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A Proofs and additional theoretical results

A.1 Laplace functional of a idm random measure

The Laplace functional of a idm random measure is readily obtained after noting that

(µ̃H | θ̃1, . . . , θ̃H) is a completely random measure with a purely atomic baseline distri-

bution, placing mass on θ̃1, . . . , θ̃H . Thus given the atoms θ̃1, . . . , θ̃H for any non-negative

function f we get

E
(

e−
∫
Θ f(θ)µ̃H( dθ)

)
= E

(
E
(

e−
∫
Θ f(θ)µ̃H( dθ) | θ̃1, . . . , θ̃H

))
= E

(
exp

{
− c

H

H∑
h=1

∫
R+

(1− e−sf(θ̃h))ρ(s) ds

})

= E

(
exp

{
− c

H

H∑
h=1

ψ(f(θ̃h))

})

=
H∏
h=1

E
(

exp
{ c

H
ψ(f(θ̃h))

})
=

(∫
Θ

exp
{
− c

H
ψ(f(θ))

}
P ( dθ)

)H
.

The last two equalities follows because the locations θ̃1, . . . , θ̃H are iid from P . The Laplace

transform of µ̃H(A) readily follows having set f = λIA(x), for λ > 0 and A ∈ Θ. Indeed,

simple calculus lead to∫
Θ

exp
{
− c

H
ψ(λIA(θ))

}
P ( dθ) =

∫
A

exp
{
− c

H
ψ(λIA(θ))

}
P ( dθ)

+

∫
Θ\A

exp
{
− c

H
ψ(λIA(θ))

}
P ( dθ)

= P (A) exp
{
− c

H
ψ(λ)

}
+ 1− P (A).
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A.2 Moments of a nidm process

Here we confine ourseleves to considering the first two moments, which have simple analytical

forms. Let us recall that p̃0,H = (1/H)
∑H

h=1 δθ̃h , with θ̃h
iid∼ P .

Proposition A.1. Let p̃H ∼ nidm(c, ρ;P ) and define I(c, ρ) = c
∫
R+ ue−cψ(u)τ2(u)du. More-

over, let A,A1, A2 ∈ B(Θ) and set C := A1 ∩ A2. Then E(p̃H(A)) = P (A) and

Var(p̃H(A)) = P (A)(1− P (A))

(
I(c, ρ) +

1− I(c, ρ)

H

)
,

Cov(p̃H(A1), p̃H(A2)) = [P (C)− P (A1)P (A2)]

(
I(c, ρ) +

1− I(c, ρ)

H

)
.

Unsurprisingly, when H →∞ the moments of a nidm process converge to those of a nrmi.

Proof. First, notice that E(p̃H(A)) =
∑H

h=1E(πh)E(δθ̃h(A)) = P (A)
∑H

h=1E(πh) = P (A).

As an application of the well-known variance decomposition

Var(p̃H(A)) = E(Var(p̃H(A) | p̃0,H)) + Var(E(p̃H(A) | p̃0,H)).

Let us focus on the second summand on the right-hand side of the above equation, which is

equal to

Var(E(p̃H(A) | p̃0,H)) = Var(p̃0,H(A)) =
P (A)(1− P (A))

H
.

As for E(Var(p̃H(A) | p̃0,H)), because of Proposition 1 in James et al. (2006) we obtain

E(Var(p̃H(A) | p̃0,H)) = E(p̃0,H(A)(1− p̃0,H(A)))I(c, ρ)

= P (A)(1− P (A))I(c, ρ)− I(c, ρ)Var(p̃0,H(A))

= P (A)(1− P (A))

(
I(c, ρ)− I(c, ρ)

H

)
,

from which the result follows. As for the covariance, note that Var(p̃H(A1), p̃H(A2)) =
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P (A)(1−P (A))E
(∑H

h=1 π
2
h

)
and Cov(p̃H(A1), p̃H(A2)) = (P (C)−P (A1)P (A2))E

(∑H
h=1 π

2
h

)
,

meaning that

E

(
H∑
h=1

π2
h

)
= I(c, ρ) +

1− I(c, ρ)

H
,

from which the result follows.

A.3 Proof of Theorem 1

Recall that the Laplace functional can be written as

E
(

e−
∫
Θ f(θ)µ̃H( dθ)

)
= E

(
exp

{
− c

H

H∑
h=1

ψ(f(θ̃h))

})
.

