
ONLINE APPENDICES

A Assumptions and technical derivations

Assumptions of the underlying model

In this appendix, we are more precise about the underlying semimartingale model which

directly translates from Bibinger et al. (2019). The assumptions impose the maximal

degree of generality that still allow the estimation of pre-averaged yields (3) and returns

(4) in the context of Proposition 2.1. We consider (1) on some filtered probability space

(Ω,F , (Ft),P). The jumps Jt in (1) are split into compensated (small) jumps and finitely

many large jumps:

Jt =

∫ t

0

∫
R2

δ(s, z)1{|δ(s,z)|≤1}(µ− ν)(ds, dz) +

∫ t

0

∫
R2

δ(s, z)1{|δ(s,z)|>1}µ(ds, dz), (A.1)

with the jump size function δ, defined on Ω×R+×R2, and the Poisson random measure µ,

which is compensated by ν(ds, dz) = λ(dz)⊗ds with a σ-finite measure λ. The smoothness

of the elements of the drift b
(i)
t and σ

(i,j)
t , i, j = a, b of spot squared volatility Σt = σtσ

′
t is

defined by the following assumption:

Assumption 1 In (1), for assets i, j = a, b, the drift (b
(i)
t )t≥0 is a locally bounded process.

The volatilities never vanish, inft∈[0,1] σ
(i,i)
t > 0 almost surely. For all 0 ≤ t + s ≤ 1,

t ≥ 0, some constants Cn, C̃n > 0, some β > 1/2 and for a sequence of stopping times Tn

increasing to ∞, we have that∣∣∣E[σ(i,j)
(t+s)∧Tn

− σ
(i,j)
t∧Tn

|Ft

]∣∣∣ ≤ Cn s
β , (A.2)

E
[
sup
t∈[0,s]

|σ(i,j)
(t+t)∧Tn

− σ
(i,j)
t∧Tn

|2
]
≤ C̃n s . (A.3)

We impose the following regularity conditions on the (co)jumps
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Assumption 2 Assume for the predictable function δ in (A.1) that supω,x |δ(t, x)|/γ(x) is

locally bounded with a non-negative deterministic function γ that satisfies∫
R2

(γr(x) ∧ 1)λ(dx) < ∞ , (A.4)

with jump activity index r, 0 ≤ r < 4/3.

The index r in (A.4) measures the (co)jump activity of the bond yields in (1). Smaller

values of r make (A.2) more restrictive. r = 0 results in finite-activity jumps and r = 1

implies jumps that are summable. The upper bound on r is proved by Bibinger et al.

(2019) to make the univariate version of Proposition 2.1 hold.

Proof of Proposition 2.1

We fill the missing part of the proof of Proposition 3.1 of Bibinger et al. (2019) for the

bivariate model. We state here only the crucial extensions of the covariance of the Brownian

component and the noise. The higher order n of the drift part allows us to neglect the

drifts. Properties of the pre-averaged estimator (drift, Brownian and jump parts) for the

individual bonds i = a, b, including the mixed normality is shown in Bibinger et al. (2019),

and carry over to the bivariate setting. Hence the missing part which proves Proposition

2.1 is the covariance between the Brownian components Ct and noise ϵ of the two assets at

some known stopping time τ , respectively.

We rewrite the vector of pre-averaged returns of the observed yields in terms of in-

crements ∆ỹj = ỹj − ỹj−1, and study the independent Brownian and noise component

separately,

M−1
n

(
Mn−1∑
k=0

ỹ⌈τn⌉+k −
−1∑

k=−Mn

ỹ⌈τn⌉+k

)
= M−1

n

Mn−1∑
k=0

(
ỹ⌈τn⌉+k − ỹ⌈τn⌉+k−Mn

)
= M−1

n

(
Mn−1∑
k=1

∆ỹ⌈τn⌉+k(Mn − k) +
Mn−1∑
k=0

∆ỹ⌈τn⌉−k(Mn − k)

)
. (A.5)

