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Appendix A

G-estimation of the controlled direct effects

In this section, we propose a G-estimator of the controlled direct effects by adapting

existing G-estimation methods for time-varying treatments without mediators by

Vansteelandt and Sjölander (2016). Using the simplest fitting strategy of Vansteelandt

and Sjölander (2016), the G-estimator of the controlled direct effect of X on

Yt, t = 1, . . . , T can be obtained as follows. For k = t, . . . , 1:

1. Fit the model for the expected value of Mk, the mediator at time k, by regressing

Mk on the history of outcomes Y k−1, mediators Mk−1, confounders Lk and

treatment X. For example, a linear and additive mediator model for a

user-specified link function g(·), allowing for the effects of the predictors on Mk to

differ at each time k, is:

g
(
E[Mk|X,Lk,Mk−1, Y k−1]

)
= γk0 + γkxX +

k∑
j=1

γkl,jLj +
k−1∑
j=1

γkm,jMj +
k−1∑
j=1

γky,jYj.

(1)

For a continuous mediator, let g(µ) = µ be the identity link; for a noncontinuous

mediator, one may consider other link functions, e.g., the logit link

g(µ) = log{µ/(1− µ)} for a binary mediator.

Denote the regression coefficients by γk = (γk0, . . . , γky,k−1). Let γ̂k denote the

ordinary least squares (OLS) estimators if Mt are continuous, or the maximum

likelihood estimators if Mt are noncontinuous. A model that is nonlinear or

non-additive, or both, in its predictors is also possible.

Calculate the fitted value of the mediator, denoted by Pk, for each individual by

plugging in γ̂k for γk in (Eq. 1).

2. If k = t, set the outcome, henceforth denoted by Rk, to be Rk = Yt.

3. Fit the linear outcome model by regressing Rk on Y k−1,Mk−1, Lk, X, as well as Pk

and Mk. For example, an additive model that allows for the effects of the
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predictors on Rk to differ at each time k is:

E[Rk|X,Lk,Mk, Y k−1, Pk] = βk0+βkxX+
k∑

j=1
βkl,jLj+

k−1∑
j=1

βkm,jMj+
k−1∑
j=1

βky,jYj+βp,kPk+ψktMk.

(2)

An outcome model that is non-additive in its predictors, e.g., by including

interaction terms, is also possible. Calculate the OLS estimator of ψkt, denoted by

ψ̂kt, and determine the residual Rk−1 = Rk − ψ̂ktMk.

Repeat steps 1 to 3 until R0 is obtained. Then fit the regression model

E[R0|X] = α0 + α1X. The OLS estimator α̂1 is a G-estimator of the controlled direct

effect of X on Yt. Standard errors can be estimated using a nonparametric percentile

bootstrap procedure (Efron & Tibshirani, 1994) that randomly resamples observations

with replacement.
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Appendix B

Bias-corrected G-estimation method

In this section we develop the G-estimation method for the setting where Mt or Yt, or

both, at each time t are latent but are respectively measured by M̃t and Ỹt. The

G-estimator of the controlled direct effect of X on Yt, t = 1, . . . , T is obtained in two

stages as follows.

Stage 1. Estimate the (Bartlett) scores for the latent variables. Note that when the

outcome or the mediator is not latent, then the estimated scores equal the observed

values. At each time t = 1, . . . , T , for each latent variable:

1. Fit the measurement model in (Eq. 8) to the observed items using factor analysis

in a structural equation modeling package such as lavaan (Rosseel, 2012).

Calculate the maximum likelihood estimates of the measurement model

parameters e.g., Λ̂, Θ̂, Σ̂.

2. Determine the estimated score and estimated measurement error variance by

plugging in the estimated parameters for the unknown quantities in (Eq. 9) and in

Ω = ν ′Θν.