Now note that the expectations of each ψ(θ̃h) equals E(ψ(f(θ̃h))) =
∫

Θ
ψ(f(θ))P ( dθ) <∞,

which is finite by assumption. Hence, as an application of the strong law of large numbers,

we get
1

H

H∑
h=1

ψ(f(θ̃h))
a.s.−→

∫
Θ

ψ(f(θ))P ( dθ), H →∞,

which implies that E
(
e−

∫
Θ f(θ)µ̃H( dθ)

)
→ E

(
e−

∫
Θ f(θ)µ̃∞( dθ)

)
because of bounded convergence

theorem.

A.4 Proof of Theorem 2

The symmetry among the weights implies that

ΠH(n1, . . . , nk) =
H!

(H − k)!
E

(
k∏
j=1

π
nj

j

)
.
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Recalling that µ̃(Θ) =
∑H

h=1 Jh, then we have

E

(
k∏
j=1

π
nj

j

)
=

1

Γ(n)

∫
R+

un−1E

(
e−uµ̃(Θ)

k∏
j=1

J
nj

j

)
du

=
1

Γ(n)

∫
R+

un−1

H∏
j′=k+1

E
(
e−uJj′

) k∏
j=1

E
(
e−uJjJ

nj

j

)
du

=
1

Γ(n)

∫
R+

un−1e−c
H−k
H

ψ(u)

k∏
j=1

(−1)nj
∂nj

∂unj
e−

c
H
ψ(u) du

=
1

Γ(n)

∫
R+

un−1e−cψ(u)

k∏
j=1

Vnj ,H(u) du,

which concludes the proof, since Vnj ,H(u) = c
H

∆nj ,H(u). The predictive distributions of

Corollary 2 can be obtained exploiting their relationship with the eppf and after some

algebraic manipulation. To obtain the alternative representation (10), recall the following

equality, whose proof can be found in Camerlenghi et al. (2019), which holds for m ≥ 1

Vm,H(u) =
c

H

m∑
`=1

ξm,`,H(u), ξm,`,H(u) =
( c
H

)`−1 1

`!

∑
q

(
m

q1, . . . , q`

)∏̀
r=1

τqr(u), (A.1)

for ` = 1, . . . ,m, where the sum runs over all the vectors of positive integers q = (q1, . . . , q`)

such that |q| = m. Thus, on the light of (A.1) we can write the eppf as

ΠH(n1, . . . , nk) =
H!

(H − k)!

1

Γ(n)

∫
R+

un−1e−cψ(u)

k∏
j=1

Vnj ,H(u) du

=
H!

(H − k)!

∑
`

1

H |`|

k∏
j=1

1

`j!

∑
qj

(
nj

qj1, . . . , qj`j

)
Π∞(q11, . . . , q1`1 , . . . , qk1, . . . , qk`k),

where the first sum runs over all vectors ` = (`1, . . . , `k) such that `j ∈ {1, . . . , nj}, and the

jth of the k sums runs over all the vectors qj = (qj1, . . . , qj`j) such that qjr ≥ 1 and |qj| = nj.
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A.5 Proof of Theorem 3

Let us consider the ratio among the two eppfs, which is equal for any k ≤ H to

ΠH(n1, . . . , nk)

Π∞(n1, . . . , nk)
=

H!

Hk(H − k)!

∫
R+ u

n−1e−cψ(u)
∏k

j=1 ∆nj ,H(u) du∫
R+ un−1e−cψ(u)

∏k
j=1 τnj

(u) du
.

The result follows after noting that the ratio H!
Hk(H−k)!

≤ 1, and also

∫
R+ u

n−1e−cψ(u)
∏k

j=1 ∆nj ,H(u) du∫
R+ un−1e−cψ(u)

∏k
j=1 τnj

(u) du
≥ 1.

The latter inequality can be easily obtained from (A.1), from which is clear that ∆m,H(u) =

τm(u) + gm(u), where gm(u) is a positive function, implying that ∆m,H(u) ≥ τm(u) for any

m ≥ 1 and u > 0.

A.6 Proof of Theorem 4

The starting point of this proof is based on Corollary 2 in Camerlenghi et al. (2018), from

which one can show that

P(Kn,H = k) =
n∑
t=k

P(Kn,∞ = t)P(Kt,0 = k), (A.2)

whereKn,∞ andKn,H are defined as before, whileKn,0 for any n ≥ 1 is the number of distinct

values from a sample of n exchangeable observations having prior p̃0,H . The distribution

P(Kn,0 = k) can be deduced from the associated eppf, which is

Π0(n1, . . . , nk) =
H!

(H − k)!
H−n, k ≤ H,
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implying that the distribution of Kn,0 is given for any k ≤ min{H,n}

P(Kn,0 = k) =
1

k!

∑
(n1,...,nk)

(
n

n1, . . . , nk

)
Π0(n1, . . . , nk)

=
H!

(H − k)!
H−n

1

k!

