
SUPPLEMENTARY MATERIAL

A Simulation functions

A.1 Scha↵er function

The two-dimensional “fourth” Scha↵er function (Surjanovic and Bingham, 2013) is defined as

f(x1, x2) = 0.5 +
cos2

�
sin(|x21 � x22|)

�
� 0.5

⇥
1 + 0.001

�
x21 + x22

�⇤2 .

We use the restricted domain X 2 [�2, 2]2.

A.2 G-function

The G-function (Marrel et al., 2009) is defined in d-dimension over the unit cube X 2 [0, 1]d as

f(x) =
dY

i=1

|4xi � 2|+ ai
1 + ai

where ai =
i� 2

2
for all i = 1, . . . , d.

B Performance metrics

B.1 Prediction error

Let µ? represent posterior mean predictions at np testing locations. Let ytrue represent the corresponding
observed values. Root mean squared error (RMSE) and root mean squared prediction error (RMSPE) are
respectively defined as

RMSE =

vuut 1

np

npX

i=1

⇣
(µ?

i � ytruei)2
⌘

RMSPE =

vuut 1

np

npX

i=1

 ✓
100 ⇤

µ?
i � ytruei

ytruei

◆2
!

B.2 Uncertainty quantification

Given a Gaussian posterior predictive distribution with predicted mean µ? and point-wise standard devi-
ations �?, the continuous rank probability score (CRPS; Gneiting and Raftery, 2007) is defined as

CRPS
�
ytrue | µ?,�?

�
=

1

np

npX

i=1

�?
i

✓
1
p
⇡
� 2�(zi)� zi (2 ⇤ �(zi)� 1)

◆�
for zi =

ytruei � µ?
i

�?
i

where � is the standard Gaussian pdf and � is the standard Gaussian cdf.

1

C Derivations

C.1 Partitioned matrix inverse

The inverse of a partitioned matrix follows (Barnett, 1979):

A11 A12

A21 A22

�
=

B11 B12

B21 B22

��1

where

A11 =
�
B11 �B12B

�1
22 B21

��1

A12 = �B�1
11 B12

�
B22 �B21B

�1
11 B12

��1

A21 = �B�1
22 B21

�
B11 �B12B

�1
22 B21

��1

A22 =
�
B22 �B21B

�1
11 B12

��1

C.2 Vecchia posterior predictive moments

We aim to predict Y at locations W conditioned on observed Y and W . We assume a zero-mean Gaussian
process prior distribution,

Y
Y

�
⇠ Nn+np (0, ⌃stack) where ⌃stack = ⌃

✓
W
W

�◆
=

⌃(W) ⌃(W,W)

⌃(W,W) ⌃(W)

�
.

Under the Vecchia-approximation, we decompose the precision matrix using the sparse upper-lower Cholesky
decomposition, with entries populated according to (9),

Ustack =

Uw Uw,W
0 UW

�
such that ⌃stack =

⇣
UstackU

>
stack

⌘�1
=

✓
UwU>

w + Uw,WU>
w,W Uw,WU>

W
UWU>

w,W UWU>
W

�◆�1

.

We aim to find a closed-form solution to the posterior predictive moments (3),

Y | Y,W ⇠ Nnp (µ
?,⌃?) for

µ? = ⌃(W,W)⌃(W)�1Y
⌃? = ⌃(W)� ⌃(W,W)⌃(W)�1⌃(W,W),

which can avoid dense covariance matrices by instead relying on elements of the sparse Ustack. The simpli-
fication of ⌃? follows directly from the partitioned matrix inverse (App. C.1),

UWU>
W =

�
⌃(W)� ⌃(W,W)⌃(W)�1⌃(W,W)

��1
=) ⌃? =

⇣
UWU>

W

⌘�1
.