Stage 2. Carry out the G-estimation method in Appendix A using the estimated scores

in place of the latent variables in each regression model, then apply Fuller’s method if

any estimated scores are used as predictors. The G-estimator of the controlled direct

effect of X on Yt, t = 1, . . . , T can be obtained as follows. For k = t, . . . , 1:

1. Fit the mediator model; e.g., when both the mediator and the outcome are latent,

E[M̂k|X,Lk, M̂k−1, Ŷ k−1] = γ∗k0 +γ∗kxX+
k∑

j=1
γ∗kl,jLj +

k−1∑
j=1

γ∗km,jM̂j +
k−1∑
j=1

γ∗ky,jŶj. (3)

The OLS estimator of γ∗k = (γ∗k0, . . . , γ
∗
ky,k−1)′ is a biased estimator of γk in the

mediator model where the latent variables had been observed, e.g., in (Eq. 4) with

the identity link. To correct the bias using Fuller’s method as described in the

main text, let W be the latent predictor variable(s) and let Z be the remaining
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predictors measured without error in (Eq. 3). For example, if both the mediator

and outcome are latent, let W = (M ′
k−1, Y

′
k−1)′ and Z = (1, X, L′k)′. If the

outcome is not latent, let W = Mk−1 and Z = (1, X, L′k, Y
′
k−1)′; if the mediator is

not latent, let W = Y k−1 and Z = (1, X, L′k,M
′
k−1)′. Denote the resulting

bias-corrected estimator using (Eq. 14) by γ̂MoM
k .

Calculate the fitted value of the mediator, denoted by P̂k, for each individual by

plugging in γ̂MoM
k for γ∗k in (Eq. 3).

2. If k = t, set the outcome, henceforth denoted by R̂k, to be R̂k = Ŷt.

3. Fit the outcome model to the outcome R̂k; e.g., when both the mediator and the

outcome are latent,

E[R̂k|X,Lk, M̂k, Ŷ k−1] = β∗k0+β∗kxX+
k∑

j=1
β∗kl,jLj+

k−1∑
j=1

β∗km,jM̂j+
k−1∑
j=1

β∗ky,jŶj+β∗p,kP̂k+ψ∗ktM̂k.

(4)

When either the mediator or the outcome, or both, are latent, the OLS estimator

of ψ∗kt is a biased estimator of ψkt in the outcome model where the latent variables

had been observed, e.g., in (Eq. 5). The bias is corrected using Fuller’s method.

The measurement error for the fitted mediator P̂k can be determined by noting

that P̂k is a linear combination of the estimated scores in the mediator model.

Denote the resulting bias-corrected estimator by ψ̂MoM
kt . Determine the residual

R̂k−1 = R̂k − ψ̂MoM
kt M̂k.

Repeat steps 1 to 3 until R̂0 = Ŷt −
∑t

k=1 ψ̂
MoM
kt M̂k is obtained. Then fit the regression

model E[R̂0|X] = α0 + α1X. The OLS estimator α̂1 is a G-estimator of the controlled

direct effect of X on Yt. Standard errors can be estimated using a nonparametric

bootstrap procedure. Similar to the setting where the mediator and outcome are

observed, the fitted mediator P̂k can be omitted from the outcome model when the

outcome model is correctly specified and the predictors in the mediator model are also

in the outcome model.
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Appendix C

Example R code for path analysis using SEM

The procedure to obtain unbiased estimators of the direct effect of X on Yt for t = 1, 2

is as follows. To illustrate the procedure, example R code used to implement each step is

also provided.

