that γ′ ∈ (γ,M) and

aM+b
√
M > a′γ′+b′

√
γ′ for large enoughK and for the definedM . First, note that the assumption

(ρ̃min, ρ̃max, κ̃) ∈ Qκ̃ leads to c > 0 for some α ∈ (0, 1) and this implies ρ̃max > 1/2. Fix such an α,

then it implies a > 0 based on ρ̃max > 1/2. In addition, applying the inequality a + b ≥ 2
√
ab for

a, b ≥ 0 to the first two terms of b implies b/2 ≥ 2(
√

(1− α)/
√
ρ̃max −

√
(κ̃− ρ̃min)/ρ̃min). Further
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we can show that
√

(1− α)/
√
ρ̃max >

√
(κ̃− ρ̃min)/ρ̃min given c > 0 and ρ̃max > 1/2. Therefore,

under the assumptions in Theorem 5 we have a, a′, b, b′, c > 0. Then by choosing γ′ > 0 such that

max{γ′,
√
γ′} ≤ min{M, (aM + b

√
M)/{2(a′ + b′)}} and choosing any γ < γ′ yields the result

Π(0 ≤ θ1 ≤ δ |Y ) . δ̃(logK)1/2K−c

with at least P0-probability 1−3(2 logK)(1−β)/2 exp{−c0(logK)1−β} for K > K0, where c is defined

in (S4.21), K0 is a sufficiently large integer and c0 = σ̃2
(1)/σ

2
11. We then complete the proof of Part

(b).

S4.4 Proof of Theorem 7

Write the joint prior ξ | τ,Λ ∼ NC(0N , τ2ΛΣΛ), where Λ = Diag({λ1, . . . , λN}) with λj
i.i.d.∼ C+(0, 1)

and τ > 0 is some fixed constant which may depend on n to be chosen later. The posterior

distribution is expressed as ξ|τ,Λ, Y ∼ NC(µN ,Ω−1) with µN = Ω−1ΦTY and Ω−1 = (ΦTΦ +

Λ−1Σ−1Λ−1/τ2). For simplicity, we adopt the same notation introduced in Section 3, and abuse

the notation αN,δ to denote the marginal posterior probability over (0, δ) for any fixed δ > 0, i.e.,

let αN,δ := Π(0 < ξ1 < δ|τ, Y ). It suffices to show that for any fixed δ > 0 and for some sequence

{τn}, there exists a lower bound on E0(αN,δ) which goes to 1 as n → ∞, τn → 0 almost surely,

where E0(·) denotes taking expectation with respect to the true data generating function.

We first obtain a lower bound of αN,δ. Denote ξ̃ = ξ−µN ∼ N (0N ,Ω
−1). It is easy to see that

αN,δ ≥
P(‖µN‖∞ < ξ̃1 < δ + ‖µN‖∞, ξ̃2 > ‖µN‖∞, · · · , ξ̃N > ‖µN‖∞ | τn, Y )

P(ξ̃1 > −‖µN‖∞, ξ̃2 > −‖µN‖∞, · · · , ξ̃N > −‖µN‖∞ | τn, Y )
=: P. (S4.22)

Then E0(αN,δ) ≥ E0(P ). To proceed, we shall first state two high probability results for the posterior

scale matrix Ω−1 and posterior mode µN separately.

Bound Ω−1. The idea is to show that the posterior scale matrix is dominated by the prior scale

matrix with high probability in the presence of a sufficiently small global shrinkage prior. We

first bound the operator norm of the matrix ΛΣΛ with high probability. For some small constant

β ∈ (0, 1), let τn = O(n−1/(1−β)), then denote AΩ = {‖ΛΣΛ‖ ≤ N/(nτ2−2β
n )}, we shall show

P(AΩ) ≥ 1 −
√
nNτ2−2β

n . Under Assumption 1, we have C1(n/N)IN ≤ ΦTΦ ≤ C2(n/N)IN for
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constants C1, C2 > 0. And under Assumption 2, there exists λ0 > 0 such that

λ0τ
−2
n min

1≤j≤N
(λ−2
j ) ≤ λmin(Λ−1Σ−1Λ−1/τ2

n) ≤ λmax(Λ−1Σ−1Λ−1/τ2
n) ≤ (1/λ0)τ−2 max

1≤j≤N
(λ−2
j ).

Given the above result, one can show

P
(
λ0τ

−2
n min

1≤j≤N
(λ−2
j ) ≥ τ−2β

n ‖ΦTΦ‖
)
≥ P

(
λ0τ

−2
n min

1≤j≤N
(λ−2
j ) ≥ C2n/(Nτ

2β
n )
)

= Πn
j=1

{
P
(
λj ≤

√
C ′2N/(nτ

2−2β
n )

)}
≈
(

1−
√
nτ2−2β

n /(C ′2N)

)N
≥ 1−

√
C ′−1

2 nNτ2−2β
n , (S4.23)

for some constant C ′2 > 0. The third line of the preceding uses the fact that for λj ∼ C+(0, 1),

for sufficiently large a > 0 one has Πλ(λj > a) ≈ a−1 for j = 1, . . . , N . The last line uses the

inequality (1−x)n ≥ 1−nx for any x ∈ [0, n−1) and the fact that
√
nNτ1−β

n = O(N/n) by choosing

τn = O(n−1/(1−β)). Under the set AΩ, one can easily see that Ω−1 ≈ τ2
nΛΣΛ for sufficiently

large n,N . This result indicates that the prior matrix employed with the global-local shrinkage

parameters dominates the posterior scale matrix with high probability, and essentially shrink the

posterior scale matrix to a zero matrix.

Bound ‖µN‖∞. We now state the concentration property of ‖µN‖∞ under the true data generating

function. First note that µN ∼ N (0N , τ
4
nΛΣΛΦTΦΛΣΛ). Under Assumption 1 and under the

set AΩ, it is easy to show that ‖τ4
nΛΣΛΦTΦΛΣΛ‖ . τ2+2β

n ‖ΛΣΛ‖. It is well know that ‖µN‖∞ =

max1≤i≤N (|µi|) is a Lipschitz function with the Lipschitz constant denoted by σ2
max = τ2+2β

n ‖ΛΣΛ‖,

under the set AΩ. Further, one can show that E0‖µN‖∞ ≤ M0τ
1+β
n

√
‖ΛΣΛ‖ logN for some

constant M0 > 0. Then apply the concentration inequality of the Lipschitz function of Gaussian

variables, choosing tN = 2M0τ
1+β
n

√
‖ΛΣΛ‖ logN one can obtain P0(‖µN‖∞ > tN ) ≤ 2N−2. For

convenience, we denote Aµ = {‖µN‖∞ ≤ tN} with P(Acµ) ≤ 2N−2.

Now we are ready to bound E0(P ) from below. Denote A = AΩ ∩ Aµ. Then one has P0(A) ≥

P(AΩ)− P0(Acµ) & 1−
√
nNτ2−2β

n − 2N−2, based on the above result and equation (S4.23). Then
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under set A, one can obtain

P ≥ P(tn < ξ̃1 < δ + tn, ξ̃2 > tn, · · · , ξ̃N > tn)

P(ξ̃1 > −tn, ξ̃2 > −tn, · · · , ξ̃N > −tn)
:= P ′.

Then

E0(P ) ≥ E0(P ′1A) ≥ P0(A) inf
A
P ′.

It suffices to bound infA P
′. By change of variables, let ξ′ = ξ̃/(τn‖ΛΣΛ‖1/2) and ξ′ ∼ N (0N ,Ω

′−1)

with ‖Ω′−1‖ ≤ 1. Denote t′n = 2M0τ
β
n
√

logN , then it is straightforward to see that

inf
A
P ′ =

P(t′n < ξ′1 < δ/(τn‖ΛΣΛ‖1/2) + t′n, ξ
′
2 > t′n, · · · , ξ′N > t′n)

P(ξ′1 > −tn, ξ′2 > −t′n, · · · , ξ′N > −t′n)
.

It is easy to see that by choosing τn � O(n−1/(1−β)), we have t′n → 0 and δ/(τn‖ΛΣΛ‖1/2) ≥

δτ−βn
√
n/N →∞ for any fixed δ > 0, as n,N →∞. Then,

lim
n,N→∞

inf
A
P ′ =

P(0 ≤ ξ′1 ≤ ∞, ξ′2 ≥ 0, · · · , ξ′N ≥ 0)

P(ξ′1 ≥ 0, ξ′2 ≥ 0, · · · , ξ′N ≥ 0)
= 1.

Combining the above result with the result that limn,N→∞ P0(A) = 1 completes the proof of Theo-

rem 7. Note that in the theorem, we let α = (1− β)−1 − 1.

S4.5 Proof of Theorem 8

In this section, we prove equations (4.6) and (4.7). We shall first provide a detailed proof of equation

(4.6). As the proof of equation (4.7) is similar to that of (4.6), we omit some details and only

highlight the difference. We begin by introducing some new notations used in the proof. For two

densities p, q that are absolutely continuous with respect to the Lebesgue measure µ, the Kullback–

Leibler divergence between p and q is defined as KL(p, q) =
∫
p log(p/q)dµ and the V -divergence is

defined as V (p, q) =
∫
p log2(p/q)dµ. Denote by fC+(x) = 2/(π(1 + x2))1(x ≥ 0) the density of the

default half-Cauchy distribution C+(0, 1). Denote P0 = N (f0, σ
2
0In) and PN = N (Ψθ, σ2In). We

denote by Π(·) the joint prior distribution for (θ, λ, σ2), and we use Πθ,λ(·), Πθ|λ(·),Πλ(·),Πσ(·) to

denote priors for (θ, λ), θ|λ, λ, σ2 separately. Recall that the prior for θ conditioning on λ is restricted

to the set C, for computational convenience, we also define the unconstrained parameter denoted
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by θ′ where θ′|λ ∼ N (0N , τ
2ΛΩNΛ) and we denote by Πθ′|λ(·) the corresponding unconstrained

prior. Then we have Πθ|λ(·) = Πθ′|λ(·)1C(·)/Πθ′|λ(C) given any λ > 0N . For any 1 ≤ j ≤ N , when

λj = 0 the prior Πθj |λj (·) = δ0(·) is degenerated to a Dirac measure at 0. In addition, we define the

marginal prior of θ by integrating λ > 0N out,

ΠC(θ) =

∫
λ>000 Πθ′|λ(θ)1C(θ)Π(λ)dλ∫
λ>000

∫
C Πθ′|λ(θ)Π(λ)dθdλ

, (S4.24)

the denominator is the normalizing constant denoted byMC .

Bounding MC. It is easy to check that the scale matrix ΩN = (ωij) induced from a Gaussian

process with a Mátern kernel in § 4.1 satisfies Assumption 2 with some λ0, α0 > 0, which indicates

that the scale matrix ΩN is approximately banded. Thus to bound MC , we will first construct a

strictly banded symmetric and positive definite matrix Ω′N that approximates ΩN well. Then we

apply similar techniques to Ω′N used in deriving the equation (S4.3) in the proof of Theorem 2 to

boundMC .

Based on Proposition 4, one can show that there exists a K-banded symmetric positive definite

matrix Ω′N = (ω′ij) such that ‖ΩN−Ω′N‖ . (N logK)−1, as long as the band width K & (logN)t for

some t > 0. To simplify the analysis, we assume that Ω′N has equal variances and it is non-negative.

We remark that the analysis can be extended to unequal-variance case, with an applications of

techniques used in proving Corollary S1. Denote ω′ii = σ′2 for 1 ≤ i ≤ N and assume ω′min =

min1≤|i−j|<K{ω′ij} ∈ (0, σ′2). Then the following Proposition provides a lower bound ofMC .

Proposition S2. Assume ΩN satisfies Assumption 2, and for some integer K = O(N) there exists

a K-banded symmetric and positive definite matrix Ω′N such that ‖ΩN − Ω′N‖ . (N logN)−1. Also

assume Ω′N has equal variances and is non-negative. Then there exists some constant t0 > 2 such

that

MC & (logN)−t0/2N−t0ω̄
′
min ,

where ω̄′min = (σ′2 − ω′min)/ω′min.

The proof of Proposition S2 is deferred to § S5.5. We remark that as we assume ω′min does not

change along with N , Proposition S2 posits the lower bound ofMC decreases at a polynomial rate
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as N goes to infinity. And choosing K = O(N) serves a technical purpose of controlling the lower

bound ofMC . For convenience, we denote the obtained lower bound byM′C = (logN)−t0/2N−t0ω̄
′
min

in Proposition S2.

We are now ready to prove equations (4.6) and (4.7).

Proof of equation (4.6). Following the seminal work of [9], it suffices to show that under the

conditions in Theorem 8, for the defined sequence of {εn}, there exist a sequence of sieves {Fn}

over the parameter space of (θ, σ2) and a sequence of test functions {φn} satisfying the following

conditions:

Π{(θ, σ2) : KL(P0, PN ) ≤ nε2n;V (P0, PN ) ≤ nε2n} & e−c1nε
2
n , (S4.25)

Π(Fcn) . e−c2nε
2
n , (S4.26)

E0(φn) . e−c3nε
2
n , sup

(θ,σ2)∈Fn:‖θ−θ0‖≥M1σ0
√
Nεn,

or |σ2−σ2
0 |≥σ2

0εn

Eθ,σ2(1− φn) . e−c3nε
2
n , (S4.27)

for some constants c1, c2, c3,M1 > 0.

Part I. We first verify condition (S4.25) by following a similar line of arguments in [1]. We have

KL(P0, PN ) =
n

2

[
σ2

0

σ2
− 1− log

σ2
0

σ2

]
+
‖f0 −Ψθ‖2

2σ2
,

V (P0, PN ) =
n

2

[(
σ2

0

σ2

)2

+ 1− 2
σ2

0

σ2

]
+
σ2

0

σ2

‖f0 −Ψθ‖2

σ2
.

Similar to [1], define

B1 =

{
σ2 :

σ2
0

σ2
− 1− log

σ2
0

σ2
≤ ε2n

}
,

and

B2 =

{
(θ, σ2) :

‖f0 −Ψθ‖2

σ2
≤ nε2n;

σ2
0

σ2

‖f0 −Ψθ‖2

σ2
≤ nε2n

}
.

It is easy to see that
{
KL(P0, PN ) ≤ nε2n;V (P0, PN ) ≤ nε2n

}
⊃ B1 ∩ B2. Further we define B̃1 =

{σ2 : σ2
0/(1 + εn) ≤ σ2 < σ2

0} and it is also easy to see that B̃1 ⊂ B1. Since σ2 ∼ IG(a0, b0), we have

Πσ(B1) ≥ Πσ(B̃1) �
∫ σ2

0

σ2
0/(1+εn)

(σ2)−a0−1e−b0/σ
2 ≥ (σ2

0)−a0−1e−b0(1+εn)/σ2
0 & e−C1nε2n ,
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for some constant C1 > 0 and for sufficiently large n. Conditioning the set B2 on B1, we have

‖Ψθ − f0‖2

σ2
(1 + εn) ≤ 2

σ2
0

‖Ψθ − f0‖2 .