∑
(n1,...,nk)

(
n

n1, . . . , nk

)
=

H!

(H − k)!
H−nS (n, k).

where the sum runs over all the k-dimensional vectors of positive integers n = (n1, . . . , nk)

such that |n| = n. The first part of the theorem then follows after the change of variable

` = t − k in (A.2). As for the second part, note that the expected value of Kn,H can be

written as

E(Kn,H) = E(E(Kn,H | θ̃1, . . . , θ̃H)) = E

(
E
( H∑
h=1

I(θ̃h ∈ {θ1, . . . , θn} | θ̃1, . . . , θ̃H

))

=
H∑
h=1

E(1− P(θ1 6= θ̃h, . . . , θn 6= θ̃h | θ̃1, . . . , θ̃H))

=
H∑
h=1

(1− E((1− πh)n)) = H −HE((1− π1)n).

The randomness in these equations is given both by θ̃1, . . . , θ̃n and θ̃1, . . . , θ̃H , whereas in the

last step we have used the symmetricity of the weights of a nidm process. Moreover, with

the same steps as for the proof of Theorem 2, one can easily show that

E((1− π1)n) =
n∑
`=1

(
1− 1

H

)`
1

`!

∑
q

(
n

q1, . . . , q`

)
Π∞(q1, . . . , q`),

where the sums runs over q = (q1, . . . , q`) such that qj ≥ 1 and |q| = n, from which the

second part of the Theorem follows.
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A.7 Bounding the distribution of the number of clusters

The actual evaluation of the probability distribution ofKn,H in Theorem 4 might be cumber-

some due to the presence of the Stirling numbers. Thus, in cases where it is more convenient

to rely on the probability distribution of Kn∞ it may be interesting to provide simple bounds

for the ratio P(Kn,H = k)/P(Kn,∞ = k). This is achieved in the next Theorem.

Lemma A.1. For any k ≤ min{H,n− 1}

H!

Hk(H − k)!
≤ P(Kn,H = k)

P(Kn,∞ = k)
≤ H!

Hk(H − k)!

(
1 +

1

2

n−k∑
`=1

(
k

H

)`(
`+ k

k

)
P(Kn,∞ = `+ k)

P(Kn,∞ = k)

)
,

whereas when k = n = H, it holds P(Kn,H = n)/P(Kn,∞ = n) = H−nH!/(H − n)!.

Interestingly, the lower bound in the above Lemma does not depend on the specific nidm

process, and actually coincide with the one obtained by Ishwaran and Zarepour (2002) in

the special case of the Dirichlet multinomial nidm. Instead, the upper bound can be lower

than 1, and therefore it is usually tighter than the one already known for the Dirichlet

prior. Hence, besides being a generalization to all nidm processes, Lemma A.1 also yields

an improvement over existing bounds.

Proof. Recall that the ratio of interest is given by

P(Kn,H = k)

P(Kn,∞ = k)
=

H!

Hk(H − k)!

n−k∑
`=0

1

H`
S (`+ k, k)

P(Kn,∞ = `+ k)

P(Kn,∞ = k)
,

and therefore the lower bound follows naturally. We will write

H!

Hk(H − k)!
≤ P(Kn,H = k)

P(Kn,∞ = k)
=

H!

Hk(H − k)!

(
1 +

n−k∑
`=1

1

H`
S (`+ k, k)

P(Kn,∞ = `+ k)

P(Kn,∞ = k)

)
.

Now recall the well-known inequality due to Rennie and Dobson (1969), for which for any
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n ≥ 2 and 1 ≤ k ≤ n− 1 a Stirling number of the second kind can be bounded above by

S (n, k) ≤ 1

2

(
n

k

)
kn−k,

implying that we can further bound the summation of the above equation for 1 ≤ k ≤

min{H,n− 1} in the following way

n−k∑
`=1

1

H`
S (`+ k, k)

P(Kn,∞ = `+ k)

P(Kn,∞ = k)
≤ 1

2

n−k∑
`=1

(
k

H

)`(
`+ k

k

)
P(Kn,∞ = `+ k)

P(Kn,∞ = k)
.

Hence, the result follows.

A.8 Proof of Theorem 5

We first derive the posterior distribution of p̃0,H = (H)−1
∑H

h=1 δθ̃h given the θ(n). This fact

is summarized in the following proposition.

Lemma A.2. Let θ1, . . . , θn be a draw from an exchangeable sequence directed by a nidm

process. Then, the posterior distribution of p̃0,H for any A ∈ B(Θ) is

(p̃0,H | θ(n))
d
=

1

H

[
H∑

j=k+1

δθ̄j +
k∑
j=1

δθ∗j

]
,

where the atoms θ̄k+1, . . . , θ̄H are iid draws from P .