The strategy of the proof in Bibinger et al. (2019) is then to exploit the above equation
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with respect to the individual signal parts of the process y
(i)
t , i = a, b in (2) and (1). For

the covariance of the increments of the Brownian components this gives:

Cov

[
Mn−1∑
k=1

∆C
(a)
(⌈τn⌉+k)/n

Mn − k

Mn

+
Mn−1∑
k=0

∆C
(a)
(⌈τn⌉−k)/n

Mn − k

Mn

,

Mn−1∑
k=1

∆C
(b)
(⌈τn⌉+k)/n

Mn − k

Mn

+
Mn−1∑
k=0

∆C
(b)
(⌈τn⌉−k)/n

Mn − k

Mn

]

=
Mn−1∑
k=1

E
[
∆C

(a)
(⌈τn⌉+k)/n∆C

(b)
(⌈τn⌉+k)/n

](
1− k

Mn

)2

+
Mn−1∑
k=0

E
[
∆C

(a)
(⌈τn⌉−k)/n∆C

(b)
(⌈τn⌉−k)/n

](
1− k

Mn

)2

,

with uncorrelated increments on disjoint intervals in case of stochastic volatility. Itô isom-

etry,

E

[∫ t

0

σ(a,a)
s dW (a)

s

∫ t

0

σ(b,b)
s dW (b)

s

]
=

∫ t

0

E[σ(a,a)
s σ(b,b)

s ]ρ(a,b)s ds,

and the smoothness of the volatility and correlation imply that

E
[
∆C

(a)
(⌈τn⌉+k)/n∆C

(b)
(⌈τn⌉+k)/n|Fτ

]
= E

[∫ (⌈τn⌉+k)/n

(⌈τn⌉+k−1)/n

σ(a,b)
s ds|Fτ

]
+OP (n

−2)

=
ρ
(a,b)
τ σ

(a,a)
τ σ

(b,b)
τ

n
+OP

(√
Mn

n
n−1

)
,

for k = 1, ...,Mn − 1. Similarly, we obtain to the left of τ

E
[
∆C

(a)
(⌈τn⌉−k)/n∆C

(b)
(⌈τn⌉−k)/n|Fτ

]
= E

[∫ (⌈τn⌉−k)/n

(⌈τn⌉−k−1)/n)

σ(a,b)
s ds|Fτ

]
+OP (n

−2)

=
ρ
(a,b)
τ− σ

(a,a)
τ− σ

(b,b)
τ−

n
+OP

(√
Mn

n
n−1

)
.

The increments in iid noise contribute

E
[
∆ϵ

(a)
⌈τn⌉−k∆ϵ

(b)
⌈τn⌉−k|Fτ

]
= E

[
(ϵ

(a)
⌈τn⌉−k − ϵ

(a)
⌈τn⌉−k−1)(ϵ

(b)
⌈τn⌉−k − ϵ

(b)
⌈τn⌉−k−1)

]
= 2η(a,b).

Finally, in conjunction with the identities

Mn−1∑
k=1

(
1− k

Mn

)2

=
1

3
Mn −

1

2
+

1

6
M−1

n , and
Mn−1∑
k=0

(
1− k

Mn

)2

=
1

3
Mn +

1

2
+

1

6
M−1

n ,
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we obtain the asymptotic covariance of event returns of asset a and b:

√
MnE

[
∆ŷ(a)τn∆ŷ(b)τn

]
→

(
ρ
(a,b)
τ σ

(a,a)
τ σ

(b,b)
τ

3
+

ρ
(a,b)
τ− σ

(a,a)
τ− σ

(b,b)
τ−

3

)
c2 + 2η(a,b). (A.6)

The positivity of Γτ is a direct consequence of the additive structure in (6) and the positivity

of the noise covariance matrix η.