The calculation of µ? first involves simplification of ⌃(W) and ⌃(W,W), again using partitioned matrix
inverses (App. C.1):

⌃(W) =

✓
UwU

>
w + Uw,WU>

w,W � Uw,WU>
W

⇣
UWU>

W

⌘�1
UWU>

w,W

◆�1

=
⇣
UwU

>
w

⌘�1

⌃(W,W) = �

⇣
UWU>

W

⌘�1
UWU>

w,W

✓
UwU

>
w + Uw,WU>

w,W � Uw,WU>
W

⇣
UWU>

W

⌘�1
UWU>

w,W

◆�1

= �

⇣
UWU>

W

⌘�1
UWU>

w,W

⇣
UwU

>
w

⌘�1
.

2

Together, these yield
µ? = ⌃(W,W)⌃(W)�1Y

= �

⇣
UWU>

W

⌘�1
UWU>

w,W

⇣
UwU

>
w

⌘�1
UwU

>
w Y

= �

⇣
U>
W

⌘�1
U>
w,WY.

D Conditioning set size

Here we evaluate Vecchia-DGP (DGP VEC) and scaled Vecchia-GP (GP SVEC) models on the two-
dimensional Scha↵er function while varying the conditioning set size, m. The set-up is identical to that
of Section 5.1, with the exception that we worked with n = 1, 000 and m 2 {5, 10, 25, 50, 100}. Resulting
RMSE and CRPS from 20 MC repetitions are shown in Figure 7.

Figure 7: RMSE (left) and CRPS (right) for fits to the 2d Scha↵er function as conditioning set size (m)
increases (same m used for training and prediction). Boxplots represent the spread of 20 repetitions.

As expected, increasing the size of the conditioning set improves predictive accuracy for both models.
However, the benefits of conditioning on more points diminishes beyond m = 25. While present in both
models, this “leveling o↵” e↵ect appears more starkly in the stationary GP SVEC than the non-stationary
DGP VEC. Table 1 reports computation time (in minutes on a 16-core hyperthreaded, Intel i9 CPU at
3.6GHz) for each model/m configuration. The optimization-based inference of the GP SVEC model is fast
enough that larger m do not incur additional computational costs, practically speaking. The sampling
based nature of DGP VEC reveals the cubic costs of larger conditioning sets (O(nm3)). These cubic costs,
and the minimal predictive improvements realized with larger m, motivate our choice of m = 25 for all
other exercises and as the default setting in our software.

Model m = 5 m = 10 m = 25 m = 50 m = 100
DGP VEC 3.16 4.19 8.91 25.80 92.09
GP SVEC 0.02 0.01 0.01 0.02 0.07

Table 1: Computation times in minutes for 2d Scha↵er function exercise of Figure 7.

3

E Additional simulations

E.1 Simulation with noise

As an example of a noisy simulation, we re-create the Monte Carlo exercise for the G-function (Marrel
et al., 2009) with the addition of additive Gaussian noise ✏i ⇠ N (0, 0.012). The set-up is equivalent to that
of Section 5.1, except that each model is now tasked with estimating a noise parameter (i.e. true g = NULL

in deepgp). The DGP HMC and GP SVEC models have built-in capability to estimate noise. The DGP
DSVI model does not, so we simply fix the noise parameter to the true variance (g = 0.01). To account for
the extra challenge of distinguishing signal from noise, we double the data sizes to n 2 {6000, 10000, 14000}
and np = 10000. Code to reproduce these results is available in our github repository.

Figure 8: RMSE (left) and CRPS (right) on log scales for the 4d G-function observed with Gaussian white
noise. Boxplots represent the spread of 10 MC repetitions.

The results resemble Figure 5, suggesting the addition of noise does not a↵ect the comparative e�cacy
of the models. DGP HMC and GP SVEC perform similarly, the former benefiting from the flexibility of
DGP layers and the latter benefiting from the Vecchia approximation (as compared to inducing points).
The DGP VEC model outperforms across the board. When matched by training/testing data, DGP VEC
had lower RMSE and CRPS than each of these comparators in 30/30 trials.