1. Fit a saturated path analysis model for all observed variables (i.e., dropping the

round nodes and broken lines in the right diagram of Figure 2) using a structural

equation modeling package such as lavaan. Obtain the maximum likelihood

estimates of the edge coefficients.

model_obsT2_sem = ’

l 1 ~ q1∗x

m1 ~ a1∗x + g11∗ l 1

y1 ~ c1∗x + b11∗m1 + h11∗ l 1

l 2 ~ q2∗x + f12∗ l 1 + k12∗m1 + s12∗y1

m2 ~ a2∗x + d12∗m1 + r12∗y1 + g12∗ l 1 + g22∗ l 2

y2 ~ c2∗x + b12∗m1 + b22∗m2 + e12∗y1 + h12∗ l 1 + h22∗ l 2

# C o e f f i c i e n t s f o r paths f o r d i r e c t e f f e c t o f X on Y1

z .CDE_1 . g e s t_sem := c1+q1∗h11

# C o e f f i c i e n t s f o r paths f o r d i r e c t e f f e c t o f X on Y2

z .CDE_2 . g e s t_sem := c2+q1∗h12+q2∗h22+q1∗ f 12∗h22+z .CDE_1 . g e s t_sem∗ (

e12+s12∗h22 ) ’

f i t = sem(model=model_obsT2_sem)

Note that the set of paths that make up the direct effect of X on Yt by definition

includes paths containing sub-paths for the direct effect of X on prior occurrences

Ys, s = 1, . . . , t− 1. E.g., the paths for the direct effect of X on Y1 consists of the

paths X→Y1 and X→L1→Y1. The set of paths for the direct effect of X on Y2

includes the paths X→Y1→Y2 and X→L1→Y1→Y2 (the direct effect of X on

Y1 followed by the Y1→Y2 path), as well as X→Y1→L2→Y2 and

X→L1→Y1→L2→Y2 (the direct effect of X on Y1 followed by the Y1→L2→Y2

path). It follows that the direct effect of X on Y2 includes the direct effect of X

on Y1 multiplied by the edge coefficients for Y1→Y2 (e.g., e12) and for
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Y1→L2→Y2 (e.g., s12, h22).

2. Combine the estimated path-specific effects for the paths that contribute to the

direct effect of X on Yt for t = 1, . . . , T .

pare s t = parameterEst imates ( f i t )

pa re s t [ grep ( "CDE" , pare s t $ l a b e l ) , ]

The procedure described is equivalent to MLV for T = 1.
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Appendix D

Number of paths for the direct effects in Figure 2

The number of paths for the direct effect of X on Yt, denoted by nt, may be enumerated

recursively as follows. There are 2t possible paths from X to Yt via Lt, including the

path with a single X→Yt edge (i.e., without any of Lt), that do not intersect any of Y t.

To count the number of paths that intersect at least one of Y t, let Ys be the earliest

element in Y t on the path from X to Yt. Then for s = 1, . . . , t− 1, there are 2t−s−1

paths from Ys to Yt via {Ys+1, . . . , Ys+(t−s−1)} (including the path with a single Ys→Yt

edge), and 2t−s − 1 paths via at least one of {Ls+1, . . . , Ls+(t−s)}, for a total of

2t−s−1 + (2t−s − 1) = 3(2t−s−1)− 1 paths. The total number of paths for the direct effect

of X on Yt, t ≥ 2 can then be calculated recursively as nt = 2t +∑t−1
s=1 {3(2t−s−1)− 1}ns,

where n1 = 2. For example, there are n2 = 8 unique direct effect paths for Y2; for t = 3,

there are n3 = 8 + 5n1 + 2n2 = 34 unique direct effect paths.
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Appendix E

Simulation studies

Four simulation studies across different settings were conducted to assess the

finite-sample biases of the proposed G-estimators empirically. In study 1, the

G-estimation method was compared to the path analysis method using a

correctly-specified joint model when both the mediator and outcome were observed and

continuous. In addition, the path analysis estimators based on a misspecified joint

model were calculated. In studies 2 and 3, the G-estimation method was compared to

the path analysis method when either the mediator Mt, or the post-treatment

confounder Lt, was binary, and both the mediator and outcome were observed. In study

4, the setting where both the mediator and the outcome were latent and continuous was

considered. The empirical biases of the estimators using the proposed two-stage

G-estimation method were then evaluated under different assumed measurement models

for the latent variables.