Thus Π(B2 | B1) ≥ ΠC(‖Ψθ − f0‖2 ≤ nε2n). Applying the triangular inequality and Lemma 1, we

have

‖Ψθ − f0‖2 ≤ 2 ‖Ψ(θ − θ0)‖2 + 2 ‖Ψθ0 − f0‖2

. ‖Ψ(θ − θ0)‖2 + n ‖Ψθ0 − f0‖2∞

≤ ‖Ψ(θ − θ0)‖2 + nε2n.

Then it suffices to bound ΠC(‖Ψ(θ − θ0)‖2 ≤ nε2n). Next, we can show

‖Ψ(θ − θ0)‖2 ≤ λmax(ΨTΨ) ‖θ − θ0‖2 . n ‖θ − θ0‖21 .

The second inequality in the preceding uses Assumption (A2) that λmax(ΨTΨ) . n/N and Cauchy-

Schwarz inequality ‖θ − θ0‖ ≤
√
N‖θ − θ0‖1. Then ΠC(‖Ψ(θ − θ0)‖2 ≤ nε2n/2) ≥ ΠC(‖θ − θ0‖1 ≤

εn/2). To proceed, we consider two cases separately: (i) 0 < s0 < N and (ii) s0 = N .

Case (i). Recall θ = [θS0 , θSc0 ] and θ0 = [θ0S0 , θ0Sc0
]. To simplify the notation we let θ1 =

θS0 ,θ2 = θSc0 and let θ01 = θ0S0 ,θ02 = θ0Sc0
. Similarly, for the unconstrained θ′ = [θ′S0

, θ′Sc0
] we

denote θ′1 = θ′S0
,θ′2 = θ′Sc0

. Accordingly, we have λ = [λS0 , λSc0 ] with λS0 = {λj , j ∈ S0} and

λSc0 = {λj , j ∈ Sc0} and we partition the diagonal matrix Λ with Λ1 = diag({λj , j ∈ S0}) and

Λ2 = diag({λj , j ∈ Sc0}). Now we partition the prior scale matrix ΩN = [Ω11 Ω12; Ω21 Ω22], where

Ω11 = (ωij) for i, j ∈ S0, Ω12 = (ωij) for i ∈ S0, j ∈ Sc0 with Ω21 = ΩT
12 and Ω22 = (ωij) for i, j ∈ Sc0.

Denote the unconstrained prior θ′ ∼ N (0N , τ
2ΛΩΛ) conditioning on λ, we write it in the form of

[θ′1,θ
′
2] | λ ∼ N

0N , τ
2

Λ1Ω11Λ1 Λ1Ω12Λ2

Λ2Ω21Λ1 Λ2Ω22Λ2


 . (S4.28)

Then for some sufficiently small constant an > 0 that may depend on (N,n) and will be chosen
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later, for some C2 > 0, we have

ΠC(‖θ − θ0‖1 ≤ C2 εn)

≥ Πθ′,λ(‖θ′1 − θ01‖1 ≤ (C2 − 1) εn, ‖θ′2‖∞ ≤ εn/(N − s0), θ′ ≥ 0N )/Πθ′,λ(θ′2 ≥ 0Sc0)

≥ Πθ′,λ

(
‖θ′1 − θ01‖1 ≤ (C2 − 1) εn,θ

′
1 ≥ 0S0 , λS0 ≥ 0 | ‖θ′2‖1 ≤ εn,θ′2 ≥ 0Sc0 ,min

j∈Sc0
{λj} ≥ an

)
·
{

Πθ′,λ

(
‖θ′2‖∞ ≤ εn/(N − s0),θ′2 ≥ 0Sc0 ,min

j∈Sc0
{λj} ≥ an

)/
Π(θ′2 ≥ 0N−s0)

}
=: P1 · P2 (S4.29)

The first inequality holds based on the fact Πθ′,λ(θ′ ∈ C) ≤ Πθ′,λ(θ′2 ≥ 0Sc0). Thus, to lower bound

ΠC(‖θ − θ0‖1 ≤ C2 εn) it suffices to lower bound P1 and P2 in the preceding, separately.

We now bound P1 in equation (S4.29). First, define sets A = {(θ′2, λSc0) : ‖θ′2‖∞ ≤ εn/(N −

s0),θ′2 ≥ 0Sc0 ,minj∈Sc0{λj} ≥ an} and Ã = {λS0 : maxj∈S0{λj} ≤ C2an/(2K0s0)} for some constant

K0 > 0 to be determined later. Based on equation (S4.28), we have E(θ′1|θ′2) = Λ1Ω12Ω−1
22 Λ−1

2 θ′2.

Under Assumption 2, there exists some constant K0 such that ‖Ω12Ω−1
22 ‖∞ ≤ K0. Then under the

set A ∩ Ã, one can obtain

‖E(θ′1|θ′2)‖1 ≤ s0K0 max
j∈S0

{λj}/min
j∈Sc0
{λj}(N − s0)‖θ′2‖∞ ≤ K0 s0 a

−1
n max

j∈S0

{λj}εn ≤ (C2 − 1)εn/2.

(S4.30)

Then, we lower bound P1 as

P1 ≥ Πθ′,λ(‖θ′1 − θ01‖1 ≤ (C2 − 1) εn,θ
′
1 ≥ 0S0 , λS0 ∈ Ã | A)

= Πθ′,λ

(
‖θ′1 − E(θ′1|θ′2) + E(θ′1|θ′2)− θ01‖1 ≤ (C2 − 1) εn,θ

′
1 ≥ 0S0 ,

max
j∈S0

{λj} ≤ C2an/(2K0s0) | A
)

≥ Πj∈S0

{
Πθ̃j ,λj

(
|θ̃j − θ0j | ≤ (C2 − 1)εn/(2s0), θ̃j ≥ (C2 − 1)εn/{2(N − s0)},

λj ≤ C2an/(2K0s0)
)}
, (S4.31)

where θ̃1 = θ′1−E(θ′1|θ′2) ∼ N (0s0 , τ
2Λ1Ω̃(1)Λ1) and Ω̃(1) = Ω11−Ω12Ω−1

22 Σ21. To derive the second

inequality, first note that {θ̃j ≥ ‖E(θ′1 |θ′2)‖∞} ⊂ {θ′j ≥ 0} for j ∈ S0. Then following a similar
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argument in deriving equation (S4.30), one can show ‖E(θ′1|θ′2)‖∞ ≤ (C2−1)εn/{2(N −s0)}. Then

{θ̃′j ≥ (C2 − 1)εn/{2(N − s0)}, j ∈ S0} ⊂ {θ′j ≥ 0, j ∈ S0} and thus the last inequality in equation

(S4.31) is attained.

To bound the last preceding in equation (S4.31), we use a similar proof of Theorem 1 in [4]. For

any a > 0, we have

∫ a

0

1√
2πλ

e−
x2

2λ2
2

π(1 + λ2)
dλ = K ′e

x2

2 E1{(1 + a−2)x2/2} ≥ (K ′/2) log[1 + 2{(1 + a−2)x2/2}−1],

for some constant K ′ > 0, and E1(·) is the exponential integral function. Then for any j ∈ S0,

under the Assumption (A3), applying the lower bound in the above display with a = Can/(2K0s0),

for any j ∈ S0 we have

Πθ̃j ,λj
{|θ̃j − θ0j | ≤ (C2 − 1)εn/s0, θ̃j ≥ (C2 − 1)εn/{2(N − s0), λj ≤ C2an/(2Ks0)}

≥
∫ C2an/(2Ks0)

λ=0

∫
θj∈

[
max

(
θ0j−

(C2−1)εn
2s0

,
(C2−1)εn
2(N−s0)

)
, θ0j+

(C2−1)εn
2s0

](2πτ ′2λ2
j )
−1/2e

−
θ2j

2τ ′2λ2
j dθjfC+(λj)dλj

&
(C2 − 1)εn

4s0

τ ′2

[1 + {C2an/(2K0s0)}−2]En
& n−(1+µ), (S4.32)

where τ ′ = τ(Ω̃
(1)
jj )−1/2 and µ is some positive constant. The second inequality in the above display

holds based on a similar argument in the proof of Theorem 3.3 in [17]. The last inequality holds by

choosing an . N−(2+t0ω̄′min), where ω̄′min is defined in Proposition S2 and by choosing τ � n−(1+α)

for some constant 0 < α < µ and En . nc
′ for some 0 < c′ < α. Then with bounds in equations

(S4.31) and (S4.32), we have shown P1 & e−c3nε
2
n for some constant c3 > 0.

Next, we shall obtain a lower bound of P2. Note that it is equivalent to upper bound the term

1− P2 =
Π
(
{θ′2 ≥ 0Sc0 , λSc0 ≥ 0Sc0}\{‖θ

′
2‖∞ ≤ εn/(N − s0),θ′2 ≥ 0Sc0 ,minj∈Sc0{λj} ≥ an}

)
Π
(
θ′2 ≥ 0Sc0 , λSc0 ≥ 0Sc0

) .

(S4.33)

We first bound the denominator of equation (S4.33). A direct application of Proposition S2 for
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(θ′2, λSc0) leads to

Π(θ′2 ≥ 0Sc0 , λSc0 ≥ 0Sc0) & {log(N − s0)}−t0/2(N − s0)−t0ω̄
′
min , (S4.34)

for positive constants t0, ω̄′min defined in Proposition S2.

Now we bound the numerator of equation (S4.33) by a union bound of the probability. First we

have

Πθ′,λ

({
θ′2 ≥ 0Sc0 , λSc0 ≥ 0Sc0

}∖{
‖θ′2‖∞ ≤ εn/(N − s0),θ′2 ≥ 0Sc0 ,min

j∈Sc0
{λj} ≥ an

})
≤ 2
{

Πθ′,λ(‖θ′2‖∞ ≥ εn/(N − s0)) + Πλ

(
min
j∈Sc0
{λj} ≤ an

)}
. (S4.35)

We first bound the first term on the right hand side of equation (S4.35). For some bn > 0 that may

depend on n,N , define the set Aλ = {λSc0 : maxj∈Sc0{λj} ≤ bn}. Then we have

Πθ′,λ(‖θ′2‖∞ ≥ εn/(N − s0)) ≤ Πθ′|λ(‖θ′2‖∞ ≥ εn/(N − s0) | Aλ) + Πλ(Acλ). (S4.36)

Recall θ′2|λSc0 ∼ N (0N−s0 , τ
2Λ2Ω22Λ2). Then under the set Aλ we have ‖Λ2Ω22Λ2‖ ≤ λ−1

0 b2n, where

λ is defined in Assumption 2 and we have λ−1
0 ≥ λmax(ΩN ). It is easy to show that conditioning

on λSc0 , θ
′
2 is a sub-Gaussian random vector with parameter λ−1

0 τ2b2n. Then by the concentration

property of maximum of sub-Gaussian random variables, we have

Πθ′|λ(‖θ′2‖∞ ≥ εn/(N − s0) | Aλ) ≤ 2 exp

{
− ε2n

8(N − s0)τ2b2n

}
. e−c

′
3nε

2
n , (S4.37)

for some constant c′3 > 0. The last inequality holds by the fact that

E(‖θ′2‖∞ | Aλ) ≤ 2

√
λ−1

0 log(N − s0) bnτ = o(εn/(N − s0)),

by choosing τ � n−(1+α) for some constant α > 0 and choosing bn � τ−1n−1/2, and by N = o(n)

under Assumption (A1).

Now to bound the second term on the right hand side of equation (S4.36), note that for large
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enough bn, we have Πλ(λj ≥ bn) � b−1
n for any 1 ≤ j ≤ N . Then we have

Πλ(Aλc) = Πλ

(
max
j∈Sc0
{λj} ≥ bn

)
=

N−s0∑
k=1

(
N − s0

k

)
(b−1
n )k(1− b−1

n )N−s0−k

≤
N−s0∑
k=1

(
e(N − s0)

bn

)k
. n−(1/2+α), (S4.38)

by choosing bn � τ−1n−1/2 and N = o(n). Then combining results in equations (S4.36),(S4.37) and

(S4.38) leads to

Πθ′,λ(‖θ′2‖∞ ≥ εn/(N − s0)) . n−µ
′′
, (S4.39)

for some constant 0 < µ′′ ≤ min{1/2 + α, c′3nε
2
n}. Now to bound the second term on the right hand

side of equation (S4.35), note that Π(λj ≤ an) � an for an . N−(2+t0ω̄′min) and for any 1 ≤ j ≤ N .

Then

Πλ

(
min
j∈Sc0
{λj} ≤ an

)
=

N−s0∑
k=1

(
N − s0

k

)
akn(1− an)N−s0−k ≤

N−s0∑
k=1

(e(N − s0)an)k . N−(1+t0ω̄′min).

(S4.40)

where t0, ω̄′min are defined in Proposition S2. Combining results in equations (S4.34), (S4.39) and

(S4.40) and the assumption N = o(n), the numerator of the ratio on the right hand side of equation

(S4.33) is upper bounded by a multiple of N−(1+t0ω̄′min). Then, we obtain P2 ≥ 1−4(logN)−t0/2N−1

for sufficiently large N . Further, combining this result with the lower bound of the term P1 yields

Π(‖θ − θ0‖1 ≤ C2εn) ≥ P1 · P2 & exp(−c3nε
2
n){1− 4(logN)−t0/2N−1},

for some constant c3 > 0. We then complete verifying the condition (S4.25).

Case (ii). Conditioning on λ, we write the prior of θ′ in the matrix notation as θ′ |λ ∼ N (0N , τ
2ΛΩΛ).
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Then

ΠC(‖θ − θ0‖1 ≤ C2 εn) ≥ Πθ′,λ(‖θ′ − θ0‖1 ≤ C2 ε
′
n, θ
′ ≥ 0N )/Πθ′,λ(θ′ ≥ 0N )

≥ Πθ′,λ

(
∩Nj=1 {|θ′j − θ0j | ≤ C2 εn/N,θ

′
j ≥ 0}

)
≥
(
λm
λM

)N/2
ΠN
j=1Πθ̃j ,λj

(|θ̃j − θ0j | ≤ C2 εn/N, θ̃j ≥ 0), (S4.41)

where θ̃j |λj ∼ N (0, τ ′2λ2
j ) with τ ′ = λmτ . Then applying the result used in proving Theorem 3.3

in [18], for j = 1, . . . , N ,

Πθ̃j ,λj
(|θ̃j − θ0j | ≤ C2 ε

′
n/N, θ̃j ≥ 0) &

ε′n
N

τ ′2

E2
n

� n−(1+α′),

for some constant α′ > 0. The last result is arrived by choosing τ � n−(1+α) and En . nβ for some

constant β ∈ (0, α).

We then complete the verification of condition (S4.25) by combining cases (i) and (ii).

Part II. Next we verify the condition (S4.26). We first construct a sequence of sieves {Fn} that

satisfies condition (S4.26). Define

Fn =
{

(θ, σ2) : |S| ≤ Ts0 , 0 < σ2 < enε
2
n/a0

}
, with Ts0 = (s0 + p0)1s0<[N/2](s0) +N1s0≥[N/2](s0),

(S4.42)

where the integer 0 < p0 < [N/2] − s0 for s0 < [N/2], and recall a0 is the shape parameter of

inverse-Gamma prior on σ2. Then, applying the union bound of probability yields

Π(Fcn) ≤ 2Πθ,λ

(
|S| ≥ (s0 + p0) + 1

)
+ 2Πσ2

(
σ2 ≥ enε2n/a0

)
.