Proof. Since the weights of p̃0,H are fixed and equal, we only need to determine the posterior

law of the atoms (θ̃1, . . . , θ̃H | θ(n)). Recall that a nidm process is a species sampling model,

meaning that k out of H atoms are necessarily equal almost surely to one of the previously

observed values θ∗1, . . . , θ∗k, while the remaining H−k are iid draws from the baseline measure

P . Notice that the actual order of the weights is irrelevant, because of the symmetry of the
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weights of p̃0,H . Hence, the result in Lemma A.2 follows.

Because of symmetry of the weights, we can assume without loss of generality that the

distinct values θ∗1, . . . , θ∗k are associated to the first k random weights π1, . . . , πk of the process

p̃H . The Laplace functional of µ̃H , given θ(n) and p̃0,H is given by

E
(
e−µ̃H(f) | θ(n), p̃0,H

)
=
E
(

e−µ̃H(f)
∏k

j=1 π
nj

j | p̃0,H

)
E
(∏k

j=1 π
nj

j | p̃0,H

) ,

and hence, with similar steps as for Theorem 2, both at the numerator and the denominator,

we obtain

E
(
e−µ̃H(f) | θ(n), p̃0,H

)
=

∫
R+ u

n−1e−
c
H

∑k
j=1 ψ(f(θ∗j )+u) e−

c
H

∑H
h=k+1 ψ(f(θ̃h)+u)

∏k
j=1 ∆nj ,H(f(θ∗j ) + u) du∫

R+ un−1e−cψ(u)
∏k

j=1 ∆nj ,H(u) du

=

∫
R+

e−
c
H

∑k
j=1 ψ

(u)(f(θ∗j )) e−
c
H

∑H
h=k+1 ψ

(u)(f(θ̃h))

k∏
j=1

∆nj ,H(f(θ∗j ) + u)

∆nj ,H(u)
qH(u) du

=

∫
R+

H∏
h=k+1

E
(

e−f(θ̃h)J∗h

) k∏
j=1

E
(

e−f(θ∗j )(J∗j +Ij)
)
qH(u) du

where we used the fact that ψ(f(θ) + u) = ψ(u)(f(θ)) + ψ(u), with ψ(u)(λ) denoting the

Laplace exponent associated to the tilted jump measure ρ∗( ds) = e−usρ(s) ds. It remains

to show that any ratio ∆m,H(λ+ u)/∆m,H(u) is indeed the Laplace transform associated to

some nonnegative random variable, for any m ≥ 1 and λ > 0. This is immediately evident

from equation (A.1), because each ∆m,H(u) can be expressed as a linear combination of

Laplace exponents of the form τm(λ+ u)/τm(u), meaning that each random variable Ij can

be interpreted as a mixture of convolutions of random variables. By combining Lemma A.2

with the above Laplace functional the result follows.
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A.9 Proof of Corollary 4

By exploiting equation (A.1), one can easily notice that E
(
e−µ̃H(f) | θ(n), p̃0,H

)
obtained in

the proof of Theorem 5 can be interpreted as a mixture over the table configurations. Thus,

by augmenting and subsequently conditioning on the table frequencies, one can easily obtain

E
(
e−µ̃H(f) | θ(n),T (n), p̃0,H

)
=

∫
R+

e−
c
H

∑H
h=k+1 ψ

(u)(f(θ̃h)) e−
c
H

∑k
j=1 ψ

(u)(f(θ∗j ))

×
k∏
j=1

`j∏
r=1

τqjr(f(θ∗j ) + u)

τqjr(u)
q∞(u) du

=

∫
R+

H∏
h=k+1

E
(

e−f(θ̃h)J∗h

) k∏
j=1

`j∏
r=1

E
(

e−f(θ∗j )(J∗j +Ijr)
)
q∞(u) du,

from which the result follows, by combining the above equation with Lemma A.2.

A.10 Dirichlet multinomial process

In order to derive the eppf of the Dirichlet multinomial from Theorem 2 one just need to

notice that when ρ(s) ds = s−1e−s ds, then for any m ≥ 1 and u > 0 it holds

Vm,H(u) =
c

H
∆m,H(u) =

Γ(m+ c/H)

Γ(m)Γ(c/H)
τm(u),

which can be verified directly from the definition of Vm,H(u) and τm(u). Substituting the

above quantity in general formula of Theorem 2, one has simply that for k ≤ H

ΠH(n1, . . . , nk) =
H!

(H − k)!