Study 1

In this study, the mediator and outcome were assumed to be observed and

continuous. The G-estimators of the controlled direct effects were compared to two

different path analysis estimators: one using the correctly specified (saturated) path

model, and another using a path model where the conditional mean models for Lt were

misspecified. The simulation study was conducted by carrying out the following steps:

1. A dataset was generated based on the linear path model in the right diagram of

Figure 2 for T = 3. The conditional mean models are described in Appendix F.

Let X ∼ Bernoulli(0.5), U ∼ N (0, σ2
u),M0 ∼ N (0, σ2

m), Y0 ∼ N (0, σ2
y), where

σ2
u = σ2

m = σ2
y = 1. All intercepts were set to zero. The coefficients for the

mediator-outcome edges were set to zero (i.e.,

b11 = b12 = b13 = b22 = b23 = b33 = 0), so that all (indirect) effects of treatment on

the outcome along paths that intersected any of the mediators were zero. The

coefficients for edges emanating from hidden variables U,M0, Y0 (i.e., the broken
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edges) were set to -7/9; the coefficients for all other edges were set to 4/9. The

coefficient values for edges emanating from hidden variables (-7/9) were larger in

magnitude and had opposite signs as those emanating from observed variables

(4/9), so that path coefficient estimates might be negative due to hidden

confounding. All edge coefficients had absolute magnitude less than one so that

the magnitude of each direct effect was smaller than the number of constituent

paths (since the effect along any path using the product-of-coefficient method was

less than one). The values of -7/9 and 4/9 were chosen merely to reduce the

possibility of exact cancellations since their ratio was not an integer (i.e., the

former was not an integer multiple of the latter). The errors for all occurrences of

the variables were assumed to be independent and normally distributed with

mean zero and variance one.

2. The G-estimation procedure was applied to obtain the estimated controlled direct

effects.

3. The following saturated path model was fitted to the observed variables using a

structural equation modeling package such as lavaan. The estimated direct

effects were then calculated using the path analysis approach.

model_obsT3_sem = ’

l 1 ~ q1∗x

m1 ~ a1∗x + g11∗ l 1

y1 ~ c1∗x + b11∗m1 + h11∗ l 1

l 2 ~ q2∗x + f12∗ l 1 + k12∗m1 + s12∗y1

m2 ~ a2∗x + d12∗m1 + r12∗y1 + g12∗ l 1 + g22∗ l 2

y2 ~ c2∗x + b12∗m1 + b22∗m2 + e12∗y1 + h12∗ l 1 + h22∗ l 2

l 3 ~ q3∗x + f13∗ l 1 + f23∗ l 2 + k13∗m1 + k23∗m2 + s13∗y1 + s23∗y2

m3 ~ a3∗x + d13∗m1 + d23∗m2 + r13∗y1 + r23∗y2 + g13∗ l 1 + g23∗ l 2 +

g33∗ l 3

y3 ~ c3∗x + b13∗m1 + b23∗m2 + b33∗m3 + e13∗y1 + e23∗y2 + h13∗ l 1 +

h23∗ l 2 + h33∗ l 3

z .CDE_1 . g e s t_sem := c1+q1∗h11

z .CDE_2 . g e s t_sem := c2+q1∗h12+q2∗h22+q1∗ f 12∗h22+z .CDE_1 . g e s t_sem∗ (
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e12+s12∗h22 )

z .CDE_3 . g e s t_sem := c3+q1∗h13+q2∗h23+q3∗h33+q1∗ f 12∗h23+q1∗ f 13∗h33+q2

∗ f 23∗h33+q1∗ f 12∗ f 23∗h33+z .CDE_1 . g e s t_sem∗ ( e13+s12∗h23+s13∗h33+s12

∗ f 23∗h33 )+z .CDE_2 . g e s t_sem∗ ( e23+s23∗h33 )

’

4. A misspecified path model where the M1 → L2,M1 → L3,M2 → L3 edges were

omitted from the saturated path model was then fitted to the observed variables.