We now bound Πθ,λ(|S| ≥ (s0 + p0) + 1). We define the threshold ηn = εn/
√
N . For any set S with

|S| = s for 1 ≤ s ≤ N ,

ΠC(θj ≥ ηn, j ∈ S; θj < ηn, j ∈ Sc) ≤ Πθ′,λ(θ′j ≥ ηn, j ∈ S; θ′j < ηn, j ∈ Sc)/M′C

≤ Πθ′,λ(θ′j ≥ ηn, j ∈ S)/M′C ,
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whereM′C denotes the lower bound of normalizing constantMC obtained by Proposition S2. Let

τ ′′ = τ
√
λmax(ΩS), where ΩS = (ωij) for all i, j ∈ S is a |S| × |S| sub-matrix of ΩN . For any j ∈ S,

we have

Πθ′(θ
′
j ≥ ηn) ≤

√
λmax(ΩS)

λmin(ΩS)

∫ ∞
λj=0

(λjτ
′′)−1

∫ ∞
ηn

e
−

θ2j

2λ2
j
τ ′′2 dθjfC+(λj)dλj

.

√
2/πe−η

2
n/(2b

2
nτ
′′2)

ηn/(bnτ ′′)
+ b−1

n . e−c4nε
2
n/(s0+p0+1),

for some constant c4 > 0. Under Assumption 2, the term
√
λmax(ΩS)/λmin(ΩS) ≤ λ−1

0 for λ0

defined in Assumption 2. The last inequality in the above display is obtained by choosing τ such

that τ � n−(1+α) and choosing bn = τ−1/
√
n, we then have exp{−η2

n/(2b
2
nτ
′′2)}/[ηn/(bnτ ′′)] .

e−c4nε
2
n/(s0+p0+1) for some constant c4 > 0. Then combining the preceding, we have

Πθ,λ(|S| ≥ (s0 + p0) + 1) =
N∑

k=(s0+p0)+1

(
N

k

)
ΠC(|θj | ≥ ηn, j ∈ S; |θj | ≤ ηn, j /∈ S | |S| = k)

≤
N∑

k=(s0+p0)+1

(
N

k

)
Πθ′
(
θ′j ≥ ηn, j ∈ S

)
/M′C

. (logN)t0/2N t0ω̄′min

N∑
k=(s0+p0)+1

(
e

(s0 + p0) + 1
e−c4nε

2
n/(s0+p0+1)

)k
. e−c

′
4nε

2
n , (S4.43)

for some constant c′4 > 0. Recall t0, ω̄′min are positive constants defined in Proposition S2.

Now we bound Π(σ2 ≥ enε2n/a0). Since σ2 ∼ IG(a0, b0), we have

Πσ2

(
σ2 > enε

2
n/a0

)
=

∫ ∞
enε

2
n/a0

=
ab00

Γ(a0)

∫ ∞
enε

2
n/a0

(σ2)−(a0+1)e−b0/σ
2
dσ2 (S4.44)

≤ ab00
Γ(a0)

∫ ∞
enε

2
n/a0

(σ2)−(a0+1)dσ2 � e−nε2n .

Combing results in equations (S4.43) and (S4.44), we arrive at Π(Fcn) . e−c2nε
2
n with c2 = min{c′4, 1},

then we have verified condition (S4.26).

Part III. Now we show the existence of test functions {φn} that satisfy condition (S4.27). To

that end, we consider a similar construction of test functions in the proof of Theorem 1 of [15].
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For any nonempty subset S ⊂ {1, . . . , N}, define the (restricted) ordinary least squares estimator

θ̂S = θ̂ := (ΨT
SΨS)−1ΨT

SY , and σ̂2
S = Y T(In − HS)Y/(n − |S|) where HS = ΨS(ΨT

SΨS)−1ΨT
S .

When S = {1, . . . , N}, then θ̂S = (ΨTΨ)−1ΨTY is the ordinary least squares estimator. Recall

Ts0 = (s0+p0)1s0<[N/2](s0)+N1s0≥[N/2](s0) defined in equation (S4.42). Similar to the construction

of test functions in [15], define φn = max{φ′n, φ̃n}, where

φ′n = max
{S⊃S0,|S|≤Ts0}

1

{
||θ̂S − θ0|| ≥ c5 σ0

√
Nεn

}
,

φ̃n = max
{S⊃S0,|S|≤Ts0}

1

{
|σ̂2
S − σ0

2| ≥ c′5 σ2
0 εn

}
.

for some constants c5, c
′
5 > 0, and recall that the set S0 contains indexes of pseudo-true nonzero

coordinates.

Recall θ0 denotes the pseudo-true coefficient vector, and denote the bias term by δ := Ψθ0− f0.

Under the true distribution, we have Yi = f0(xi) + εi, where εi ∼ N (0, σ2
0) i.i.d., for i = 1, . . . , n.

For brevity, we use ε to denote the random error term {εi}. Given the definition of σ̂2
S , we have

Ef0,σ2
0
1

{
|σ̂2
S − σ0

2| ≥ c′5 σ2
0εn

}
= Pf0,σ2

0

(
|εT(In −HS)ε+ 2εT(In −HS)δ + δT(In −HS)δ| ≥ c′5(n− |S|)εn

)
.

Applying Lemma 1, we obtain

δT(In −HS)δ ≤ ‖δ‖2 ≤ (n− |S|)‖δ‖2∞ . (n− |S|)ε2n ≤ (n− |S|)εn,

εT(In −HS)δ ≤ ‖ε‖‖δ‖ .
√

(n− |S|)εn ‖ε‖.

According to [18], one can show P(|2εT(In−HS)δ| ≥ (n−|S|)εn) ≤ e−c6nε2n for some constant c6 > 0.

Also with a similar discussion in Theorem A.1 of [15] we arrive at

Ef0,σ2
0
1

{
|σ̂2
S − σ0

2| ≥ c′5 σ2
0εn

}
≤ e−c′6nε2n , (S4.45)
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for some constants c′6 > 0. Under the true data generating distribution,

‖θ̂S − θ0S‖ ≤ ‖(ΨT
SΨS)−1ΨT

Sδ‖+ ‖(ΨT
SΨS)−1ΨT

Sε‖ ≤ c′0
√
Nεn + ‖(ΨT

SΨS)−1ΨT
Sε‖,

for some constant c′0 > 0. The last inequality holds based on ‖(ΨT
SΨS)−1ΨT

Sδ‖ ≤ (nk1/N)−1
√
nk2/N‖δ‖ ≤

c′0
√
Nεn by Assumption (A2) and Lemma 1 in the manuscript. Again, similar to the proof of The-

orem A.1 in [15], one can show

Pf0,σ2
0

(
‖θ̂S − θS0‖ ≥ c5

√
Nσ0 εn

)
≤ Pf0,σ2

0

(
‖(ΨT

SΨS)−1ΨT
S ε‖ ≥ c′′5 σ0

√
Nεn

)
(S4.46)

≤ P
(
χ2
|S| ≥ c̃5 nε

2
n

)
≤ e−c′′6 nε2n .

for some constants c′′5, c̃5, c
′′
6 > 0. The random variable χ2

|S| follows a chi-square distribution with

the degree of freedom |S|. The last inequality in equation (S4.46) holds since |S| . nε2n and

λmax((ΨT
SΨS)−1) = (k1n/N)−1 under Assumption (A2). Combining the bound results in equations

(S4.45) and (S4.46), we have

Ef0,σ2
0
(φn) ≤ Ef0,σ2

0

∑
{S⊃S0,|S|≤Ts0}

(φ′n + φ̃n)

≤ Ef0,σ2
0

 ∑
{S⊃S0,|S|≤(s0+p0),s0<[N/2]}

+
∑

{S⊃S0,[N/2]≤|S|≤N,s0≥[N/2]}

 (φ′n + φ̃n)

≤
{

(s0 + p0)

(
N

s0 + p0

)
+ [N/2]

(
N

[N/2]

)}(
e−c

′
6 nε

2
n + e−c

′′
6 nε

2
n

)
.
(
e(s0+p0) logN + e{e[N/2]} logN

)(
e−c

′
6 nε

2
n + e−c

′′
6 nε

2
n

)
. e−c̃6 nε

2
n , (S4.47)

for some positive constant c̃6 ≤ min{c′6, c′′6}. The third inequality arrives based on the fact that

the total number of models S with |S| ≥ [N/2] is same as the total number of the corresponding

complement models Sc of size that is no greater than [N/2]. The first inequality in the fourth line of

the preceding holds due to the fact that (s0+p0) logN < nε2n, since p0 < [N/2]−s0 when s0 < [N/2],

and the fact when s0 ≥ [N/2], one obtains e[N/2] logN < nε2n. Then, the final inequality result in

the preceding is easily obtained by choosing c̃6 ≤ min{c′6, c′′6}.
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Now we verify the second part of the condition (S4.27). Define the set

Cn =
{
‖θ − θ0‖ ≥M1σ0

√
Nεn, or σ2/σ2

0 ≤ (1− εn)/(1 + εn), or σ2/σ2
0 ≥ (1 + εn)/(1− εn)

}
.

Then, according to Lemma D.2 in [1], we have

sup
(θ,σ2)∈Fn:‖θ−θ0‖≥M1σ0

√
Nεn,

or |σ2−σ2
0 |≥σ2

0εn

Eθ,σ2(1− φn) ≤ sup
(θ,σ2)∈Cn

Eθ,σ2(1− φn).

Again, following a similar discussion in the proof of Theorem A.1 in [15], define sets

C̃n =
{
σ2/σ2

0 ≤ (1− εn)/(1 + εn) or σ2/σ2
0 ≥ (1 + εn)/(1− εn)

}
,

C′n =
{
‖θ − θ0‖ ≥M1σ0

√
Nεn, and σ2 = σ2

0

}
. (S4.48)

And we have Cn ⊂ C̃n ∪ C′n. Similar to [15], one can show

sup
(θ,σ2)∈Cn∩Fn

Eθ,σ2(1− φn) ≤ sup
(θ,σ2)∈(C′n∪C̃n)∩Fn

Eθ,σ2(1− φn)

≤ max

{
sup

(θ,σ2)∈C̃n∩Fn
Eθ,σ2(1− φ̃n), sup

(θ,σ2)∈C′n∩Fn
Eθ,σ2(1− φ′n)

}
.

To proceed we consider two cases: (i) s0 < N and (ii) s0 = N , separately.

Case (i). Now let S̃ = {θ : |θj/σ| ≥ an} ∪ S0 satisfying |S̃| < N , and denote S̃c = {1, . . . , N}\S̃.

Then, with the same argument in the proof of Theorem A.1 in [15] we have

sup
(θ,σ2)∈C̃n∩Fn

Eθ,σ2(1− φ̃n) ≤ sup
(θ,σ2)∈C̃n∩Fn

P
{
|χ2
n−|S̃|(m)− (n− |S̃|)| ≥ (n− |S̃|)εn

}
≤ e−c̃7nε2n ,

(S4.49)

for some constant c̃7 > 0. Here χ2
n−|S̃|(m) denotes a non-central chi-square random variable with the

non-central parameterm = θT
S̃c

ΨT

S̃c
(I−HS̃)ΨS̃cθS̃c/σ

2. It is easy to show there exists some constant

k0 > 0 such that m ≤ nk0ε
2
n, based on the fact that ‖ΨS̃cθS̃c‖ ≤

√
λmax(ΨT

S̃c
ΨS̃c)

√
N‖θS̃c‖∞ ≤

√
nk2 εn, by Assumption (A2) with choosing S = S̃c and k2 > 0 is the constant defined therein.
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Next, we have

sup
(θ,σ2)∈C′n∩Fn

Eθ,σ2(1− φ′n) ≤ sup
(θ,σ2)∈C′n∩Fn

P
(
‖(ΨT

S̃
ΨS̃)−1ΨT

S̃
Y − θ0S̃‖ ≤ σ0

√
Nεn

)
≤ sup

(θ,σ2)∈C′n∩Fn
P
(
‖(ΨT

S̃
ΨS̃)−1ΨT

S̃
ε‖ ≥ ‖θS̃ − θ0S̃‖ − (ΨT

S̃
ΨS̃)−1ΨT

S̃
ΨS̃cθS̃c −

√
Nεn

)
≤ sup

(θ,σ2)∈C′n∩Fn
P
(
‖(ΨT

S̃
ΨS̃)−1ΨT

S̃
ε‖ ≥

√
Nεn

)
≤ sup

(θ,σ2)∈C′n∩Fn
P
(
χ2
|S̃| ≥ nk1ε

2
n

)
≤ e−c′7nε2n ,

for some constant c′7 > 0, and χ2
|S̃| denotes a centered chi-square random variable of the degree of

freedom |S̃| < nε2n. The second inequality holds based on the following facts that ‖θS̃ − θ0S̃‖ ≥

‖θ−θ0‖−N(εnσ/N), and ‖(ΨT

S̃
ΨS̃)−1ΨT

S̃
ΨS̃cθS̃c‖ ≤

√
λmax((ΨT

S̃
ΨS̃)−1)λmax(ΨT

S̃c
ΨS̃c)

√
N‖θS̃c‖1 ≤√

{N/(k1n)}nk2εn .
√
Nεn, by Assumption (A2). Then we complete verifying condition (S4.27)

for Case (i).

Case (ii). The arguments are very similar to Case (i), except Sc = ∅. Then

sup
(θ,σ2)∈C̃n∩Fn

Eθ,σ2(1− φ̃n) ≤ sup
(θ,σ2)∈C̃n∩Fn

P{|χ2
n−N − (n−N)| ≥ (n−N)εn} ≤ e−c̃7nε

2
n , (S4.50)

where χ2
n−N is a centered chi-square random variable with the degree of freedom n−N for N = o(n).

And, following a similar argument in Case (i) yields

sup
(θ,σ2)∈C′n∩Fn

Eθ,σ2(1− φ′n) ≤ sup
(θ,σ2)∈C′n∩Fn

P
(
‖(ΨTΨ)−1ΨT ε‖ ≥ ‖θ − θ0‖ −

√
Nεn

)
≤ sup

(θ,σ2)∈C′n∩Fn
P
(
‖(ΨTΨ)−1ΨT ε‖ ≥

√
Nεn

)
≤ sup

(θ,σ2)∈C′n∩Fn
P
(
χ2
N ≥ nk1ε

2
n

)
≤ e−c̃′7nε2n ,

for some constant c̃′7 > 0.

Combining Cases (i) and (ii) we have verified the second part of condition (S4.27). Therefore

we have shown results in equation (4.6).