1

ckΓ(c/H)k

k∏
j=1

(
Γ(nj + c/H)

Γ(nj)

)
× Π∞(n1, . . . , nk),

where Π∞(n1, . . . , nk), the eppf a Dirichlet process, is Π∞(n1, . . . , nk) = ck
∏k

j=1 Γ(nj)/(c)n.

Hence the desired eppf can be obtained with some simple algebra. Notice that one could
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also obtain this result specializing the general eppf of the ngg multinomial process, by

letting σ → 0. Indeed, recall that in the Dirichlet process case Vn,k = ck/(c)n, and that as

σ → 0 one has σ−kC (n, k;σ)→ |s(n, k)|, the sign-less Stirling number of the first kind. The

distribution of Kn,H is also obtained by exploiting properties of Stirling numbers. Indeed,

specializing Theorem 4 and after a change of variable

P(Kn,H = k) =
H!

(H − k)!

1

(c)n

n∑
t=k

( c
H

)t
S (t, k)|s(n, t)|

=
H!

(H − k)!

(−1)n

(c)n

n∑
t=k

(
− c

H

)t
S (t, k)s(n, t)

=
H!

(H − k)!

(−1)k

(c)n
C (n, k;−c/H).

A.11 ngg multinomial process

Substituting the eppf of a generalized gamma nrmi in (11), and focusing on the summation

one has

1

`j!

∑
qj

(
nj

qj1, . . . , qj`j

)
Π∞(q11, . . . , q1`1 , . . . , qk1, . . . , qk`k) =

= Vn,|`|
1

`j!

∑
qj

(
nj

qj1, . . . , qj`j

) `j∏
r=1

(1− σ)qjr−1 = Vn,|`|
C (nj, `j;σ)

σ`j
,

from which the eppf of a ngg multinomial process follows. With the same reasoning, one

also obtain the explicit relation for ∆m,H(u) after recalling (A.1).
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B Algorithms and computational strategies

B.1 Simulation of U in the ngg multinomial case

We devise here a simple acceptance-rejection method for sampling the latent variable U in

the ngg multinomial case, whose density was denoted with qH(u). Let us focus on the

limiting case H → ∞, and suppose we want to simulate a random variable having density

proportional to

q∞(u) ∝ un−1(κ+ u)−n+kσ exp
{
− c
σ

[(κ+ u)σ − κσ]
}
.

Rather than handling U directly it is convenient to draw samples from V := logU , whose

density function is readily available after a change of variable:

q∞(v) ∝ evn(κ+ ev)−n+kσ exp
{
− c
σ

[(κ+ ev)σ − κσ]
}
.

The distribution of V is log-concave, that is, the logarithm of its density is concave, as

one can readily verify through direct calculation of the second derivative. This is a major

computational advantage and it implies, for instance, that the distribution of V is unimodal.

Moreover, we note that everal black-box techniques were developed for sampling log-concave

distributions.

We propose a simple sampling algorithm which has the advantage of being straightforward

to implement, and it can be easily extended to the finite-dimensional setting. As a matter

of fact, it is just an application of the well-known ratio-of-uniform method, which we recall

here for convenience. Set

b =
√

sup{q∞(v) : v ∈ R}, b− = −
√

sup{v2q∞(v) : v ≤ 0}, b+ =
√

sup{v2q∞(v) : v ≥ 0}.
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Log-concavity of V ensures that the above constants are finite. Unfortunately, there are no

closed form expressions for b, b− and b+, but they can be readily computed via univariate

numerical maximization, which is a particularly simple problem in this log-concave setting.

Then, a draw from U can be obtained as follows:

Step 1. Sample independently I1, I2 uniformly on (0, b) and (b−, b+), respectively.

Step 2. Set the candidate value V ∗ = I2/I1.

Step 3. If I2
1 ≤ q∞(V ∗) then accept V ∗ and set V = V ∗, otherwise repeat the whole

procedure.

Step 4. Set U = expV .

The simulation from qH(u) proceeds in a similar manner, with the obvious modifications.

A good degree of tractability is preserved because qH(u), and equivalently qH(v), is a finite

mixture of densities having the kernel of q∞(u), namely

qH(u) ∝
∑
`

[
k∏
j=1

( c
H

)`j−1 C (nj, `j;σ)

σ`j

]
× un−1(κ+ u)−n+|`|σ exp

{
− c
σ

[(κ+ u)σ − κσ]
}
,

∝ un−1 exp
{
− c
σ

[(κ+ u)σ − κσ]
} k∏
j=1

nj∑
`j=1

ξnj ,`j ,H(u),

which implies that the constants b, b− and b+ involved in the simulation of qH(v) are finite

also in this case. Moreover, as H →∞ the density qH(v) converges to q∞(v), implying that

log-concavity is recovered at the limit.