Note that the constituent paths for the direct effects did not include these edges

by definition since these were edges emanating from the mediator. The edge

coefficients were constrained to zero in the above path model using lavaan as

follows:

model_c o n s t r a i n t s = ’

# f i x edge c o e f f i c i e n t s f o r Ms −> Lt where s<t to be zero

k12 == 0

k13 == 0

k23 == 0

’

model_obsT3_sem_r e s t r i c t e d = paste (model_obsT3_sem , model_c o n s t r a i n t s )

The estimated direct effects under the misspecified model were then calculated

using the path analysis approach.

Steps 1 to 4 were repeated 50000 times each for sample sizes n = 60, 150, 300. About

12% of the simulated datasets for n = 60 (10% for n = 150, 300) where SEM failed to

converge and the estimated standard errors for the edge coefficients could not be

computed were discarded. The average biases of the three considered estimators for the

different samples sizes are plotted in Figure E1. The G-estimators and the path analysis

estimators (using the correctly-specified saturated path model) of the controlled direct

effects at each time t = 1, 2, 3, were identical and unbiased empirically at all sample

sizes. However, using a misspecified path model yielded empirically biased path analysis

estimators of the direct effects of X on Y2 and Y3, even at larger sample sizes. The

misspecified conditional mean models for L2 and L3 (due to omitting prior occurrences
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of the mediator as predictors) resulted in biased product-of-coefficient (PC) estimates of

effects along paths that intersected L2 and/or L3, which contributed to the biases in the

direct effects on Y2 and Y3.

The biases of the path analysis estimator (under the misspecified model) that

increased in magnitude with t, as observed in Figure E1, can be explained as follows.

As previously described in Appendix C, the path analysis estimator of the direct effect

of X on Yt, t > 1, by definition always includes the direct effect of X on a previous

occurrence of the outcome Ys, 0 < s < t. The direct effect is then multiplied by the

effect(s) along path(s) from Ys to Yt using the PC method. Thus any biases in the

estimated direct effect of X on Ys are accumulated in the bias of the estimated direct

effect of X on Yt when the effects of Ys on Yt are positive.
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Figure E1 . Average biases of the G-estimators (‘G-est’) and the path analysis

estimators, using either a correctly specified path model (‘SEM’) or a misspecified path

model (‘SEM (mis. L)’), of the controlled direct effects at each time t = 1, 2, 3. Both

the mediator and outcome were continuous variables that were observed at all times.

The true values of the direct effects were 0.64 (t = 1), 1.34 (t = 2), 2.80 (t = 3). The

empirical standard errors are drawn as vertical lines. The path analysis estimators are

shifted slightly to the right for clarity. The sample sizes n are stated in each panel.
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Study 2

Study 1 was repeated, but with a binary mediator as follows. In the

data-generating process in step 1, M∗
t was first randomly sampled from a Bernoulli

distribution with probability of success Φ(E[Mt|X,Lt,M t−1, Y t−1, Um]), where

E[Mt|X,Lt,M t−1, Y t−1, Um] was the conditional mean mediator model described in

Appendix F, and Φ(·) was the cumulative distribution function of a standard normal

distribution. Then Mt was set to M∗
t . The path analysis estimator was obtained using

SEM where the mediators M3 were specified as noncontinuous (‘categorical’) variables

in lavaan, and the maximum likelihood estimates obtained using the three-stage

weighted least squares (3SWLS) approach (Browne, 1984):

f i t = sem(model=model_obsT3_sem , ordered=c ( "m1" , "m2" , "m3" ) )

About 6% of the simulated datasets for n = 60 (5% for n = 150, 300) where SEM failed

to converge and the estimated standard errors for the edge coefficients could not be

computed were discarded. A smaller proportion of datasets were discarded when Mt

was binary than when Mt was continuous (in study 1) as robust standard errors were

computed under the former (by using the full weight matrix to correct the standard

errors), whereas maximum likelihood estimation for the standard errors was employed

in the latter. The average biases and empirical standard errors of the G-estimators and

the path analysis estimators (for the datasets where SEM converged successfully) are

displayed in Table E1. The path analysis estimators of the controlled direct effects of X

on Y2 and Y3 were empirically biased, even in large sample sizes, whereas the

G-estimators were empirically unbiased (up to Monte Carlo sampling error).