Proof of equation (4.7). We now verify equation (4.7) to complete the proof of Theorem 8. The

36



proof of equation (4.7) is very similar to that of equation (4.6). In particular, the proof of condition

(S4.25) can be applied directly here, and since we construct the same sieves Fn thus condition

(S4.26) is satisfied. We shall verify the condition (S4.27) by showing the existence of test functions

{ζn} such that

Ef0,σ2
0
(ζn) . e−c3nε

2
n , (S4.51)

sup
(θ,σ2)∈Fn:‖Ψθ−f0‖≥M1σ0

√
nεn,

or |σ2−σ2
0 |≥σ2

0εn

Eθ,σ2(1− ζn) . e−c3nε
2
n . (S4.52)

Similar to [15], consider the test function ζn = max{ζ ′n, ζ̃n}, where

ζ ′n = max
{S⊃S0,|S|≤Ts0}

1

{
||ΨS θ̂S − f0|| ≥ c5 σ0

√
nεn

}
,

ζ̃n = max
{S⊃S0,|S|≤Ts0}

1
{
|σ̂2
S − σ0

2| ≥ c′5 σ2
0εn
}
,

for some constants c5, c
′
5 > 0. The argument for deriving exponential upper bounds for type I errors

of ζ̃n remains the same as in (S4.45), therefore we omit it here.

We now derive the exponential error bounds for ζ ′n under the true data generating function. For

any S ∈ {S : S ⊃ S0, |S| ≤ Ts0}, then we have

‖ΨS θ̂S − f0‖2 ≤ ‖ΨS(θ̂S − θ0S)‖2 + n‖Ψθ0 − f0‖2∞

. ‖ΨS(θ̂S − θ0S)‖2 + nε2n

≤ (nk2/N)‖θ̂S − θ0S‖2 + nε2n,

where the constant k2 > 0 is defined in Assumption (A2). The first inequality holds as we assume

S ⊃ S0, θ0Sc = 0N−|S| and ΨScθ0Sc = 0N−|S|. The second and third inequality use Lemma 1 and

Assumption (A2), respectively. Thus,

Pf0,σ2
0

(
‖ΨS θ̂S − f0‖ ≥ c5 σ0

√
nεn

)
≤ Pf0,σ2

0

(
‖θ̂S − θS0‖ ≥ k−1

2 c′′5 σ0

√
Nεn

)
,

for some constant 0 < c′′5 < c5. The inequality is obtained based on a similar argument used to

derive equation (S4.46). Combining the above result with the result in equation (S4.46) and results
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in equation (S4.45), and following a similar argument of deriving the result in equation (S4.47)

yields the desired bound in equation (S4.51).

Now we show equation (S4.52). Similarly, Recall the set C̃n defined in equation (S4.48) and

define the set,

D′n =
{
‖Ψθ − f0‖ ≥M1σ0

√
nεn, and σ2 = σ2

0

}
.

With a same argument, one can show

sup
(θ,σ2)∈Fn:‖Ψθ−f0‖≥M1σ0

√
nεn,

or |σ2−σ2
0 |≥σ2

0εn

Eθ,σ2(1− ζn)

≤ max

{
sup

(θ,σ2)∈C̃n∩Fn
Eθ,σ2(1− ζ̃n), sup

(θ,σ2)∈D′n∩Fn
Eθ,σ2(1− ζ ′n)

}
.

The argument of bounding sup(θ,σ2)∈C̃n∩Fn Eθ,σ2(1 − ζ̃n) is same as the the proof of the result in

equation (S4.49), therefore we omit it here. It remains to bound sup(θ,σ2)∈D′n∩Fn Eθ,σ2(1− ζ ′n). We

proceed to consider two cases: (i) s0 < N and (ii) s0 = N , respectively.

Case (i). Again, let S̃ = {θ : |θj/σ| ≥ an} ∪S0 satisfying |S̃| < N , and denote S̃c = {1, . . . , N}\S̃.

Applying Lemma 1, we have

sup
(θ,σ2)∈D′n∩Fn

Eθ,σ2(1− ζ ′n)

≤ sup
(θ,σ2)∈D′n∩Fn

P
(
‖(ΨS̃(ΨT

S̃
ΨS̃)−1ΨT

S̃
ε‖ ≥ ‖ΨS̃θS̃ −ΨS̃θ0S̃‖ −ΨS̃(ΨT

S̃
ΨS̃)−1ΨT

S̃
ΨS̃cθS̃c −

√
nεn

)
≤ sup

(θ,σ2)∈D′n∩Fn
P
(
‖(ΨS̃(ΨT

S̃
ΨS̃)−1ΨT

S̃
ε‖ ≥

√
nεn

)
≤ e−c3nε2n ,

for some constant c3 > 0. The second inequality holds by the facts that ‖ΨS̃θS̃ − ΨS̃θ0S̃‖ ≥√
λmin(ΨT

S̃
ΨT

S̃
)‖θS̃ − θ0S̃‖ &

√
nεn under Assumption (A2). And ‖ΨS̃(ΨT

S̃
ΨS̃)−1ΨT

S̃
ΨS̃cθS̃c‖ .

‖ΨS̃cθS̃c‖ ≤
√
nk2εn.

Case (ii). The argument follows a similar line of the one in Case (i), except S̃ = {1, . . . , N} and
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S̃c = ∅. It is easy to show

sup
(θ,σ2)∈D′n∩Fn

Eθ,σ2(1− ζ ′n) ≤ sup
(θ,σ2)∈D′n∩Fn

P
(
‖(Ψ(ΨTΨ)−1ΨT ε‖ ≥ ‖Ψθ −Ψθ0‖ −

√
nεn
)
.

With same calculations, one can show sup(θ,σ2)∈D′n∩Fn Eθ,σ2(1 − ζ ′n) ≤ e−c3nε
2
n for some constant

c3 > 0.

We then complete the proof of equation (4.7) by combining Case (i) and Case (2), and therefore

we complete the proof of Theorem 8.

S4.6 Proof of Corollary S1 in § S2.2

The proof of Corollary S1 follows a similar line of arguments in the proof of Theorem 2. We shall first

adopt similar techniques used in the Step 1 of the proof of Theorem 2 to obtain an upper bound of

αN,δ and then directly show such upper bound decreases to 0 along with K. Under the assumption,

there exists a K-banded approximating matrix Σ′N = (σ′ij) ∈ BN,K to the scale matrix ΣN = (σij)

such that ‖ΣN − Σ′N‖ . (N logK)−1‖ΣN‖, for some integer 2 ≤ K ≤ N − 1 and sufficiently large

N . Also, recall we assume σ′2(1) = 1 and we denote σ′2(N) = κ ≥ 1. Denote ρ̄max = (1 − σ′max)/σ′max

and ρ̄κ,min = (κ − σ′min)/σ′min. Recall the matrix ΣN (σ2, ρ) = (σij) with σii > 0 for i = 1, . . . , N

and σij = ρ for some ρ < min1≤i≤N{σii} for any 1 ≤ i 6= j ≤ N .

Fix an arbitrary δ > 0, recall αN,δ = P(0 < θ1 < δ), where θ ∼ NC(µN ,ΣN ). Define independent

N -dimensional random vectors Z ∼ N (µN ,ΣN ) and Z ′ ∼ N (µN ,Σ
′
N ). Again, by definition,

αN,δ
(i)
�

P(0 ≤ Z ′1 ≤ δ, Z ′2 ≥ 0, . . . , Z ′N ≥ 0)

P(Z ′1 ≥ 0, Z ′2 ≥ 0, . . . , Z ′N ≥ 0)

(ii)

≤
P
(
0 ≤ Z ′1 ≤ δ, Z ′[2 :K] ≥ 0K

)
P
(
Z ′[1 :K] ≥ 0K

)
P
(
Z ′[K+1 : 2K] ≥ 0K

) = R1. (S4.53)

The inequality (i) holds by using the result P(0 < θ1 < δ) � P(0 < θ′1 < δ) in Proposition S1. The

inequality (ii) follows by applying Lemma S1 to the numerator and applying Slepian’s lemma to

the denominator of the ratio in the first line of equation (S4.53). The details are same as in the

derivation of inequalities (S4.3) and (S4.4) in the proof of Theorem 2.

Following the line of argument in the proof of Theorem 2, we apply another round of Lemma
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S1 to the numerator of R1 and Lemma S4 to the denominator of R1 and obtain an upper bound of

R1 which can be expressed as a ratio of probabilities associated with equicorrelated normal random

vectors. Then we can proceed by applying Lemma S2 and Lemma S3 to arrive at our final upper

bound. To that end, define Z̃ ′ ∼ N (µK ,ΣK(σ2, ρmax)), then we have E(Z ′2i ) = E(Z̃ ′2i ) for 1 ≤ i ≤ K

and E(Z ′iZ
′
j) ≤ E(Z̃ ′iZ̃

′
j) for all 1 ≤ i, j ≤ K. Similarly, define Z̃ ′′ ∼ N (µK ,ΣK(σ2, ρmin)), then we

have E(Z ′2i ) = E(Z̃ ′′2i ) for 1 ≤ i ≤ 2K and E(Z̃ ′′i Z̃
′′
j ) ≤ E(Z ′iZ

′
j) for all 1 ≤ i, j ≤ 2K. Applying

Lemma S1 to the numerator of R1 and applying Slepian’s lemma to the denominator of R1, we have

R1 ≤ R′1 =
P
(
0 ≤ Z̃ ′1 ≤ δ, Z̃ ′2 ≥ 0, . . . , Z̃ ′K ≥ 0

)
P
(
Z̃ ′′1 ≥ 0, . . . , Z̃ ′′K ≥ 0

)
P
(
Z̃ ′′K+1 ≥ 0, . . . , Z̃ ′′2K ≥ 0

) .
Now apply the upper bound result of Lemma S2 with d = K,µ = µK , ρ̄(1) = ρ̄max to the numerator

of R′1 and apply Lemma S3 with d = K,µ = µK , ρ̄(K) = ρ̄κ,min to both probability terms in the

denominator of the ratio R′1, separately. Then, we obtain a similar result as in equation (S4.9) with

replacing ρ̄min by ρ̄κ,min.

R′1 . δ(logK)1/2 exp
{
−
[
(2ρ̄max(1− α) log(K − 1))1/2 − µ∗/ρ1/2

max

]2/
2− (1− α) log(K − 1)

+
[
µ∗ρ

−1/2
min + (2ρ̄κ,min logK)1/2

]2}
+ 4 ρ̄κ,min logK exp

{
− (K − 1)α +

[
µ∗ρ

−1/2
min + (2ρ̄κ,min logK)1/2

]2}
, (S4.54)

where µ∗ = min2≤j≤N{µj} and µ∗ = ‖µ‖∞. The rest of the proof is same as Step 2 of the proof of

Theorem 2. One can find a set S̃ ′ which takes the same form of S̃ defined in equations (S4.10) and

(S4.11) by taking

b = bκ =

√
2(1− α)(1− ρmax)

ρmax
+ 2

√
2(κ− ρmin)

ρmin
.

Then fixing an α ∈ (0, 1) such that a = Gα(ρmin, ρmax) > 0, choosing

µ∗ ≤ βmin
{

1/bκ,
√

(1− α)(1− ρmax)/a, ρmin/a
}
a
√

log(K − 1)

for sufficiently large K, and letting C ′ρmin,ρmax
= min

{
1/bκ,

√
(1− α)(1− ρmax)/a, ρmin/a

}
leads to

the desired bound of Corollary S1.
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S5 Proofs of Propositions

We first introduce some notations that are used in the proof. Recall that for a N ×N matrix A, we

denote λj(A) as its jth eigenvalue, and denote λmin(A) and λmax(A) as the minimum and maximum

of eigenvalues, respectively. For a matrix A, we define its operator norm as ‖A‖ = {λmax(ATA)}1/2.

S5.1 Proof of the Proposition 1

Now we derive the k-dimensional marginal density function. We denote θ(k) = (θ1, . . . , θk)
T and

θ(N−k) = (θk+1, . . . , θN )T. We partition ΣN into appropriate blocks as

ΣN =

 Σk,k Σk,N−k

ΣN−k,k ΣN−k,N−k

 .
We also partition its inverse matrix Σ̃N ,

Σ̃N =

 Σ̃k,k Σ̃k,N−k

Σ̃k,N−k Σ̃N−k,N−k

 .
Then the k-dimensional marginal p̃k,N (θ1, . . . , θk) is

(
1

2π

)N/2
|Σ|−1/2

∫ ∞
0
· · ·
∫ ∞

0
exp

{
−
(
θ(k)TΣ̃k,k θ

(k)

− 2θ(k)T Σ̃k,N−k θ
(N−k) + θ(N−k)T Σ̃N−k,N−k θ

(N−k)
)
/2
}
dθ(N−k)

=

(
1

2π

)k/2
exp

{
− θ(k)TΣ̃k,kθ

(k)/2
}
·Πk

i=11[0,∞)(θi)

(
1

2π

)(N−k)/2

{|Σ̃N−k,N−k|}−1/2

·
∫ ∞

0
· · ·
∫ ∞

0
exp

{
− ‖Σ̃

1
2
N−k,N−k

(
θ(N−k) − ΣN−k,k Σ−1

k,k θ
(k)
)
‖2/2

}
dθ(N−k)

=

(
1

2π

)k/2
exp{−θ(k)TΣ̃k,k θ

(k)/2}P(X̃N−k ≤ ΣN−k,k Σ−1
k,k θ

(k)) ·Πk
i=11[0,∞)(θi).
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where

Σ̃k,k = Σ−1
k,k + Σ−1

k,k Σk,N−k Σ̃N−k,N−k ΣN−k,k Σ−1
k,k,

Σ̃k,N−k = Σ−1
k,k Σk,N−k Σ̃N−k,N−k,

Σ̃N−k,N−k = (ΣN−k,N−k − ΣN−k,k Σ−1
k,k Σk,N−k)

−1,

and X̃N−k ∼ NN−k(0N−k, Σ̃−1
N−k,N−k).

S5.2 Proof of Proposition 4

We repeatedly apply Newmann series and Lemma S8 in § S7 to construct the approximation matrix

to the posterior scale matrix ΣN . Under Assumption 2, we have the prior covariance matrix ΩN ∈

M(λ0, α, k) for some universal constants λ0, α, k > 0. Then for any ε ∈ (0, λ0/2), by choosing

r ≥ log(C/ε)/α, one can find a r-banded symmetric and positive definite matrix ΩN,r such that

‖ΩN − ΩN,r‖ ≤ ε. (S5.1)

Now we let M = λmax(ΩN,r) and m = λmin(ΩN,r). Given (S5.1), we have

INλ0 − ε ≤ m ≤M ≤ 1/λ0 + ε. (S5.2)

By choosing ξ = 2/(M +m), simple calculation gives ‖IN − ξΩN,r‖ < 1. We now apply Newmann

series to construct a polynomial of ΩN,r of degree n1, defined as Ω̃−1 = ξ
∑n1

j=0(I − ξΩN,r)
j , for

some integer n1 > 0 to be chosen later. Applying Lemma S8 in § S7, we have

‖Ω−1
N,r − Ω̃−1‖ ≤ κn1+1

0 /(λ0 − ε), (S5.3)

where κ0 = (M−m)/(M+m). Applying Lemma S8 we guarantee Ω̃−1 is (n1 r)-banded and positive

definite. Combining results in (S5.2) and (S5.3), we have

λ0/(1 + λ0ε)− κn1+1
0 /(λ0 − ε) ≤ λmin(Ω̃−1) ≤ λmax(Ω̃−1) ≤ 1/(λ0 − ε) + κn1+1

0 /(λ0 − ε). (S5.4)
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Now we let Σ̃−1 = Ω̃−1+ΦTΦ. Under Assumption 1 we have Σ̃−1 is k-banded with k = max{n1 r, q}.

