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Appendix A. Methodology of Stochastic Frontier Analysis (SFA) (Section 5) 

A-1. Methodology 

In traditional non-frontier approaches to productivity analysis, all economic agents are 

assumed to be homogeneous units of production, and productivity growth takes place as a 

movement of the production frontier (Solow, 1957). A producer is technically efficient if he/she 

produces maximum output, for a given technology, from a given amount of inputs, and operates 

on the production efficiency frontier (Coelli et al. 2005). However, empirical studies 

demonstrate that in reality some production units are more efficient and operate on the 

technological frontier and are technically efficient, while others lag behind (Caves, 1989). In 

line with this, the SFA model is underpinned by the theoretical notion that production agents 

may behave sub-optimally and produce below the ideal “frontier” leading to technical 

inefficiency. This approach accounts for possible inefficient behavior by measuring 

inefficiency as the potential increase in the observed value of production against the maximum 

technically achievable value defined by the production frontier. Estimation of this frontier is 

based on the notion that a maximum achievable output exists, but is constrained by available 

inputs, and inefficiencies decrease production below the frontier. Technical inefficiency scores 

are thus calculated as the distance from current output to the frontier. 

Statistically, the SFA is a parametric approach where the form of the production 

function is assumed to be known and allows other parameters of the production technology to 

be estimated. As such, it specifies a regression model characterized by a composite error term 

that can be decomposed into two parts. The first error component is assumed to follow a 
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symmetric distribution and is a standard error term, while the second component captures 

technical inefficiency. Technical inefficiency scores are therefore free from distortion and 

statistical noise. The SFA also allows for the measurement of inefficiency and random shocks 

outside the control of the producer to affect output (Wadud, 2003; Coelli et al., 2005). 

To apply the SFA model it is necessary to impose an a priori functional form and to 

specify distributional assumptions to separate the two components of the error term. We assume 

a general regional Cobb–Douglas production function as follows: 

 

log(𝑂𝑈𝑇𝑃𝑈𝑇𝑖𝑡) = 𝛽0 + 𝛽1𝑙𝑜𝑔(𝐸𝑀𝑃𝐿𝑂𝑌𝑀𝐸𝑁𝑇𝑖𝑡) + 𝛽2 log(𝐹𝐴𝐶𝑇𝑂𝑅𝑌𝑖𝑡) +

𝛽3log(𝐻𝑂𝑅𝑆𝐸𝑃𝑂𝑊𝐸𝑅𝑖𝑡) + 𝜇𝑖 + 𝜆𝑡 + 𝑉𝑖𝑡 − 𝐼𝐸𝑖𝑡   

                                                                                                                                (1) 

 

where OUTPUT is the value of output produced deflated to 1920 prices (yen), EMPLOYMENT 

is the number of persons employed in production, FACTORY is the number of factories, and 

HORSEPOWER is the power for production machines in factories measured by horsepower in 

prefecture i in year t;  and  are prefecture fixed effects and time dummies respectively, while 

IE is a nonnegative random variable accounting for technical inefficiency in the production 

function and V is the usual error term where both are independently distributed for all 

production units (i=1, 2,…, N). Importantly, IEit stands for time-varying technical inefficiency 

scores in prefecture i in year t. If IEit is equal to zero, then prefecture i in year t is defined as 

being totally technically efficient and is at its maximum output level given the inputs used and 

technology available. If IEit is greater than zero, then prefecture i in year t is defined as being 

technically inefficient. In essence, the IE measures the distance to the production possibilities 

frontier where a greater distance implies greater inefficiency, measured in terms of logged 

output.  One may want to note that given our short time period the prefecture fixed effect is 
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likely to take account of any location choices of industries and firms.  Location choice can be 

assumed to be time invariant over our time period and accounted for by the prefecture fixed 

effect in the econometric estimation. In the 1920s, our sample period, interregional capital 

mobility was relatively low and productive firms were not very mobile.1 To empirically show 

the low capital mobility of firms, Caruana-Galizia et al. (2021) measured the degree of 

geographical concentration on manufacturing within Japan from 1920 to 1960 and found that 