E.2 Higher dimensional simulation

To display functionality in higher dimension, we again re-create the Monte Carlo exercise for the G-function,
this time expanding to d = 6. The set-up is equivalent to that of Section 5.1. Higher dimension demands
larger data sizes; we entertain random LHS training designs of size n 2 {10000, 20000, 30000} and LHS
testing designs of size np = 20000.

As in the lower dimensional exercises, DGP VEC outperforms on both prediction error and uncertainty
quantification. Both DGP DSVI and DGP HMC are limited by inducing point approximations which are
especially blurry in high dimensions. We note that the DGP HMC model is at a slight disadvantage since
it estimates a noise parameter – the poor fits from this model may be over-estimating the noise.

4

Figure 9: RMSE (left) and CRPS (right) on log scales for the 6d G-function. Boxplots represent the spread
of 10 MC repetitions.

F Computation times

The following tables report computation times (in minutes) for the simulation exercises of Section 5 and
Supp. E. We report the computation time for a single Monte Carlo exercise; times for each randomized
trial are similar. All times were recorded on a 16-core hyperthreaded, Intel i9 CPU at 3.6GHz. The
compute times of MCMC methods are directly tied to the number of MCMC samples collected. DGP
VEC models sampled 3000 iterations for the Scha↵er function, 3000 for the G-function, and 2000 for the
satellite simulation. DGP HMC models utilized the default of 10,000 iterations. Un-approximated models
(DGP FULL and GP) were not run for larger data sizes due to the cubic computational costs.

Model N = 100 N = 500 N = 1,000
DGP DSVI 0.17 0.50 0.97
DGP HMC 0.58 1.45 2.43
DGP FULL 1.71 194.61 1605.94
DGP VEC 2.08 5.12 8.16
DGP VEC noU. 1.95 5.04 8.27
GP 0.03 0.55 3.48
GP SVEC 0.04 0.08 0.07

Table 2: Computation times in minutes for the Scha↵er function exercises of Section 5.1 (Figure 4).

5

Model N = 3,000 N = 5,000 N = 7,000
DGP DSVI 3.10 5.11 7.14
DGP HMC 7.59 12.21 17.35
DGP VEC 39.70 64.38 89.06
GP 807.33 N/A N/A
GP SVEC 0.05 0.09 0.09

Table 3: Computation times in minutes for the G-function exercises of Section 5.1 (Figure 5).

Model N = 10,000 N = 50,000 N = 100,000
DGP DSVI 12.00 59.13 109.20
DGP HMC 26.72 26.29 26.47
DGP VEC 190.57 809.75 1606.15
GP SVEC 0.17 0.18 0.18

Table 4: Computation times in minutes for the satellite simulation exercises of Section 5.2 (Figure 6).

Model N = 6,000 N = 10,000 N = 14,000
DGP DSVI 6.15 10.17 14.22
DGP HMC 14.69 24.94 25.19
DGP VEC 84.85 132.41 179.44
GP SVEC 0.09 0.09 0.09

Table 5: Computation times in minutes for the noisy G-function exercise of Supp. E.1 (Figure 8).

Model N = 10,000 N = 20,000 N = 30,000
DGP DSVI 11.73 21.82 35.04
DGP HMC 25.91 26.05 26.14
DGP VEC 235.49 425.43 623.89
GP SVEC 0.43 0.34 0.34

Table 6: Computation times in minutes for the 6d G-function exercise of Supp. E.2 (Figure 9).

6

	Introduction
	Review of major themes
	Gaussian processes: shallow and deep
	Vecchia approximation

	Vecchia-approximated deep Gaussian processes
	Inferential building blocks
	Posterior inference
	Ordering and conditioning

	Implementation and competition
	Implementation
	Competing methodology and software

	Empirical results
	Simulated examples
	Satellite drag simulation

	Discussion
	Simulation functions
	Schaffer function
	G-function

	Performance metrics
	Prediction error
	Uncertainty quantification

	Derivations
	Partitioned matrix inverse
	Vecchia posterior predictive moments

	Conditioning set size
	Additional simulations
	Simulation with noise
	Higher dimensional simulation

	Computation times