We then define λ̃1 = λmax(Σ̃−1) and λ̃N = λmin(Σ̃−1). Thus, given (S5.4), we have

C1 (n/N) + λ0/(1 + λ0ε)− κn1+1
0 /(λ0 − ε) ≤ λ̃N ≤ λ̃1 ≤ C2 (n/N) + 1/(λ0 − ε) + κn1+1

0 /(λ0 − ε),

for constants 0 < C1 < C2 <∞ in Assumption 2.

We first consider the case where N/n → a for some constant a ∈ (0, 1), as n,N → ∞. For

sufficiently large n,N , we obtain

C ′1a+ λ0/(1 + λ0ε) ≤ λ̃N ≤ λ̃1 ≤ C ′2 a+ 1/(λ0 − ε), (S5.5)

for constants C ′1, C ′2 satisfying C ′1 < C1 and C2 < C ′2.

Secondly, we consider the case where N/n → 0 as n,N → ∞. In this case, n/N dominates in

the eigenvalues of Σ̃−1. Thus, for sufficiently large n,N , we have

C1 (n/N) ≤ λ̃N ≤ λ̃1 ≤ C2 (n/N). (S5.6)

Now we apply Lemma S8 one more time to construct the approximation matrix to the inverse

of Σ̃−1. Again, by taking γ = 2/(λ̃1 + λ̃N ), we have ‖IN − γ Σ̃−1‖ < 1. Now we define Σ′ =

γ
∑m1

j=0(IN − γ Σ̃−1)j for some positive integer m1. Also, it follows

‖Σ̃− Σ′‖ ≤ κ̃m1+1/λ̃N , (S5.7)

where κ̃ = (λ̃1 − λ̃N )/(λ̃1 + λ̃N ). By construction Σ′ is (m1 k)-banded.

Now we estimate κ̃. For large enough N,n in the first case, we can upper bound

κ̃ ≤ κ1 =
(C ′2 − C ′1) a+ 1/(λ0 − ε)− λ0/(1 + λ0ε)

(C ′2 + C ′1) a+ 1/(λ0 − ε) + λ0/(1 + λ0ε)
.

The inequality holds since the map x 7→ (1 − x)/(1 + x) is non-increasing in x ∈ (0, 1). Combing

this with the result in (S5.5) and taking x = λ̃N/λ̃1 leads to the expression of κ1. Based on (S5.7),

we have ‖Σ̃− Σ′‖ ≤ κm1+1
1 /{C ′1a+ λ0/(1 + λ0ε)}. For N,n in the second case, following a similar
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line of argument, we have ‖Σ̃− Σ′‖ ≤ κ̃m1+1N/(C1n) with κ̃ = (C2 − C1)/(C2 + C1).

We recall the posterior scale matrix ΣN = (Ω−1
N + ΦTΦ)−1. Then we have

‖ΣN − Σ′‖ ≤ ‖ΣN − Σ̃‖+ ‖Σ̃− Σ′‖

≤ ‖ΣN‖(‖Ω−1
N − Ω−1

N,r‖+ ‖Ω−1
N,r − Ω̃−1‖)‖Σ̃‖+ ‖Σ̃− Σ′‖

≤ ‖ΣN‖‖Σ̃‖(c1 ε+ c2 κ
n1+1
0 ) + ‖Σ̃− Σ′‖

where c1 = ‖Ω−1‖‖Ω−1
N,r‖ and c2 = 1/(λ0 − ε). The first inequality follows from the triangular

inequality and the second inequality follows from the identity ‖A−1−B−1‖ = ‖A−1‖‖A−B‖‖B−1‖

for invertible matrices A,B. The last inequality follows from results in (S5.1) and (S5.3).

For N,n in the first case, ‖ΣN‖ and ‖Σ̃‖ are upper bounded by some constants that are free of

n,N given (S5.5). Then we obtain

‖ΣN − Σ′‖ ≤ C ′(ε+ κn1+1
0 + κm1+1

1 ),

where C ′ = max{c1, c2, C
′
1 a+ λ0/(1 + λ0ε)}/{C ′1 a+ λ0/(1 + λ0ε)}2.

For N,n in the second case, for sufficiently large N,n we have ‖ΣN‖ � (N/n) given (S5.6).

Then we have

‖ΣN − Σ′‖ ≤ C ′′ {(N/n)2(ε+ κn1+1
0 ) + (N/n)κ̃m1+1},

where C ′′ = C−2
1 max{c1, c2, C1}. Letting κ = max{κ0, κ1, κ̃}, n0 = min{n1,m1}, and δε,κ =

(ε+ κn0+1){(N/n) for N ≤ n yields the result in Proposition 4.

S5.3 Proof of Proposition 6

Given the prior θ ∼ NC(0N ,ΣN ), denote by ΠC(·) the prior distribution measure. Denote the

set by Bn = {‖Φθ − f0‖ ≤ η
√
N}, for some constant η > 0. Denote by PN = N (Φθ, In) and

P0 = N (f0, In), then define the Kullback–Leibler neighborhood of f0 of radius αn as BKL(f0, αn) =

{θ ∈ RN : KL(P0, PN ) . nα2
n, V (P0, PN ) . nα2

n}, where the definitions of KL(P,Q), V (P,Q) can

be found in the proof of Theorem 8 in §S4.5. Applying Lemma 1 in [5], it suffices to show there
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exists a sequence {αn} satisfying αn → 0 and nα2
n →∞ as n→∞, then

ΠC(Bn)/ΠC(BKL(f0, αn)) ≤ e−2nα2
n . (S5.8)

Under the same context in § 3 of the manuscript, for the true function f0(x) ≡ 0 for x ∈ [0, 1],

we assume the pseudo-true parameter θ0 = 0N and [f0(x1), . . . , f0(xn)]T = Φθ0, based on a proper

basis expansion such as defined in equation (A.1) in Appendix A of the manuscript. Then, for Φ

satisfying Assumption 1, one can show that

‖Φθ − f0‖ ≥ ‖Φθ − Φθ0‖ ≥
√
λmin(ΦTΦ)‖θ − θ0‖ ≥

√
C1n/N‖θ‖,

where C1 > 0 is the constant defined in Assumption 1. The preceding implies ΠC(Bn) ≤ ΠC(‖θ −

θ0‖ ≤ ηC−1/2
1

√
N2/n), for sufficiently large N .

Let αn � (N/n)1/2 and nα2
n � N . Then, following a similar argument in the proof of Theorem

8, we have

BKL(f0, αn) ⊃
{
θ ∈ RN : ‖θ‖ ≤ C−1

2

√
Nαn

}
,

where C2 is the constant defined in Assumption 1.

Then, to show equation (S5.8), it suffices to show that there exists a constant η > 0 such that

ΠC(‖θ‖ < tn)

ΠC(‖θ‖ < rn)
= o(e−2nα2

n), (S5.9)

where rn = C−1
2 Nn−1/2, tn = ηC

−1/2
1 Nn−1/2. Define θ̃ ∼ N (0N ,ΣN ) and denote by Π(·) its

distribution measure, then for any measurable set A one has ΠC(A) = Π(A∩ C)/Π(C). It is easy to

see that the above quotients are equivalent to

Π(‖θ‖ < tn, θ ≥ 0N )

Π(‖θ‖ < rn, θ ≥ 0N )
. (S5.10)

We first bound the numerator of equation (S5.10) from above. Denote λM = λmax(Σ) and λm =

λmin(Σ), by Assumption 2, λm, λM are bounded from zero and infinity, and do not change along
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with n,N . Then it is bounded from above by

Π(‖θ‖ < tn) ≤
(
λM
λm

)N/2 ∫
‖θ‖<tn

1

(2πλM )N/2
e
− ‖θ‖

2

2λM dθ

=

(
λM
λm

)N/2 ∫ t2n/λM

0

x
N
2
−1e−

x
2

2N/2Γ(N/2)
dx

≤ {t
2
n/(2λm)}N/2

Γ(N/2 + 1)
. (S5.11)

The second line arrives by using the definition of a chi-square random variable with the degree of

freedom N .

We now bound the denominator of equation (S5.10) from below. Note that

Π(‖θ‖ < rn, θ ≥ 0N ) ≥ Π(0 < θj < rn/
√
N, j = 1, . . . , N)

≥
(
λm
λM

)N/2
ΠN
j=1

∫ rn/
√
N

0

1√
2πλm

e−
x2j

2λm dxj

≥ e−r2n/(2λm)

(
r2
n

2πλMN

)N/2
. (S5.12)

With results in equations (S5.11) and (S5.12), we now bound the term in equation (S5.10) from

above by

er
2
n/(2λm)

(
πλM t

2
n

λmr2
n

)N/2
NN/2

Γ(N/2 + 1)
≤ exp{r2

n/(2λm)−N log(rn/tn)/2} = o(e−2nα2
n),

the first inequality uses the Stirling’s approximation as Γ(N/2 + 1) ≥
√
eN{N/(2e)}N/2. Then

the final result of the preceding is attained by choosing sufficiently small η > 0. We then verified

equation (S5.9) and complete the proof of Proposition 6.

S5.4 Proof of Proposition S1

(⇒). We first show P(0 ≤ Z1 < δ) . P(0 ≤ Z ′1 < δ) for any fixed δ > 0. Define the set

Cµ = {x ∈ RN : xj ≥ −µj , j = 1, . . . , N} for any fixed vector µN ∈ [0,∞)N . For any δ > 0,

define Cδ = Cµ ∩ {0 < x1 < δ}. Define two N -dimensional random vectors X ∼ N (0,ΣN ) and
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X ′ ∼ N (0,Σ′N ). By definition, we have

P(0 ≤ Z1 < δ) =
P(X ∈ Cδ)
P(X ∈ Cµ)

. (S5.13)

First we lower-bound the denominator of the ratio in equation (S5.13). Given ‖ΣN−Σ′N‖ ≤ ε‖ΣN‖,

for some ε to be chosen later, simple calculation leads to Σ−1
N ≤ Σ′−1

N + ε‖Σ′−1
N ‖IN. Then we have

P(X ∈ Cµ) =

∫
Cµ

(2π)−N/2|ΣN |−1/2e−
1
2
xTΣ−1

N xdx

≥
∫
Cµ

(2π)−N/2|ΣN |−1/2e−
1
2
xT(Σ′−1

N +ε‖Σ′−1
N ‖IN)xdx

≥ e−εPN/2(|Σ′N |/|ΣN |)1/2P(X ′ ∈ Cµ ∩ A), (S5.14)

where A = {X ′ : ‖X ′‖2 ≤ PN/‖Σ′−1
N ‖} for some PN & N to be chosen later. Next, to bound

P(X ′ ∈ Cµ∩A), we shall show that there exist PN , ε > 0 such that P(X ′ ∈ Ac) < P(X ′ ∈ Cµ). Then

there exist some η ∈ (0, 1) such that P(X ′ ∈ Cµ∩A) ≥ P(X ′ ∈ Cµ)−P(X ′ ∈ Ac) ≥ (1−η)P(X ′ ∈ Cµ).

To that end, we bound P(X ′ ∈ Ac) from above and bound P(X ′ ∈ Cµ) from below separately.

We first bound P(X ′ ∈ Ac). Note that

P(X ′ ∈ Ac) = P(‖X ′‖2 > PN/‖Σ′−1
N ‖) ≤ P(‖Σ′N‖‖Z0‖2 > PN/‖Σ′−1

N ‖)

≤ P(‖Z0‖2 > cPN}) . e−c1PN , (S5.15)

where Z0 ∼ N (0N , IN) and c, c1 > 0 are some constants. Note that ‖Z0‖2 is a chi-square random

variable with the degree of freedom N , the last inequality is obtained by applying the concentration

result of a N -dimensional chi-square random vector.

Next we bound P(X ′ ∈ Cµ) from below. Since Σ′N = (ρ′ij) is a K-banded matrix and under the

assumption that the entries of Σ′N are positive within the band, we adopt the same block approxima-

tion technique used in the proof of Theorem 2. Define the random vector X ′′ ∼ N (0N ,Σ
′
N (ρ′min))

where Σ′N (ρ′min) = (ρ′′ij) satisfies ρ′′ii = ρ′ii for 1 ≤ i ≤ N and ρ′′ij = ρ′min for all i, j satisfy-

ing 1 ≤ |i − j| ≤ K − 1. Denote σ′2(N) = max1≤i≤N{ρ′ii} and σ′2(1) = min1≤i≤N{ρ′ii}. Then by

applying Slepian’s inequality, we have P(X ′ ∈ Cµ) ≥ P(X ′′ ∈ Cµ). Now let m = [N/K] > 1.

Define the random vector Z ′′ such that (i), Z ′′[(1+(i−1)K):iK]
d
= X ′′[(1+(i−1)K):iK] for i = 1, . . . ,m
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and Z ′′[(1+sK):N ]
d
= X ′′[(1+sK):N ]. And (ii), the sub-vectors

{
Z ′′[(1+(i−1)K):iK], i = 1, . . . ,m

}
and

Z ′′[(1+mK):N ] are mutually independent. Then we have E{(X ′′i )2} = E{(Z ′′i )2} for 1 ≤ i ≤ N

and E(X ′′i X
′′
j ) ≥ E(Z ′′i Z

′′
j ) for all 1 ≤ i 6= j ≤ N . For sufficiently large N,K, we have

P(X ′ ∈ Cµ) ≥ P(X ′′ ∈ Cµ) ≥ P(Z ′′ ≥ µ∗1N )

= Πm
i=1{P(Z ′′[(1+(i−1)K):iK] ≥ µ

∗1K)}P(Z ′′[(1+mK):N ] ≥ µ
∗1N−mK)

& (logK)−(m+1)/2K
−(m+1)ρ̄′

(N) > exp(−c2N logK), (S5.16)

for sufficiently large K,N , where ρ̄′(N) = (σ′2(N) − ρ
′
min)/ρ′min, µ

∗ = max1≤i≤N |µi| is a finite and

positive constant under the assumption, and c2 > 0 is some constant. The first and second in-

equalities hold by applying Slepian’s inequality, the third inequality is obtained by applying Lemma

S3 by taking d = K, a = µ∗, ρ = ρ′min and ρ̄(K) = ρ̄′(N), which leads to P(Z ′′[(1+(i−1)K):iK] ≥

µ∗1K) & (logK)−1/2K
−ρ̄′

(N) , for i = 1, . . . , s. A same lower bound is obtained for P(Z ′′[(1+mK):N ] ≥

µ∗1N−mK). Comparing the result in equation (S5.16) with result in equation (S5.15), it is obvious

that choosing PN > c2N logK leads to P(X ′ ∈ Ac) < ηP(X ′ ∈ Cµ) for some constant η ∈ (0, 1) and

for any positive integer N . Combining this result with equations (S5.14) and (S5.16), we obtain

P(X ∈ Cµ) ≥ e−εPN/2(|Σ′N |/|ΣN |)1/2(1− η)P(X ′ ∈ Cµ), (S5.17)

for some constant η ∈ (0, 1).