the Gini index of prefecture-level manufacturing output and employment had not changed in 

the 1920s. Arguably, most firms were single establishment without multiple plants and branch 

offices, except large stock companies and Zaibatsu firms. The location of firms highly adhered 

to the local transaction partners for a long time. Regarding disaster shocks, damaged firms did 

not choose relocation so much even after the big earthquake (Imaizumi, 2008)2. On the other 

hand, new heavy manufacturing industries arose in Tokyo, Osaka and major cities to access 

capital and financial markets. Thus, we can conclude that the location of firms and industries 

was likely to be invariant over time in the 1920s.3    

 

A-2 Determinants of Efficiency 

To estimate the impact of natural disasters through deaths and injuries on technical 

efficiency, we utilize the inefficiency scores obtained from the SFA model in Eq. (1) and run 

the following general regression equation: 

 

−𝐼𝐸𝑖𝑡 = 𝛼0 + ∑ 𝛼𝐸𝑄,𝑡−𝑗𝐸𝑄𝑖,𝑡−𝑗
𝐽
𝑗=0 + ∑ 𝛼𝐶𝐿,𝑡−𝑗𝐶𝐿𝐼𝑖,𝑡−𝑗

𝐽
𝑗=0 +𝜌𝑖 + 𝜏𝑡 + 𝜀𝑖𝑡 (2) 

 

 
1  Theoretically, Baldwin and Okubo (2006, 2014) constructed models where productive firms can choose 

profitable locations such as a big market with less risk of natural disasters. However, when relocation costs are 

large and/or transport costs are large, even productive firms are not able to choose their location.  
2 Imaizumi (2008) studied location patterns of machinery factories in Tokyo city before and after the Great Kanto 

Earthquake and found that damaged and survived firms in central Tokyo city tended to keep on their operation 

rather than the relocation to peripheral Tokyo area. 
3 In the 1930s, some heavy manufacturing firms initiated the construction of production plants in peripheral areas.    
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where EQ is the number of deaths per 1,000 people caused by earthquakes and CLI is the 

number of deaths per 1,000 people due to climate-based natural disasters (high tide, floods, and 

typhoons), and  and  represent prefecture and year dummies. One should note that we use the 

negative value of IE as the dependent variable, so that the estimated coefficients can be more 

intuitively interpreted as impacts on technological efficiency, rather than inefficiency.  As for 

specification (1) it is noteworthy that the prefecture fixed effect in (2) is likely to pick up any 

location choices due to prior knowledge of distributions of natural disasters across space, and 

we are hence only left with random realizations from such distributions. 

 

Appendix B The Coverage of Manufacturing Census (Section 3-1) 

Yuan et al. (2018) compared the data from the manufacturing census with macro-level 

manufacturing production, estimated by Shinohara (1972), and concluded that the 

manufacturing census data correspond well with the macro-level manufacturing production 

data. However, they pointed out that manufacturing production by small factories with less than 

4 employees is not negligible, constituting around 10-15% of total manufacturing production, 

but is not covered by the census. 

 

Appendix C Compound Event (Section 6.4) 

Our base specification assumes that the impact of sequential events are independent of each 

other.  Feasibly, however, having a damaging natural disaster in the previous period could affect 

its impact in the current period, commonly known as the impact of compound events 

(Zscheischler et al, 2020). To explore this possibility  we created for each disaster type a dummy 

variable indicating whether there was a damaging occurrence in the previous period 
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(EQDUMMY and CLIDUMMY for earthquakes and climatic events, respectively), and 

interacted these with EQ and CLI in specification (2).  

The results of this are shown in the final column for textiles and machinery in Tables 2 and 3 

(in the main text), respectively.  As can be seen, this produces some interesting findings.  For 

machinery we find a negative contemporaneous impact of climatic disasters on efficiency only 

if there was also an event in the previous year.  In terms of earthquakes allowing for a role of 

compound events produces dynamics on the efficiency effect where there was previously none.  