B.2 Gibbs sampling algorithm for the invalsi application

We describe here a Gibbs sampling algorithm for posterior computation of the model de-

scribed in Section 5. Let Gj ∈ {1, . . . , H} be an indicator function denoting to which mixture

component each school is allocated, for j = 1, . . . , 84. The Gibbs sampling algorithm alter-
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nates between the following full conditional steps:

Step 1. Exploiting standard results of Gaussian linear models, the full conditional for the

coefficients γ is multivariate Gaussian with

(γ | −) ∼ N (µ̃, Σ̃), Σ̃ = (ZᵀZ/σ2 +B−1)−1, µ̃ = Σ̃(Zᵀηγ/σ
2 +B−1b),

where ηγ is a vector with entries ηijγ = Sij−µj, for i = 1, . . . , Nj and j = 1, . . . , 84, whereas

Z is the corresponding design matrix having row entries zᵀij.

Step 2. The full conditional for the residual variance is

(σ−2
ε | −) ∼ gamma

aσ +N/2, bσ +
1

2

84∑
j=1

Nj∑
i=1

(Sij − µj − zᵀijγ)2

 ,

which can be obtained through standard calculations involved in Gaussian linear models.

Step 3. We update the cluster indicators Gj ∈ {1, . . . , H} from their full conditional

categorical random variables

P(Gj = h) =
πhN (µj; µ̄h, σ̄

2
h)∑H

h′=1 πh′N (µj; µ̄h′ , σ̄2
h′)
, h = 1, . . . , H,

for any j = 1, . . . , 84.

Step 4. The full conditional for the school-specific parameters, given the above cluster

assignments, is easily available as

(µj | −)
ind∼ N

(∑Nj

i=1(Sij − zᵀijγ)/σ2 + µ̄Gj
/σ̄2

Gj

1/σ̄2
Gj

+Nj/σ2
,

1

1/σ̄2
Gj

+Nj/σ2

)
,

independently for every j = 1, . . . , 84.
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Step 5. The full conditional for µ̄h and σ̄2
h are given by

(µ̄h | −)
ind∼ N

( ∑
j:Gj=h µj/σ̄

2
h

1/σ2
µ̄ + 1/σ̄2

h

∑84
j=1 I(Gj = h)

,
1

1/σ2
µ̄ + 1/σ̄2

h

∑84
j=1 I(Gj = h)

)
,

independently for h = 1, . . . , H and

(σ̄−2
h | −)

ind∼ gamma

aσ̄ +
1

2

84∑
j=1

I(Gj = h), bσ̄ +
1

2

∑
j:Gj=h

(µj − µ̄Gj
)2

 ,

again independently for h = 1, . . . , H.

Step 6. Update the weights (π1, . . . , πH) from their full conditional distribution by exploiting

the posterior characterization of Theorem 5 and the simplifications described in Example 6.

The frequencies n1, . . . , nk in the notation of Theorem 5 corresponds to the non-zero elements

of the vector

(n̄1, . . . , n̄H) =

(
84∑
j=1

I(Gj = 1), . . . ,
84∑
j=1

I(Gj = H)

)
,

in any arbitrary order. In first place, we sample the latent random variable U given the

frequencies n1, . . . , nk from qH(u), following the procedure described in Section B.1. Con-

ditionally on U , then one samples the iid random variables J∗1 , . . . , J∗H according to a tem-

pered stable distribution (Ridout, 2009), whose parameters are described in Example 6.

Finally, conditionally on U , we need to sample the collection of independent random vari-

ables Ī1, . . . , ĪH with associated frequencies n̄1, . . . , n̄H . For any h = 1, . . . , H the density of

a random variable Īh is described in equation (15) of the manuscript when the corresponding

frequency n̄h > 0. Samples from (15) can be easily drawn, being a finite mixture of gamma

densities. Instead, for any h = 1, . . . , H such that n̄h = 0 we set Īh = 0. Hence, a sample
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from the full conditional is obtained by letting

(π1, . . . , πH) =

(
J∗1 + Ī1∑H

h=1(J∗h + Īh)
, . . . ,

J∗H + ĪH∑H
h=1(J∗h + Īh)

)
.

C Additional material for the INVALSI application

In this Section we provide additional results and plots for the invalsi application. In Fig-

ure 1, we display the posterior distribution of the ηj random effects for 40 randomly selected

schools. It is, then, apparent that a certain degree of variability among schools is present and

a posterior summary as the median of each ηj might be employed, for example, to identify

virtuous schools. In Figure 1 we also depict the posterior mean of
∑H

h=1 πhN (µ̄h, σ̄
2
h) that

stands as an estimate of the data generating density, under three model specifications.