Now we bound the numerator of the ratio in equation (S5.13). Similarly, we have

P(X ∈ Cδ) ≤
∫
Cδ

(2π)−N/2|ΣN |−1/2e−
1
2
xTΣ′−1

N xeε‖Σ
′−1
N ‖‖x‖2/2dx

≤ eεPN/2(|Σ′N |/|ΣN |)1/2{P(X ′ ∈ Cδ) + P(X ′ ∈ Ac)}. (S5.18)

Next, we shall show P(X ′ ∈ Ac) < P(X ′ ∈ Cδ). To proceed, we consider the defined random vector
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Z ′′ above, since (Σ′′N (ρ′min))ij ≤ (Σ′N )ij for all i 6= j, then applying Lemma S1 leads to

P(X ′ ∈ Cδ) ≥ P(Z ′′ ∈ Cδ) ≥ P(−µ1 ≤ Z ′′1 ≤ δ − µ1, Z
′′
2 ≥ −µ2, . . . , Z

′′
N ≥ −µN )

≥ P(−µ1 ≤ Z ′′1 ≤ δ − µ1, Z
′′
2 ≥ µ∗, . . . , Z ′′K ≥ µ∗)

·Πm
i=2{P(Z ′′[(1+(i−1)K):iK] ≥ µ

∗1K)}P(Z ′′[(1+mK):N ] ≥ µ
∗1N−mK)

& (logK)−(m+1)/2(K − 1)
−(1+α)σ′2

(1)
/ρ′minK

−mρ̄′
(N) ≥ exp(−c3N logK),

where ρ̄′(1) = (σ′2(1) − ρ
′
min)/ρ′min, α ∈ (0, 1) and c3 > 0 are some constants. The third inequality

holds based on an application of the lower bound of Lemma S2 with d = K, ρ = ρ′min and ρ̄(1) = ρ̄′(1)

to bound P(−µ1 ≤ Z ′′1 ≤ δ − µ1, Z
′′
2 ≥ µ∗, . . . , Z ′′K ≥ µ∗) from below and a same lower bound for

P(Z ′′[(K+1):N ] ≥ µ∗1N−K) as in deriving equation (S5.16). Again, it is easy to see that by choosing

PN & N logK we have P(X ′ ∈ Ac) < P(X ′ ∈ Cδ). With this result and equation (S5.18), we obtain

the upper bound for the numerator of the ratio in equation (S5.14) as

P(X ∈ Cδ) ≤ 2eεPN/2(|Σ′N |/|ΣN |)1/2P(X ′ ∈ Cδ). (S5.19)

Now combining results in equations (S5.17) and (S5.19), by choosing ε ≤ cP−1
N for some constant

c > 0, we obtain

P(X ∈ Cδ)
P(X ∈ Cµ)

≤ 2(1− η)ec
P(X ′ ∈ Cδ)
P(X ′ ∈ Cµ)

, (S5.20)

for some η ∈ (0, 1).

(⇐). We now follow a similar line of arguments to show P(0 ≤ Z1 < δ) & P(0 ≤ Z ′1 < δ). It

suffices to lower bound the ratio in equation (S5.13). We first bound the denominator of the ratio

in equation (S5.13) from above. With a similar calculation as in equation (S5.18), one can show

that

P(X ∈ Cµ) ≤ eεPN/2(|Σ′N |/|ΣN |)1/2{P(X ′ ∈ Cµ) + P(X ′ ∈ Ac)}

≤ 2eεPN/2(|Σ′N |/|ΣN |)1/2P(X ′ ∈ Cµ). (S5.21)

The second inequality adopts the fact that P(X ′ ∈ Ac) < P(X ′ ∈ Cµ). Now to lower bound the
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numerator, with a similar calculation in equation (S5.14), we have

P(X ∈ Cδ) ≥ e−εPN/2(|Σ′N |/|ΣN |)1/2{P(X ′ ∈ Cδ)− P(X ′ ∈ Ac)}

≥ (1− η′)e−εPN/2(|Σ′N |/|ΣN |)1/2P(X ′ ∈ Cδ), (S5.22)

for some constant η′ ∈ (0, 1). Again, the second inequality uses the result that P(X ′ ∈ Ac) < P(X ′ ∈

Cδ). Then there exist some η′ ∈ (0, 1) such that P(X ′ ∈ Cδ)−P(X ′ ∈ Ac) ≥ (1−η′)P(X ′ ∈ Cδ). Then

combining results of equations (S5.21) and (S5.22) and by choosing ε ≤ cP−1
N for some constant

c > 0,

P(X ∈ Cδ)
P(X ∈ Cµ)

≥ {2(1− η′)ec}−1 P(X ′ ∈ Cδ)
P(X ′ ∈ Cµ)

. (S5.23)

Combining results in equations (S5.20) and (S5.23), we complete the proof of Proposition S1.

S5.5 Proof of Proposition S2

First note that the scale matrix ΩN defined in § 4.1 is a correlation matrix. Also it is easy to verify

that ΩN satisfies Assumption 2 that ΩN ∈ M(α0, λ0, k) for some constants α0, λ0 > 0. Given any

fixed τ, λ, recall the unconstrained parameter θ′ |λ ∼ N (0N , τ
2ΛΩNΛ). Next, by applying Propo-

sition 4, one can construct a K-banded approximating matrix Ω′N such that ‖ΩN − Ω′N‖ ≤ ε‖ΩN‖

by choosing K & log(1/ε). Here we choose K = O(N) and then the condition ε . (N logK)−1 is

satisfied. Since ‖ΩN‖ = O(1) under Assumption 2, we have ‖ΩN − Ω′N‖ ≤ c′(N logN)−1 for some

constant c′ > 0. Define θ′′ |λ ∼ N (0N , τ
2ΛΩ′NΛ), then by Proposition S1, one can show that for

any fixed λ > 0N , there exists some constant C ′ > 0 such that

P(θ′ ≥ 0N |λ) ≥ C ′ P(θ′′ ≥ 0N |λ).

We now lower bound P(θ′′ ≥ 0N |λ) for any fixed λ > 0N . To that end, we adopt the block

approximation technique in the proof of Theorem 2. First recall that we assume ω′ii = σ′2 for

1 ≤ i ≤ N and ω′min denotes the smallest off-diagonal positive elements of Ω′N . Then define

Ω̃′N = (ω̃′ij) with ω̃′ii = σ′2 for 1 ≤ i ≤ N and ω̃′ij = ω′min for all i, j satisfying 1 < |i − j| < K.

And we assume ω′min < σ′2. Then define the random vector θ̃ ∼ N (0N , τ
2ΛΩ̃′NΛ) given the same
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fixed λ, we have E(θ̃iθ̃j) ≤ E(θ′′i θ
′′
j ) for all 1 ≤ i 6= j ≤ N . We now construct a new random vector

using the block approximation technique. Recall that K = O(N) and we denote m0 = [N/K] > 1.

Now define the random vector θ̃′ such that θ̃′[(1+iK):(1+i)K]
d
= θ̃[(1+iK):(1+i)K] for i = 0, . . . ,m0 − 1

and θ̃′[(1+m0K):N ]
d
= θ̃[(1+m0K):N ]. And also the sub-vectors {θ̃′[(1+iK):(1+i)K], i = 0, . . . ,m0 − 1}

and θ̃′[(1+m0K):N ] are mutually independent. Then we have E(θ̃′2i ) = E(θ̃2
i ) for 1 ≤ i ≤ N and

E(θ̃′iθ̃
′
j) ≤ E(θ̃iθ̃j) for 1 ≤ i 6= j ≤ N . Then applying Lemma S4,

MC = Eλ{Π(θ ≥ 0N |λ)} ≥ Eλ{Π(θ̃ ≥ 0N |λ)} ≥ Eλ{Π(θ̃′ ≥ 0N |λ)}

= Eλ
{

Πm0−1
i=0 Π

(
θ̃′[(1+iK):(1+i)K] ≥ 0K |λ

)
Π
(
θ̃′[(1+m0K):N ] ≥ 0N−m0K |λ

)}
. (S5.24)

The second equality holds by the definition of θ̃′. To proceed, we first bound P
(
θ̃′[1:K] ≥ 0K |λ

)
from below, similar arguments can be applied to bounding the rest of probability terms of (S5.24).

Note that var(θ̃′j) = τ2λ2
jσ
′2 and cov(θ̃′i, θ̃

′
j) = τ2λiλjω

′
min for all 1 ≤ i, j ≤ K. Then we use the

equivalent expression of θ̃′ as

θ̃′i
d
= τλi

(√
1− ω′minwi +

√
ω′minW

)
, i = 1, . . . ,K,

where {wi},W are independently and identically distributed standard normal random variables.

For any fixed λ, τ > 000, we have

Π(θ̃′1 ≥ 0, . . . , θ̃′K ≥ 0 |λ) = Π
{
τλi

(√
1− ω′minwi +

√
ω′minW

)
≥ 0, i = 1, . . . ,K | λ

}
= Π

(√
1− ω′minwi +

√
ω′minW ≥ 0, i = 1, . . . ,K

)
& (logK)−1/2K−ω̄

′
min ,

where ω̄′min = (σ′2−ω′min)/ω′min. The last inequality holds by applying Lemma S3. Following similar

arguments, we obtain P(θ̃[(1+iK):(1+i)K] ≥ 0K |λ) & (logK)−1/2K−ω̄
′
min for i = 1, . . . ,m0 − 1 and

P(θ̃[(1+m0K):N ] ≥ 0N−m0K |λ) ≥ (logK)−1/2K−ω̄
′
min . Combining these results with (S5.24), then we

have

MC & (logK)−(m0+1)/2K−(m0+1)ω̄′min .

51



Since the above lower bound is decreasing in K and m0 is a constant, substitute K = N/m0 in

the above lower bound leads to the desired resultMC & (logN)−(m0+1)/2N−(m0+1)ω̄′min . By taking

t0 = m0 + 1 completes the proof.

S6 Proofs of technical results

S6.1 Proofs in Appendix A

Proof of Lemma 1. For any function f ∈ C[0, 1] and f ′ is Lipschitz, then there exists some finite

constant L > 0 such that |f ′(x)− f ′(y)| ≤ L|x− y| for any x, y ∈ [0, 1] and x 6= y. Now denote its

expansion with respect to basis expansion (M) under a grid {uj} by fN (x). Given the definition of

fN and applying the fundamental theorem of calculus to f , we have for any x ∈ [0, 1],

|fN (x)− f(x)| =
∣∣∣∣{f(0) +

∫ x

0

N−1∑
j=0

f ′(uj)hj(s) ds} − {f(0) +

∫ x

0
f ′(s) ds}

∣∣∣∣
≤
∫ x

0

∣∣∣∣N−1∑
j=0

f ′(uj)hj(s)− f ′(s)
N−1∑
j=0

hj(s)

∣∣∣∣ds
≤
∫ x

0

N−1∑
j=0

|f ′(uj)− f ′(s)|hj(s) ds ≤ δNL.

The second inequality holds for the facts |f ′(uj)− f ′(s)| ≤ L|s−uj | and hj(s) 6= 0 for |s−uj | ≤ δN

for any 1 ≤ j ≤ N . The inequality holds uniformly for any x ∈ [0, 1], therefore we complete the

proof.

Proof of Lemma 2. We first show the upper bound. For any nonempty set S ∈ {1, . . . , N}, recall

ΨS is a n × |S| sub-matrix of Ψ with columns Ψj , j ∈ S and denote an arbitrary |S|-dimensional

vector by θS = {θj ∈ R, j ∈ S}. Note that ΨSθS is a n× 1 vector, we have

‖ΨSθS‖2 =

n∑
i=1

( |S|∑
j=1

Ψijθj

)2

≤
n∑
i=1

( |S|∑
j=1

Ψ2
ij

|S|∑
j=1

θ2
j

)
≤ nδN‖θS‖2 ≈ (n/N)‖θS‖2,

for sufficiently large N . The second inequality is obtained by applying Cauchy-Schwarz inequality,

and the third inequality holds by the fact that ‖Ψ‖∞ ≤ δN by construction, and δN = 1/(N − 1).
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Now we prove the lower bound. Note that under the assumption minij |xi−uj | ≥ cδ3/2
N , we have

Ψij ≥ 2c δ
1/2
N for all 1 ≤ i, j ≤ N . Then

‖ΨSθS‖2 =

n∑
i=1

( |S|∑
j=1

Ψijθj

)2

≥
n∑
i=1

(2c δ
1/2
N )2‖θS‖2 ≈ 4c2(n/N)‖θS‖2,

for a fixed constant c > 0 and for sufficiently large N . Then we complete the proof.

Proof of Lemma 3. For any 0 ≤ a < b ≤ 1, determine the largest integer 0 ≤ j′1 ≤ N − 1 such

that uj′1 ≤ a and the smallest integer 0 ≤ j′S ≤ N − 1 such that b ≤ uj′S . Then the shortest interval

contains [a, b] is [uj′1 , uj′S ]. By restricting the function to be non-decreasing, one has θj ≥ 0 for

j = 1, . . . , N . Given the construction in (M), the flatness of f over the interval [a, b] is equivalent

to

f ′(x) =

j′S∑
l=j′1

θl+1hl(x) = 0,

for x ∈ [a, b]. It implies θl+1 = 0 for all l = j′1, . . . , j
′
S . Then we complete the proof.

S6.2 Proof of Lemma S1

We first prove the result for centered multivariate normal vectors. For random vectors X ∼

N (0,ΣX) and Y ∼ N (0,ΣY ), to show P(`1 ≤ X1 ≤ u1, X2 ≥ u2, . . . , Xd ≥ ud) ≤ P(`1 ≤

Y1 ≤ u1, Y2 ≥ u2, . . . , Yd ≥ ud), it suffices to show

P(Y1 ≥ u1, Y2 ≥ u2, . . . , Yd ≥ ud)− P(X1 ≥ u1, X2 ≥ u2, . . . , Xd ≥ ud)

≤ P(Y1 ≥ `1, Y2 ≥ u2, . . . , Yd ≥ ud)− P(X1 ≥ `1, X2 ≥ u2, . . . , Xd ≥ ud).
(S6.1)

We define d-dimensional indicator functions G(x) = 1[u1,∞)(x1)
∏d
j=2 1(uj ,∞)(xj) and F (x) =

1[`1,∞)(x1)
∏d
j=2 1(uj ,∞)(xj), then it is equivalent to show

E{G(Y )} − E{G(X)} ≤ E{F (Y )} − E{F (X)}. (S6.2)

We now construct non-decreasing approximating functions of G,F with continuous second order

derivatives respectively. Let ν ∈ C2(R) be a non-decreasing twice differentiable function with
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ν(t) = 0 for t ≤ 0, ν(t) ∈ [0, 1] for t ∈ [0, 1], and ν(t) = 1 for t ≥ 1. Also, choose ν so that

‖ν ′‖∞ < C for some universal constant C > 0. For η > 0, we define mη(x) = ν(ηx). It is clear that

mη(x) approximates 1[0,∞)(x) for large η. In fact, for any x 6= 0, limη→∞mη(x) = 1[0,∞)(x).

Given the above, let gηj (xj) = ν{η(xj − uj)} for j = 1, . . . , d, and fη1 = ν{η(x − `1)}, fηj =

ν{η(xj − uj)} for j = 2, . . . , d. Define

gη(x) = Πd
j=1g

η
j (xj) and fη(x) = Πd

j=1f
η
j (xj).