The biases of the path analysis estimators of the direct effects can be explained as

follows. When a variable is specified as a binary (or ‘categorical’) variable in lavaan, its

underlying continuous measure is used as the response variable. However, if the variable

is also an ‘endogenous’ variable, i.e., it is simultaneously a predictor in another linear

model, then the underlying continuous measure is also used (instead of the observed

binary measure) as a predictor when fitting the joint model using the 3SWLS approach.
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Sample size Method
Y1 Y2 Y3

Bias E.s.e. Bias E.s.e. Bias E.s.e.

60
G-estimation 0.00 0.42 -0.01 0.75 -0.02 1.47

SEM 0.00 0.43 -0.03 0.76 -0.05 1.49

150
G-estimation 0.00 0.26 0.00 0.47 0.00 0.92

SEM 0.00 0.27 -0.02 0.47 -0.03 0.92

300
G-estimation 0.00 0.19 0.00 0.33 0.00 0.65

SEM 0.00 0.19 -0.02 0.33 -0.04 0.65
Table E1

Average biases and empirical standard errors (E.s.e.) of estimators of the controlled

direct effects of X on Yt, t = 1, 2, 3, when the mediator was binary. The true values of

the direct effects were 0.64 (t = 1), 1.34 (t = 2), 2.80 (t = 3).

Maximum likelihood estimates of the regression (path) coefficients in models that

include occurrences of the binary mediator Mt, t = 1, 2, 3, as predictors may thus be

biased (even in large samples). Note that the path analysis estimator of the direct effect

on the outcome at t = 1 was biased (but only up to the fourth decimal place), since the

model for Y1 included binary M1 as a predictor.

Study 3

At the request of a reviewer, study 1 was repeated with a binary confounder Lt as

follows. The coefficients for all confounder-outcome edges were set to zero (i.e.,

h11 = h12 = h13 = h22 = h23 = h33 = 0), so that the effects along any path from

treatment to one of the outcomes that intersected any of (L1, L2, L3) were zero. In other

words, the direct effect of X on Yt, t = 1, 2, 3, consisted only of paths that intersected

any of the prior occurrences of the outcome Y t−1. The binary confounder Lt was

similarly generated as the binary mediator in study 2. In the data-generating process in

step 1, L∗t was first randomly sampled from a Bernoulli distribution with probability of

success Φ(E[Lt|X,Lt−1,M t−1, Y t−1, U ]), where E[Lt|X,Lt−1,M t−1, Y t−1, U ] was the
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conditional mean model for Lt described in Appendix F, then Lt was set to L∗t . All

occurrences of the mediator and outcome were continuous. The path analysis estimator

was obtained using SEM where the variables L3 were specified as noncontinuous

(‘categorical’) variables in lavaan, and the maximum likelihood estimates obtained

using the 3SWLS approach:

f i t = sem(model=model_obsT3_sem , ordered=c ( " l 1 " , " l 2 " , " l 3 " ) )

About 5% of the simulated datasets where SEM failed to converge and the

estimated standard errors for the edge coefficients could not be computed were

discarded. The average biases and empirical standard errors of the G-estimators and

the path analysis estimators (for the datasets where SEM converged successfully) are

displayed in Table E2. Similar to the setting in study 2 with a binary mediator, the

path analysis estimators of the controlled direct effects of X on Y2 and Y3 were

empirically biased, even in large sample sizes, whereas the G-estimators were

empirically unbiased (up tos Monte Carlo sampling error).