Moreover, in Figures 2-4 we report the posterior distributions of the γ coefficients using

violin plots. Recall that student-specific categorical variables are: the gender of the student,

the education level of her/his father and mother (primary school, secondary school, etc.),

the employment status of her/his father and mother, the regularity of the student (i.e.

regular, in late, etc.), and the citizenship (Italian, first generation immigrant, etc.). To avoid

collinearity, the first category is omitted and regarded as baseline.
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Figure 2: Posterior distribution of the γ coefficients in the invalsi application.
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D Overfitted mixture illustration

We empirically illustrate the additional flexibility provided by the ngg multinomial prior on

a synthetic dataset. Let us consider a mixture model having density

H∑
h=1

πhN (µ̄h, σ̄
2
h),

for a set of observations Y1, . . . , Yn. We propose the use of general nidm processes as mixing

measure, corresponding to the following prior specification

(π1, . . . , πH−1) ∼ nid
( c
H
, . . . ,

c

H
; ρ
)
, (µ̄h, σ̄

2
h)

iid∼ P, h = 1, . . . , H,

where P is a diffuse probability measure on R × R+. In our simulation studies, we employ

a ngg multinomial process in the above specification, which will be be compared to the

Dirichlet multinomial process, the Dirichlet process (dp), and the infinite-dimensional ngg

process, in a broad variety of scenarios, hyperparameter settings, and sample sizes. In all

these cases, the aim is to infer the true number of mixture components from the data by

relying on the overfitted mixture approach (Rousseau and Mengersen, 2011). We also obtain

a posterior estimate for the random density
∑H

h=1 πhN (µ̄h, σ̄
2
h). We consider 5 different

data generating processes, corresponding to mixture models with different characteristics.

Moreover, the analyses are replicated by varying the hyperparameter settings and the sample

sizes, for a total of 5 datasets × 4 scenarios (i.e. hyperparameter settings and sample sizes)

= 20 comparisons among the aforementioned dp, dp multinomial, ngg, ngg multinomial

models.

The first synthetic dataset (dataset 1) consists of an independent sample Y1, . . . , Yn of
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observations from the Gaussian distribution

N (y; 0, 0.252),

where N (y; µ̄, σ̄2) denotes the density function of a Gaussian. In dataset 1 we aim at

showing that a mixture model is able to recover a simple parametric specification. In the

second synthetic dataset (dataset 2), the simulated data Y1, . . . , Yn are independent samples

from the following mixture

1

2
N (y; 0, 0.252) +

1

2
N (y; 1, 0.252),

corresponding to an equally weighted mixture of Gaussians models with two components.

The third synthetic dataset (dataset 3), is obtained by sampling from the following mixture

model

1

5
N (y;−2, 0.22) +

1

5
N (y;−1, 0.22) +

1

5
N (y; 0, 0.22),+

1

5
N (y; 1, 0.22) +

1

5
N (y; 2, 0.22).

In dataset 3 the true number of mixture components is 5, and the mixing weights are equal.

The fourth synthetic dataset (dataset 4) is a variant of the second, having considered

unbalanced weights. Namely, in dataset 4 the observations are generated from

1

5
N (y; 0, 0.252) +

4

5
N (y; 1, 0.252).

In a similar fashion, the fifth and last syntetic dataset (dataset 5) that we consider is a

variant of the third. Indeed, in dataset 5 the observations are drawn from

1

15
N (y;−2, 0.22) +

2

15
N (y;−1, 0.22) +

3

15
N (y; 0, 0.22),+

4

15
N (y; 1, 0.22) +

5

15
N (y; 2, 0.22),
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thus displaying unequal weights.

Throughout the simulation studies, we assume the conditionally conjugate prior µ̄h
iid∼

N (0, σ2
µ̄), σ̄−2

h

iid∼ gamma(aσ̄, bσ̄), for h = 1, . . . , H, where we set σ2
µ̄ = 1000 and aσ̄ =

2.5, bσ̄ = 0.1. Moreover, we let H = 30, a fairly conservative upper bound for the true

number of mixture components. The choice of the other hyperparameters will depend on

the specific scenario, as detailed in the subsequent Sections. Posterior samples for all the

relevant quantities, such as Kn,H , can be obtained via mcmc through Gibbs sampling steps

similar to those described in Section B.2. We run the algorithms for 12′000 iterations and

hold out the first 2′000 as burn-in period.