It then follows that gη and fη provide increasingly better approximations of G and F as η → ∞.

It thus suffices to show

E{gη(Y )} − E{gη(X)} ≤ E{fη(Y )} − E{fη(X)}, (S6.3)

for sufficiently large η > 0 to be chosen later. We henceforth drop the superscript η from g and f

for notation brevity.

We proceed to utilize an interpolation technique commonly used to prove comparison inequalities

(see Chapter 7 of [16]). We construct a sequence of interpolating random variables based on the

independent random variables X,Y :

St = (1− t2)1/2X + tY, t ∈ [0, 1].

Specifically, we have S0 = X, S1 = Y , and for any t ∈ [0, 1], St ∼ N (0, Σ̃t) where Σ̃t = (1− t2)ΣX +

t2ΣY . For any twice differentiable function h, we have the following identity

E{h(Y )} − E{h(X)} =

∫ 1

0

d

dt
E{h(St)} dt. (S6.4)

Applying a multivariate version of Stein’s lemma (Lemma 7.2.7 in [16]) to the integrand in equation

(S6.4), one obtains

d

dt
E{h(St)} = t

d∑
i,j=1

E
[
{E(YiYj)− E(XiXj)}

∂2h

∂xi∂xj
(St)

]
. (S6.5)
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To show equation (S6.3), we define the difference ∆ = [E{f(Y )}−E{f(X)}]−[E{g(Y )}−E{g(X)}].

We further decompose ∆ as

∆ = [E{f(Y )} − E{f(X)}]− [E{g(Y )} − E{g(X)}]

=

∫ 1

0
dt

{
d

dt
E{f(St)} −

d

dt
E{g(St)}

}
=

∫ 1

0
dt

{
t

d∑
i,j=1

E
[
{E(YiYj)− E(XiXj)}

(
∂2f

∂xi∂xj
(St)−

∂2g

∂xi∂xj
(St)

)]}

= 2

∫ 1

0
dt

{
t

d∑
j=2

E
[
{E(Y1Yj)− E(X1Xj)}

(
∂2f

∂x1∂xj
(St)−

∂2g

∂x1∂xj
(St)

)]}

+

∫ 1

0
dt

{
t

d∑
i,j=2

E
[
{E(YiYj)− E(XiXj)}

(
∂2f

∂xi∂xj
(St)−

∂2g

∂xi∂xj
(St)

)]}
= ∆1 + ∆2.

The second equation follows from (S6.4) and the third equation follows from (S6.5). First we show

∆1 ≥ 0. Since E(Y1Yj) ≥ E(X1Xj) for all j > 1, it suffices to show that for any fixed t ∈ [0, 1] and

for any j = 2, . . . , d,

D1 = E
(

∂2f

∂x1∂xj
(St)−

∂2g

∂x1∂xj
(St)

)
≥ 0.

We consider a generic interpolating random variable S ∼ N
(
0, Σ̃

)
by dropping the t-subscript; let

φ(s1, . . . , sd) denote its probability density function. Then we have

D1 =

∫ ∞
−∞
· · ·
∫ ∞
−∞
{f ′1(s1)f ′j(sj)− g′1(s1)g′j(sj)}Πl 6=1,jfl(sl)φ(s1, . . . , sd) ds1 . . . dsd

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

[ ∫ ∞
−∞
{f ′1(s1)− g′1(s1)}φ(s1, . . . , sN ) ds1

]
f ′j(sj) Πl 6=1,jfl(sl) ds2 . . . dsd.

To guarantee D1 is non-negative we need the integral over s1 to be non-negative. Based on the
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definition of f1 and g1, the integral over s1 can be simplified to

∫ ∞
−∞
{f ′1(s1)− g′1(s1)}φ(s1, . . . , sN ) ds1

=

∫ `1+1/η

`1

{
η ν′
(
η(s1 − `1)

)}
φ(s1, . . . , sN ) ds1 −

∫ u1+1/η

u1

{
η ν′
(
η(s1 − u1)

)}
φ(s1, . . . , sN ) ds1

=

∫ 1/η

0
η ν ′(ηs1){φ(s1 + `1, s2, . . . , sN )− φ(s1 + u1, s2, . . . , sN )}ds1. (S6.6)

Let us denote the inverse of the covariance matrix Σ̃ as

Σ̃−1 =

Σ̃−1
11 Σ̃−1

12

Σ̃−1
21 Σ̃−1

22

 ,
where Σ̃−1

11 is a scalar. To check the non-negativity of the last line in equation (S6.6), we now

estimate the term

φ(s1 + `1, s2, . . . , sd)

φ(s1 + u1, s2, . . . , sd)
= e{(u

2
1−`21)+2s1 (u1−`1)} Σ̃−1

11 /2+ (u1−`1) Σ̃−1
12 s̃2 ,

where s̃2 = (s2, . . . , sd)
T. Since sj ∈ [0, 1/η], we have s1 (u1 − `1)} Σ̃−1

11 > 0. We denote ρ̃ =

max{Σ̃−1
12 } as the largest element of Σ̃−1

12 . Then, one can choose η large enough such that

(u1 + `1) Σ̃−1
11 − 2(d− 1)ρ̃/η ≥ 0,

to guarantee D1 ≥ 0. For example η = 4(d− 1) ρ̃ Σ̃11/(u1 + `1) satisfies the above inequality.

Now we show ∆2 ≥ 0. We have E(YiYj) ≥ E(XiXj) for all i, j = 2, . . . , d. For any i, j ≥ 2, for

any fixed t ∈ [0, 1], we define

D2 = E
(

∂2f

∂xi∂xj
(St)−

∂2g

∂xi∂xj
(St)

)
= E{(f1 − g1)f ′i g

′
j Πk 6=1,i,jfk}.

Since f1 − g1 ≥ 0, and f ′j ≥ 0 for all j > 1, it follows that D2 ≥ 0 and thus ∆2 ≥ 0. Combining

with the non-negativity of ∆1 completes the proof for centered case.

Now we consider the non-centered multivariate normal vectors. Consider X ∼ N (µ,ΣX) and

Y ∼ N (µ,ΣY ). Define X̃ := X − µ and Ỹ := Y − µ. Let ˜̀
1 = `1 − µ1, and uj = uj − µj for
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j = 1, . . . , d. Then it is equivalent to show P(˜̀
1 ≤ X̃1 ≤ ũ1, X̃2 ≥ ũ2, . . . , X̃d ≥ ũd) ≤ P(˜̀

1 ≤ Ỹ1 ≤

ũ1, Ỹ2 ≥ ũ2, . . . , Ỹd ≥ ũd), which has been proved in the centered case. Thus we complete the proof

of Lemma S1.

S6.3 Proof of Lemma S2

Recall X ∼ Nd(µ,Σd(σ
2, ρ)), where µ is a non-negative fixed mean vector and Σd(σ

2, ρ) = (σij)

denotes a variance-correlation matrix with σii > 0 for 1 ≤ i ≤ N and σij = ρ for 1 ≤ i 6= j ≤ d.

Recall σ2
(1) = min1≤i≤d ρii, and under the assumption we have ρ < σ2

(1).

Define X ′ := X − µ, we will repeatedly use its equivalent expression

X ′i = ρ1/2w + (σii − ρ)1/2Wi, i = 1, . . . , N, (S6.7)

where w,Wi’s are independent standard normal variables.

Proof of the upper bound. Recall ρ̄(1) = (σ2
(1)−ρ)/ρ. For any fixed δ > 0, and for α ∈ (0, 1) we have

P(0 ≤ X1 < δ,X2 ≥ 0, . . . , Xd ≥ 0)

= P(0 ≤ X ′1 + µ1 < δ,X ′2 + µ2 ≥ 0, . . . , X ′d + µd ≥ 0)

= P
(
− µ1 ≤ ρ1/2w + (σ11 − ρ)1/2W1 ≤ δ − µ1, ρ

1/2w ≥ max
2≤i≤d

(σii − ρ)1/2Wi − min
2≤i≤d

µi

)
= P

({
− µ1 ≤ ρ1/2w + (σ11 − ρ)1/2W1 ≤ δ − µ1, w ≥ ρ̄1/2

(1) max
2≤i≤d

Wi − ρ−1/2 min
2≤i≤d

µi

}
∪
[

max
2≤i≤d

Wi ≥ {2(1− α) log(d− 1)}1/2
]
∪
[

max
2≤i≤d

Wi ≤ {2(1− α) log(d− 1)}1/2
])

≤ P
[
− µ1 ≤ ρ1/2w + (σ11 − ρ)1/2W1 ≤ δ − µ1, w ≥

{
2 ρ̄(1) (1− α) log(d− 1)

}1/2 − ρ−1/2 min
2≤i≤d

µi

]
+ P

[
max
2≤i≤d

Wi ≤ {2(1− α) log(d− 1)}1/2
]

= P1 + P2. (S6.8)

First, we estimate P1 in (S6.8). For a sufficiently large d and fixed µi’s, it is easy to see that
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µi < {2(1−α) log(d− 1)}1/2 for i = 1, . . . , d. Then applying the expression of X in (S6.7), we have

P1 = P
[
W1 ∈

{
− µ1/(σ11 − ρ)1/2 −

(
ρ

σ11 − ρ

)1/2

w, (δ − µ1)/(σ11 − ρ)1/2 −
(

ρ

σ11 − ρ

)1/2

w

} ∣∣∣∣
w ≥

{
2 ρ̄(1) (1− α) log(d− 1)

}1/2 − ρ−1/2 min
2≤i≤d

µi

]
· P
[
w ≥

{
2 ρ̄(1) (1− α) log(d− 1)

}1/2 − ρ−1/2 min
2≤i≤d

µi

]
≤ P

[
W1 ∈

(
− µ1(σ11 − ρ)−1/2 −

[
{2(1− α) log(d− 1)}1/2 − (σ11 − ρ)−1/2 min

2≤i≤d
µi

]
,

(δ − µ1)(σ11 − ρ)−1/2 −
[
{2(1− α) log(d− 1)}1/2 − (σ11 − ρ)−1/2 min

2≤i≤d
µi

] )]
· P
(
w ≥

{
2 ρ̄(1) (1− α) log(d− 1)

}1/2 − ρ−1/2 min
2≤i≤d

µi

)
≤ δ{2π(σ11 − ρ)}−1/2 exp

(
−
[
(δ + min

2≤i≤d
µi − µ1)(σ11 − ρ)−1/2 − {2(1− α) log(d− 1)}1/2

]2/
2
)

·
[
{2 ρ̄(1) (1− α) log(d− 1)}1/2 − ρ−1/2 min

2≤i≤d
µi

]−1

· exp
(
−
[
2 ρ̄(1) {(1− α) log(d− 1)}1/2 − ρ−1/2 min

2≤i≤d
µi
]2/

2
)
. (S6.9)

The last inequality follows from Lemma S7 in § S7.

Now we move to estimate the term P2 in (S6.8). We have,

P
[

max
2≤i≤d

Wi ≤ {2 (1− α) log(d− 1)}1/2
]

=
(
1− P

[
Z ≥ {2 (1− α) log(d− 1)}1/2

])d−1

≤ exp
(
− (d− 1)P

[
Z ≥ {2 (1− α) log(d− 1)}1/2

])
≤ exp(−(d− 1) α), (S6.10)

where Z ∼ N (0, 1). Then combining bound results in (S6.9) and (S6.10), for sufficiently large d we

attain the desired upper bound
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P(0 ≤ X1 < δ,X2 ≥ 0, . . . , Xd ≥ 0)

≤ Cδ
{

log(d− 1)− ρ−1/2 min
2≤i≤d

µi

}−1/2

· exp
(
−
[
{2(1− α) log(d− 1)}1/2 − (σ11 − ρ)−1/2

(
δ + min

2≤i≤d
µi − µ1

)]2
/2

−
[
2 ρ̄(1) {(1− α) log(d− 1)}1/2 − ρ−1/2 min

2≤i≤d
µi

]2/
2
)

+ exp(−(d− 1) α), (S6.11)

where C = {4π(σ11 − ρ)ρ̄(1) (1− α)}−1/2 for some α ∈ (0, 1).

Proof of the lower bound. The lower bound is derived in a similar manner, thus we omit details and

only state the different steps. Using the expression (S6.7), we arrive at

P(0 ≤ X1 < δ,X2 ≥ 0, . . . , Xd ≥ 0)

≥ P
({
− µ1 ≤ ρ1/2w + (σ11 − ρ)1/2W1 ≤ δ − µ1, w ≥ ρ̄1/2

(1) max
2≤i≤d

Wi − ρ−1/2 min
2≤i≤d

µi

}
∩
[

max
2≤i≤d

Wi ≤ {2(1 + α) log(d− 1)}1/2
])

≥ P
[
− µ1 ≤ ρ1/2w + (σ11 − ρ)1/2W1 ≤ δ − µ1, w ≥

{
2 ρ̄(1) (1 + α) log(d− 1)

}1/2 − ρ−1/2 min
2≤i≤d

µi

]
· P
[

max
2≤i≤d

Wi ≤ {2(1 + α) log(d− 1)}1/2
]

=: P ′1 · P ′2.

Following a similar argument, we can bound P ′1 by

P ′1 ≥ δ{2π(σ11 − ρ)}−1/2 exp
{
−
[
{2(1 + α) log(d− 1)}1/2 − (σ11 − ρ)−1/2

(
min

2≤i≤d
µi − µ1

)]2
/2
}

·
[
{2 ρ̄(1) (1 + α) log(d− 1)}1/2 − ρ−1/2 min

2≤i≤d
µi

]−1

· exp
(
−
[
2 ρ̄(1) {(1 + α) log(d− 1)}1/2 − ρ−1/2 min

2≤i≤d
µi

]2
/2
)
, (S6.12)

for some α ∈ (0, 1). By using the lower bound in Lemma S7,

P ′2 =
(
1− P

[
Z ≥ {2 (1 + α) log(d− 1)}1/2

])d−1 ≥ exp
(
− (d− 1)P

[
Z ≥ {2 (1 + α) log(d− 1)}1/2

])
≥ exp(−(d− 1)−α) ≥ 1/2, (S6.13)
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for sufficiently large d and for some α ∈ (0, 1). Combining (S6.12) and (S6.13) leads to

P(0 ≤ X1 < δ,X2 ≥ 0, . . . , Xd ≥ 0)

≥ C ′δ {log(d− 1)}−1/2 exp
{
−
[
{2(1 + α) log(d− 1)}1/2 − (σ11 − ρ)−1/2

(
min

2≤i≤d
µi − µ1

)]2/
2

−
[
2 ρ̄(1) {(1 + α) log(d− 1)}1/2 − ρ−1/2 min

2≤i≤d
µi

]2/
2
}
, (S6.14)

where C ′ = {8π(σ11 − ρ)ρ̄(1) (1 + α)}−1/2. By combining (S6.11) and (S6.14) yields the sandwich

bound in Lemma S2.

S6.4 Proof of Lemma S3

Recall X ′ = X − µ, then it suffices to lower-bound P(X ′ ≥ µ∗1d). Recall that ρ̄(d) = (σ2
(d) − ρ)/ρ.