More specifically, while the contemporaneous boosting impact of an earthquake remains and 

is not affected if there was also an event the previous year, we now also find an (compound 

event) independent positive impact at t-2, i.e., two years after the disaster.  Examining the 

interaction terms with EQDUMMY, however, shows that earthquakes reduce production 

efficiency if they were also preceded by an occurrence the prior year. This compounding effect 

is found consistently throughout the five lags employed in our analysis.     

In terms of textiles including the interaction terms produces a negative independent effect of 

climatic disasters three years after the event.  However, within the same time horizon a 

compound event enhances productivity, and thus explains the overall insignificant net impact 

at that time lag found in the non-interacted specification shown in the first column. For 

earthquakes the independent productivity enhancing effect continues up to at least five years 

after the event remains as found before.  Examining the interaction terms with EQDUMMY, 

however, shows that if the earthquake was preceded by a damaging one in the previous year, 

this productivity boost is reduced.  Comparing the coefficient to that of the independent impact 

suggests that this reduction is roughly between 10% and 60% of the independent boost. 
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On-line Appendix Tables and Figure 

Table A1: Summary Statistics (Textiles) 

Variable Average Std. Dev. Min. Max.  

OUTPUT (mill. yen) 58.3 83.4 0.64023 59.5 

EMPLOYMENT (person) 21022 26690 53 128361 

Num FACTORY (number) 708.06 918.20 5 5564 

HORSEPOWER (HP) 5790.70 16315.77 3 152446 

EQ(Num death per 1000 by earthquake) 0.104 1.372 0 21.467 

CLI(Num dead per 1000 by typhoon) 0.005 0.022 0 0.317 

INEFFICIENCY (log of output) 17.096 0.842 13.743 18.989 
                     

 

Table A2: Summary Statistics (Machinery) 

Variable Average Std. Dev. Min. Max.  

OUTPUT (yen) 13.3 34.7 0.02227 212 

EMPLOYMENT (person) 4810 11018 6 70194 

Num FACTORY (number) 207.05 541.16 2 4705 

HORSEPOWER (HP) 3291.1 12460.8 4 155066 

EQ(Num death per 1000 by earthquake) 0.104 1.372 0 21.467 

CLI(Num death per 1000 by typhoon) 0.005 0.022 0 0.317 

INEFFICIENCY (log of output) 14.162 1.427 10.807 17.902 
                    

 

Table A3: Damage by the Great Kanto Earthquake 
 

Human damage Physical damage 

Prefecture Number of dead and 

missing 

Percentage to the 

population 

Num of buildings 

completely burnt or 

destroyed 

Percentage to the total 

buildings 

Total 104,619 0.89  464,909 20.4  

Tokyo  70,497 1.75  328,646 39.8  

Kanagawa  31,859 2.31  115,353 42.1  

Chiba 1,420 0.11  42,945 24.5  

Saitama 316 0.02  13,372 5.1  

Yamanashi 20 0.00  562 0.5  

Shizuoka 492 0.03  4,562 1.9  

Ibaraki 15 0.00  157 0.1  

Source: Tokyo City Government (1925), pp.160-163. 
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Figure A1: Map of Japan: Prefecture Names and Codes 

 

 

 

 

1 Hokkaido 11 Saitama 21 Gifu 31 Tottori 41 Saga 

2 Aomori 12 Chiba 22 Shizuoka 32 Shimane 42 Nagasaki 

3 Iwate 13 Tokyo 23 Aichi 33 Okayama 43 Kumamoto 

4 Miyagi 14 Kanagawa 24 Mie 34 Hiroshima 44 Oita 

5 Akita 15 Niigata 25 Shiga 35 Yamaguchi 45 Miyazaki 

6 Yamagata 16 Toyama 26 Kyoto 36 Tokushima 46 Kagoshima 

7 Fukushima 17 Ishikawa 27 Osaka 37 Kagawa 47 Okinawa 

8 Ibaraki 18 Fukui 28 Hyogo 38 Ehime 
  

9 Tochigi 19 Yamanashi 29 Nara 39 Kochi 
  

10 Gunma 20 Nagano 30 Wakayama 40 Fukuoka 
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