D.1 Scenarios of the simulation study

We consider a total of 4 scenarios (a, b, c, d), each with a specific sample size: n =

100, 300, 600 and then again n = 100. For all the 5 datasets we consider a sample Y1, . . . , Yn,

with n being determined by the corresponding scenario. In each scenario, we also consider

four different prior specifications having roughly the same a priori expected value E(Kn,H),

for suitable sets of parameters c, κ, σ, and H that correspond to the Dirichlet multinomial

process, the Dirichlet process (dp), and the infinite-dimensional ngg process. The only

exception is represented by the last scenario (scenario d), in which the expected value

E(Kn,H) is different across the a priori specifications. The details of the parameter settings

are reported in Table 1, Table 2, Table 3, and Table 4.

D.2 Summary of the results

The results of the simulation studies are reported in Figures 5–24, displaying the a priori

and the a posteriori distribution of the number of clusters, together with the posterior mean

of the density.
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Table 1: Hyperparameter settings for the simulation study in scenario a, n = 100

Hyperparameters Dirichlet multinomial dp ngg multinomial ngg

c 21.9 8.2 0.1 0.22
κ 1 1 0.2 1
σ 0 0 0.8 0.6
H 30 ∞ 30 ∞
E(Kn,H) 21.6 21.6 21.6 21.6

Table 2: Hyperparameter settings for the simulation study in scenario b, n = 300

Hyperparameters Dirichlet multinomial dp ngg multinomial ngg

c 17.4 6.16 0.1 0.18
κ 1 1 1 1
σ 0 0 0.7 0.5
H 30 ∞ 30 ∞
E(Kn,H) 24.6 24.6 24.6 24.6

Table 3: Hyperparameter settings for the simulation study in scenario c, n = 600

Hyperparameters Dirichlet multinomial dp ngg multinomial ngg

c 10.6 4.6 0.2 0.16
κ 1 1 0.2 0.2
σ 0 0 0.6 0.45
H 30 ∞ 30 ∞
E(Kn,H) 23.0 23.0 23.0 23.0

Table 4: Hyperparameter settings for the simulation study in scenario d, n = 100

Hyperparameters Dirichlet multinomial dp ngg multinomial ngg

c 0.60 0.55 0.1 0.22
κ 1 1 0.2 1
σ 0 0 0.8 0.6
H 30 ∞ 30 ∞
E(Kn,H) 3.5 3.5 21.6 21.6
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In all scenarios and datasets, it is apparent that, under the Dirichlet multinomial and

Dirichlet process specifications, the distribution of Kn,H struggles to deviate from the prior.

Conversely, for both the ngg and the ngg multinomial cases, the posterior law of Kn,H

correctly recovers the true number of mixture components even when the mean of the prior

distribution is far from the true number. This behavior motivates the use of the ngg

multinomial to robustify mixture modeling. The estimates of the ngg and ngg multinomial

are quite similar, as one would expect given the theoretical findings that are illustrated in the

main paper. As expected, the effect becomes somewhat less pronounced when the sample

size is high (scenario c), because there is more information in the data. Conversely,

when the sample size is low (scenario a) and the mixtures are not perfectly separated

(e.g. Figure 7) the differences are important. In scenario d we compare the case in which

Dirichlet-based priors are well-calibrated, whereas ngg priors are not. Insterestingly, despite

this disadvantage, the ngg priors lead to a posterior distribution for Kn,H that is similar to

that of the well-calibrated Dirichlet specifications.

In terms of density estimation, the four procedures lead to comparable results when

the sample size is sufficiently high, namely when n = 600. Conversely, when the sample

size is low, i.e. when n = 100, a misscalibrated prior choice for Kn,H has an impact also

the posterior estimate for the density. For instance, in Figure 5 the Dirichlet multinomial

specification has heavier tails than the ngg, since it is capturing the spikes present in the

tails of the distribution, although the latter can be regarded as noise.
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Figure 5: dataset 1, scenario a. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 6: dataset 2, scenario a. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 7: dataset 3, scenario a. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 8: dataset 4, scenario a. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 9: dataset 5, scenario a. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 10: dataset 1, scenario b. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 11: dataset 2, scenario b. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 12: dataset 3, scenario b. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 13: dataset 4, scenario b. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 14: dataset 5, scenario b. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 15: dataset 1, scenario c. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 16: dataset 2, scenario c. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 17: dataset 3, scenario c. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 18: dataset 4, scenario c. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 19: dataset 5, scenario c. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 20: dataset 1, scenario d. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 21: dataset 2, scenario d. Top panel: prior and posterior distributions of the
number of clusters Kn,H Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 22: dataset 3, scenario d. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 23: dataset 4, scenario d. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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Figure 24: dataset 5, scenario d. Top panel: prior and posterior distributions of the
number of clusters Kn,H . Bottom panel: lines represent the posterior mean of the density;
gray bars correspond to the histogram of the raw data.
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