We now show that for any scalar a ≥ 0, we have

P(X ′ ≥ a1d) ≥
aρ−1/2 + (2 ρ̄(d) logN)1/2{

aρ−1/2 + (2 ρ̄(d) log d)1/2
}2

+ 1
exp

[
− 1

2

{
aρ−1/2 + (2 ρ̄(d) log d)1/2

}2]
, (S6.15)

where recall that 1d denotes a N -dimensional vector of ones. By taking a = max1≤i≤d{µi} leads to

the desired lower bound.

Now we prove the lower bound in (S6.15). First,

P(X ≥ a1d) = P
(
ρ1/2w + (σii − ρ)1/2Wi ≥ a, for i = 1, . . . , d

)
(S6.16)

= E
(
P
[
w ≥ ρ−1/2{a− (σii − ρ)1/2Wi}, i = 1, . . . , d |W1, . . . ,Wd

])
(i)
= E

{
P
(
w ≥ ρ−1/2

[
a+ max

i
{(σii − ρ)1/2Wi}

]
|W1, . . . ,WN

)}
= E

{
1− Φ

(
aρ−1/2 + ρ̄

1/2
(d) max

i
Wi

)}
,

where W = [W1, . . . ,Wd]
T. Here, (i) holds since −Wi

d
= Wi for i = 1, . . . , d and max1≤i≤d(−Wi)

d
=

max1≤i≤d(Wi).

We now proceed to lower bound the right hand side of the last equation in (S6.16). To that end,

we define g(a, b) = 1−Φ(aρ−1/2+ρ̄
1/2
(d) b), where g : R+×R→ [0, 1]. Importantly, g is non-increasing

function of a, b for a, b ∈ R, and g is a convex function of (a, b) for a, b > 0. For any fixed a > 0,

since g(a,maxiWi) is non-increasing in maxiWi, we have g(a,maxiWi) ≥ g(a,maxi |Wi|). We then
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apply Jensen’s inequality,

E
{
g
(
a, max

1≤i≤d
|Wi|

)}
≥ g
{
a,E

(
max
1≤i≤d

|Wi|
)}
≥ g
{
a, (2 log d)1/2

}
.

The last inequality holds by applying Lemma S6 in § S7. To lower bound g
{
a, (2 log d)1/2

}
we apply

Lemma S7 in § S7. Eventually, we obtain

E
{
g
(
a, max

1≤i≤d
|Wi|

)}
≥

aρ−1/2 + (2ρ̄(d) log d)1/2{
aρ−1/2 + (2ρ̄(d) log d)1/2

}2
+ 1

exp
[
−
{
aρ−1/2 + (2ρ̄(d) log d)1/2

}2
/2
]
.

(S6.17)

Taking a = µ∗ completes the proof.

S7 Auxiliary results

S7.1 Technical results

Lemma S4. (Slepian’s lemma) Let X,Y be centered Gaussian vectors on Rd. Suppose EX2
i = EY 2

i

for all i, and E(XiXj) ≤ E(ZiZj) for all i 6= j. Then, for any x ∈ R,

P
(

max
1≤i≤d

Xi ≤ x
)
≤ P

(
max
1≤i≤d

Yi ≤ x
)
.

We use the Slepian’s lemma in the following way in the main document. We have,

P(X1 ≥ 0, . . . , Xd ≥ 0) = P
(

min
1≤i≤d

Xi ≥ 0
)

= P
(

max
1≤i≤d

Xi ≤ 0
)
,

where the second equality uses X d
= −X. We use Slepian’s inequality to arrive at equation (S4.2)

in the main document.

Lemma S5. (Lemma 3.1 in [14].) Let X ∼ N (0,Σ1) and Y ∼ N (0,Σ2). For any set D ∈ RN , if

Σ1 − Σ2 is positive semi-definite, then

P (Y ∈ D) ≤ (|Σ1|/|Σ2|)1/2P (X ∈ D).
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Lemma S6. Let Z1, . . . , ZN be iid N (0, 1) random variables. Then we have

C1

√
2 logN ≤ E max

i=1,...,N
Zi ≤ E max

i=1,...,N
|Zi| ≤

√
2 logN. (S7.1)

for some constant 0 < C1 < 1.

Lemma S7. (Mill’s ratio bound) Let X ∼ N (0, 1). We have, for x > 0, that

x

x2 + 1
e−x

2/2 ≤ 1− Φ(x) ≤ 1

x
e−x

2/2,

where Φ(·) is cumulative distribution function of X.

Lemma S8. (Lemma 2.1 in [2]) Let matrix A be k-banded, symmetric, and positive definite. We

denote M = ‖A‖ and m = 1/‖A−1‖, and for n ∈ N0, we define

Bn = γ
n∑
j=0

(I − γA)j , (S7.2)

where γ = 2/(M +m). Then Bn is a symmetric positive definite (nk)-banded matrix, also, ‖A−1 −

Bn‖ ≤ κn+1/m, κ = (M −m)/(M +m) < 1.

S7.2 Correlation (ρmin, ρmax) in Figure S1

Table S1: Values of (ρmin, ρmax) for (N,K) considered in Figure S1

N K ρmin ρmax

Case I
100 2 0.43 0.48
100 5 0.295 0.45
100 20 0.154 0.23

Case II
10 5 0.447 0.68
50 5 0.30 0.46
100 5 0.295 0.45

Case III
25 5 0.327 0.50
100 20 0.154 0.23
250 50 0.057 0.08
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S8 Additional details on the numerical studies

S8.1 Prior draws

We consider equation (4.1) and the prior specified in § 4. Prior samples on both θ and ξ of dimension

N = 100 were drawn. Figure S8 shows prior draws for the first and third components of both θ and

ξ.

Figure S8: Showing prior draws from distribution of θ (left panel) and ξ (right panel). Top and
bottom panels correspond to first and third components respectively, for both θ and ξ.

S8.2 Posterior Computations

We now consider model (4.2) and the prior specified in § 4. Then the full conditional distribution

of θ

π(θ | Y, ζ, λ, τ, σ) ∝ exp

{
− 1

2σ2
‖Ỹ −ΨΛθ‖2

}
exp

{
− 1

2τ2
θTK−1θ

}
1Cθ(θ)
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can be approximated by

π(θ | Y, ζ, λ, τ, σ) ∝ exp

{
− 1

2σ2
‖Ỹ −Ψλ θ‖2

}
exp

{
− 1

2τ2
θTK−1θ

}{N+1∏
j=1

eηθ θj

1 + eηθ θj

}

=

[
exp

{
− 1

2σ2
‖Ỹ −Ψλ θ‖2

}{N+1∏
j=1

eηθ θj

1 + eηθ θj

}]
exp

{
− 1

2τ2
θTK−1θ

}

where ηθ is a large valued constant, Ỹ = Y − ζ1n and Ψλ = ΨΛ. The above is same as equation

(5) of [13] and thus falls under the framework of their sampling scheme. For more details on the

sampling scheme and the approximation, one can refer to [13].

Note that λj ∼ C+(0, 1), j = 1, . . . , N , can be equivalently given by λj | wj ∼ N (0, w−1
j )1(λj >

0) , wj ∼ G(0.5, 0.5) , j = 1, . . . , N . Thus the full conditional distribution of λ can be approximated

by:

π(λ | Y, ζ, θ, w, τ, σ) ∝
[

exp

{
− 1

2σ2
‖Ỹ −Ψθ λ‖2

}{N+1∏
j=1

eηλ λj

1 + eηλ λj

}]
exp

{
− 1

2
λTWλ

}

where ηλ plays the same role as ηθ, w = (w1, . . . , wN )T, W = diag(w1, . . . , wN ), Ψθ = ΨΘ and

Θ = diag(θ1, . . . , θN ). Thus, λ can be sampled efficiently using algorithm proposed in [13].

S8.3 Additional numerical studies and plots of model fits

In this section, we provide details on model comparisons and additional plots discussed in § 4.3

of the main documents. First, we discuss the improvement due to the shrinkage. Specifically, the

variants of tmvn model considered are:

• tmvn with fixed hyperparameters: We set Λ = IN and τ = 1 in (4.2), and also fix ν

and `, so that we have a truncated normal prior on the coefficients. This was implemented

as a part of the motivating examples in the introduction. We fix ν = 0.75 and ` so that the

correlation k(1) between the maximum separated points in the covariate domain equals 0.05.

• tmvn with hyperparameter updates: The only difference from the previous case is that ν

and ` are both assigned priors described previously and updated within the MCMC algorithm.

• tmvn with global shrinkage: We continue with Λ = IN and place a half-Cauchy prior on

the global shrinkage parameter τ . The hyperparameters ν and ` are updated.
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• dgl-tmvn: This is the proposed procedure where the λjs are also assigned half-Cauchy

priors and the hyperparameters are updated.

Figures S9, S10, S11 and S12 display the model fits of functions f1, f2,f3 and f4 respectively

based the on four variants of tmvn priors discussed above. The figures suggest that the tmvn prior

with fixed hyperparameters leads to a large bias in the flat region. Adding some global structure to

it, for instance, by updating the gp hyperparamaters and adding a global shrinkage term improves

prediction around the flat region. However it still lacked the flexibility to transition from the flat

region to the strictly increasing region. By including component-wise local parameters additionally

(i.e. the dgl-tmvn) improves the overall prediction and performs the best, both visually and also

in terms of mspe.

Figure S9: Out-of-sample prediction accuracy for f1 using the four variants. Red solid curve cor-
responds to the true function, black solid curve is the mean prediction, the region within two dotted
blue curves represent 95% pointwise prediction interval and the green dots are 200 test data points.
mspe values corresponding to each of the method are also shown in the plots.
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Figure S10: Same as Figure S9, now for the function f2.
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Figure S11: Same as Figure S9, now for the function f3.
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Figure S12: Same as Figure S9, now for the function f4.
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S8.4 Performance of bsar

Consider the simulation set-up specified corresponding to the four variants of tmvn priors in §

4.3. Figure S13 shows the out-of-sample prediction performance of bsar, developed by [10], and

implemented by the R package bsamGP.

Figure S13: Figure portraying out-of-sample prediction accuracy using bsar for f1 (top left), f2 (top
right), f3 (bottom left) and f4 (bottom right). Red solid curve corresponds to the true function, black
solid curve is the mean prediction, the region within two dotted blue curves represent 95% pointwise
prediction interval and the green dots are 200 test data points. mspe values corresponding to each
of the method are also shown in the plots.
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S8.5 Sensitivity studies

In this section, we provide the results of the sensitivity studies mentioned in the manuscript.

Choice of covariance kernel: Consider the simulation set-up specified corresponding to the

four variants of tmvn priors in § S8.3. For squared-exponential kernel with length-scale parameter

` > 0, we place a compactly supported prior ` ∼ U(0.2, 1) to ensure that the correlation between

the furthest two points in the covariate domain ranges from 10−6 to approximately 0.5. Figures

S14, S15, S16 and S17 show the out-of-sample prediction performance based on squared-exponential

covariance kernel.

Figure S14: Out-of-sample prediction accuracy for f1 using the four variants and squared-exponential
kernel. Red solid curve corresponds to the true function, black solid curve is the mean prediction,
the region within two dotted blue curves represent 95% pointwise prediction interval and the green
dots are 200 test data points. mspe values corresponding to each of the method are also reported.
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Figure S15: Same as Figure S14 for the function f2.
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Figure S16: Same as Figure S14 for the function f3.
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Figure S17: Same as Figure S14 for the function f4.
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Choice of priors on ν and `: Consider the simulation settings specified corresponding to

the four variants of tmvn priors in § 4.3. We placed compactly supported priors on ν and ` of a

Matérn kernel as: ν ∼ U(0.05, 2) and ` ∼ U(0.05, 2). Figure S18 shows the out-of-sample prediction

performance based on the choices of priors on ν and `.

Figure S18: Out-of-sample prediction accuracy using dgl-tmvn prior for f1 (top left), f2 (top right),
f3 (bottom left) and f4 (bottom right) using Matérn kernel with ν ∼ U(0.05, 2) and ` ∼ U(0.05, 2).
Red solid curve corresponds to the true function, black solid curve is the mean prediction, the region
within two dotted blue curves represent 95% pointwise prediction interval and the green dots are 200
test data points. mspe values corresponding to each of the method are also reported in the plots.
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Choice of δτ for simulation studies: Consider the variant of dgl-tmvn prior described in

§ 4.4. We used δ = 1.2 and δ = 1.8 for the sensitivity study and applied on simulation example of

function f4 in § 4.3. Figure S19 shows the estimation accuracy for estimating function f4.

Figure S19: Estimation accuracy based on δτ = 1.2 (left panel) and δτ = 1.8 (right panel) for fitting
function f4 in § 4.3. The black solid curve is the posterior mean, the region within two dotted blue
curves represent 95% pointwise credible interval and the green dots are the observed data points.
The mspe values are shown in the sub-plots.
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Choice of δτ for real data analyses: Consider the variant of dgl-tmvn prior described in

§ 4.4. We used δ = 0.3, δ = 0.7, and δ = 1 for the sensitivity study and applied on the real data

sets described in § 5. Figures S20 and S21 show the estimation accuracy for these two data sets.

Figure S20: Estimation accuracy based on δτ = 0.3 (top left panel), δτ = 0.7 (top right panel), and
δτ = 1 (bottom panel) for the age and income data set used in § 5. The black solid curve is the
posterior mean, the region within two dotted blue curves represent 95% pointwise credible interval
and the green dots are the observed data points.

76



Figure S21: Same as figure S20 for the LiDAR data set.
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S8.6 Diagnostics of MCMC samples

Here we provide results on the mixing behavior and computational efficiency of the Gibbs samplers

based on the dgl, igl, and tmvn priors respectively, as discussed in § 4.3. Figure S22 shows the

boxplots of the effective sample sizes (ess) and Table S2 reports the Monte Carlo standard errors

(mcse) of the MCMC samples of predicted function values based on 200 test points averaged over

25 replicates. Figure S23 and Table S3 provide the same for the real data sets discussed in § 5.

Table S2: The averaged standard deviations of MCMC samples of estimated function values over
200 test points and 25 replicates based on three different priors compared to the averaged standard
deviations of the replicated response points for functions f1, f2, f3 and f4

dgl igl tmvn sd(response)
f1 0.00955 0.003389 0.009092 1.7520
f2 0.00673 0.001664 0.004581 0.7610
f3 0.00974 0.002348 0.005817 1.0117
f4 0.01444 0.002180 0.006978 1.5171

Figure S22: Boxplots of averaged effective sample sizes of estimated function values over 200 test
samples based on dgl, igl and tmvn over 25 replicated data sets for functions f1 (top left panel),
f2 (top right panel), f3 (bottom left panel) and f4 (bottom right panel).
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Figure S23: Boxplots of effective sample sizes of estimated function values of models with dgl and
tmvn for the Age and income data (top left panel) and LiDAR (top right panel).

Table S3: Monte Carlo standard errors in estimating function values of models with dgl and tmvn
against the standard deviation of the observed values for different data sets

dgl tmvn sd(response)
Age-income 0.0016 0.0016 0.6363
LiDAR 8×10−4 0.0014 0.2825
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