Sample size Method
Y1 Y2 Y3

Bias E.s.e. Bias E.s.e. Bias E.s.e.

60
G-estimation 0.00 0.36 0.00 0.47 -0.01 0.65

SEM 0.02 0.36 0.03 0.48 0.05 0.67

150
G-estimation 0.00 0.22 0.00 0.30 0.00 0.40

SEM 0.02 0.23 0.03 0.30 0.05 0.41

300
G-estimation 0.00 0.16 0.00 0.21 0.00 0.28

SEM 0.02 0.16 0.03 0.21 0.05 0.29
Table E2

Average biases and empirical standard errors (E.s.e.) of estimators of the controlled

direct effects of X on Yt, t = 1, 2, 3, when the post-treatment confounder Lt was binary.

The true values of the direct effects were 0.44 (t = 1), 0.64 (t = 2), 0.93 (t = 3).
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Study 4

In this study, the setting where both the mediator and outcome were continuous

and latent was considered. All occurrences of the variables (Lt,Mt, Yt) were first

generated for t = 1, 2, 3, using the same procedure as step 1 of study 1. The (manifest)

items M̃t and Ỹt were then generated from Mt and Yt respectively, using specified values

of the factor loadings Λmt and Λyt, as:

M̃t = ΛmtMt + Ũmt, Ỹt = ΛytYt + Ũyt; t = 1, 2, 3.

There were four items in M̃t and in Ỹt at each time t. The values of the factor loadings

were set to Λmt = Λyt = (1, 3/4, 3/2,−1), which did not depend on the measurement

occasion t. The values were chosen merely to induce variability in the factor loadings

for different items, since one was positive and smaller than one, another was larger than

one, and a third was negative. The measurement errors Ũmt and Ũyt were assumed to be

independent and normally distributed with mean vector zero and covariance matrix

Θ = θI4 where θ = 10/4 and I4 was the 4× 4 identity matrix. The value of θ was

chosen so that the (conditional) variance of each item was larger than the (conditional)

variance of the latent variable (either σ2
m or σ2

y). The items were (conditionally)

independent of one another for each occurrence of the latent variable, and across

different occurrences of the latent variable. The variables Mt and Yt were then deleted

from each observed dataset after the items M̃t and Ỹt were generated.

The two-stage G-estimation procedure was applied to obtain the estimated

controlled direct effects. In the first stage, the correctly-specified measurement model

was fitted to the manifest items using lavaan as follows:

o_model_v = ’

# measurement models f o r l a t e n t mediator at each time t

m1 =~ o_m1_1 + o_m1_2 + o_m1_3 + o_m1_4

m2 =~ o_m2_1 + o_m2_2 + o_m2_3 + o_m2_4

m3 =~ o_m3_1 + o_m3_2 + o_m3_3 + o_m3_4

# measurement models f o r l a t e n t outcome at each time t

y1 =~ o_y1_1 + o_y1_2 + o_y1_3 + o_y1_4
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y2 =~ o_y2_1 + o_y2_2 + o_y2_3 + o_y2_4

y3 =~ o_y3_1 + o_y3_2 + o_y3_3 + o_y3_4

’

f i t = c f a (model=o_model_v , orthogona l=TRUE)
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Figure E2 . Average biases of the two-stage G-estimators, either assuming an orthogonal

covariance matrix for the latent variables (‘orthogonal=TRUE’), or allowing for

correlated latent variables (‘orthogonal=FALSE’), in the fitted measurement model.

The true factor loadings were fixed at the same value across occasions. Both the

mediator and outcome were continuous variables that were latent at all occasions. The

true values of the direct effects were 0.64 (t = 1), 1.34 (t = 2), 2.80 (t = 3). The Monte

Carlo sampling errors are drawn as horizontal blue dotted lines. The sample sizes n are

stated in each panel.

The average biases of the G-estimators of the controlled direct effects at each time

t = 1, 2, 3, for the different samples sizes are plotted in Figure E2. The G-estimators

were unbiased empirically at all sample sizes (up to Monte Carlo sampling error). The

argument ‘orthogonal=TRUE’ constrains all covariances of the latent variables to be

zero when fitting the measurement model in the first stage. For comparison, a

(misspecified) measurement model where the latent variables were allowed to be

correlated was also fitted, by setting the argument ‘orthogonal=FALSE’ (the default

setting in lavaan) as follows:

f i t = c f a (model=o_model_v , orthogona l=FALSE)
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As shown in Figure E2, the G-estimators of the direct effect on Y3 using such a

misspecified measurement model in the first stage were empirically biased at smaller

sample sizes, but the biases diminished at larger sample sizes. The observed biases at

smaller sample sizes were due to biased estimates of the measurement model parameters

in the first stage, when the model with a larger number of free parameters, specifically

the covariances between the latent variables, was fitted.

The study was then repeated using factor loadings that depended on the

measurement occasion t to generate the items: Λmt = Λyt = (1, t/4, t/2,−3/t). Again

the values were chosen merely to induce variability in the factor loadings for different

items, since at least one was positive and (strictly) smaller than one, and another was

negative and no larger than minus one. The factor loadings at t = 3 equalled those in

the previous setting. The average biases of the G-estimators assuming a measurement

model that was either correct (‘orthogonal=TRUE’) or incorrect (‘orthogonal=FALSE’)

are plotted in Figure E3. The results were similar to those when the factor loadings did

not vary over time: when the measurement model was correctly specified, the

G-estimators were unbiased empirically at all sample sizes (up to Monte Carlo sampling

error); otherwise the biases due to a misspecified measurement model diminished as the

sample size increased.
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Figure E3 . Average biases of the two-stage G-estimators, either assuming an orthogonal

covariance matrix for the latent variables (‘orthogonal=TRUE’), or allowing for

correlated latent variables (‘orthogonal=FALSE’), in the fitted measurement model.

The true factor loadings depended on the occasion t. Both the mediator and outcome

were continuous variables that were latent at all occasions. The true values of the direct

effects were 0.64 (t = 1), 1.34 (t = 2), 2.80 (t = 3). The Monte Carlo sampling errors are

drawn as horizontal blue dotted lines. The sample sizes n are stated in each panel.
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Appendix F

Linear model for variables in Figure 2

The conditional mean models for the variables depicted in the right diagram of Figure 2

at times t = 1, . . . , 3 were:

E[Lt|X,Lt−1,M t−1, Y t−1, U ] = ilt + qtX +
t−1∑
t′=1

(ft′tLt′ + kt′tMt′ + st′tYt′) + f0tU (5)

E[Mt|X,Lt,M t−1, Y t−1, Um] = imt + atX + gttLt +
t−1∑
t′=1

(gt′tLt′ + dt′tMt′ + rt′tYt′)

+ d0tUm (6)

E[Yt|X,Lt,M t, Y t−1, Uy, U ] = iyt + ctX + bttMt + httLt +
t−1∑
t′=1

(bt′tMt′ + ht′tLt′ + et′tYt′)

+ e0tUy + h0tU. (7)
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Appendix G

Bootstrap parameter estimates in analysis of randomised pilot study

In the analysis of the randomised eHealth pilot study, when motivation following

treatment was assumed to be latent, about 10% of the bootstrap samples (used to

estimate the standard errors of the controlled direct effects) had scores with negative

measurement error variance estimates in the first stage. For such samples, the

measurement error variances were set to zero. Histograms of the resulting measurement

error variance estimates are plotted in Figure G1.
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Figure G1 . Histograms of bootstrap estimates of the measurement error variances of

the mediator scores M̂t at each time t = 1, 2, 3 using data from the randomised eHealth

pilot study. The observed values are plotted as vertical solid lines.
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