Proof of Corollary 2.3

We provide a general analytic expression for the dotted region in Figure 1 that relates to the

area in the event-return space where incoherent test results occur. To simplify notation, we

consider random variables x = n1/4∆y
(a)
τ , y = n1/4∆y

(b)
τ . Symmetry allows us to focus on

the upper rejection area. Integration boundaries in the x and y dimension are determined

by the Bonferroni test (7) and the Lee-Mykland test (9). The integration bounds of x are

lower: x1(α,Γ
(a,a)
τ ) = (Γ(a,a)

τ )1/2qα(N),

upper: x2(α,Γτ ) = (Γ(b,b)
τ )1/2q1−α/2(N)− (Γ(a,a)

τ + Γ(b,b)
τ − 2Γ(a,b)

τ )1/2q1−α(N).

These are the x coordinates, where the upper border of the diagonal corridor crosses the

square. The corresponding coordinates of y determine the integration bounds for y:

lower: y1(x, α,Γτ ) = x+ (Γ(a,a)
τ + Γ(b,b)

τ − 2Γ(a,b)
τ )1/2q1−α(N),

upper: y2(α,Γ
(b,b)
τ ) = (Γ(b,b)

τ )1/2q1−α/2(N).

Equipped with those bounds and the bivariate normality result from Proposition 2.1, we

can express the joint probability of conflicting test results

P
(
φS
α(LM) = 1, φB

α(Bonf) = 0
)
= 2

∫ x2(α,Γτ )

x1(α,Γ
(a,a)
τ )

∫ y2(α,Γ
(b,b)
τ )

y1(x,α,Γτ )

ϕ(x, y,Γτ ) dy dx,

where ϕ(·) refers to the bivariate normal distribution function. The probability is positive

as soon as upper integration bounds are larger than the lower integration bounds, which is
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always true, given the α level of both tests.
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B Additional simulation results

This section contains the simulation results of the the spread jump tests. We report fre-

quencies of jump detection of the univariate Lee-Mykland jump test applied to the spread

(9), as well as the IUT in Proposition 2.4.

We use the same bivariate stochastic volatility model with price and volatility jumps

as introduced in Section 3. The (co)volatility is estimated using the pre-averaging method

of Christensen et al. (2010) with a window size of ⌈
√
n⌉. We apply the universal threshold

with the median absolute deviation of pre-averaged returns to truncate jumps in the esti-

mation of (co)volatilities (see Koike, 2016, immediately after Theorem 5.1). The market

microstructure noise is estimated based on equation (12) of Christensen et al. (2010). We

use the ‘yuima’ package in R for our computations.

The pre-average estimator of the event return at t = τ uses a block size of Mn =

⌈
√
n/18⌉. The constant c = 1/18 is chosen according to Table 5 of Lee and Mykland

(2012). The simulation results do not change much by slightly increasing Mn. We simulate

jumps at the event time t = τ whose sizes are multiples of the pre-average estimation noise

γ, defined as

γ = n−1/4(Γ(i,i)
τ )1/2, i = a, b, (B.1)

with Γ
(i,i)
τ as in (6). Since the estimation noise γ directly relates to the asymptotic distri-

bution of the pre-average return estimator, it determines the detection properties of the

jump tests. The detection of a jump in yields becomes more difficult if: (i) the noise level

q is higher; (ii) the volatility of the Brownian component is larger; and (iii) the sample size

n is smaller. However, as we define jump sizes as multiples of γ, the simulated jump sizes

increase in γ. This allows studying how estimation precision of the pre-average estimators

and the noise level affect the test decisions. Notice that the simulation setup provides both

bonds (i = a, b) with the same integrated volatility and noise level, and hence γ does not
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depend on the specific bond.

Table B.1 shows the rejection frequencies of the three spread jump tests at level α = 1%.

The three different spread jump tests are the univariate Lee-Mykland test applied to the

spread alone, and the IUT with either the Bonferroni approach or the χ2 bivariate jump

test in the first step. We consider two different sampling frequencies, 30-second (n = 360)

and 5-second (n = 2160). The top panel of Table B.1 reports the simulation results when

the noise variance is low (q2 = 0.0001), and the bottom panel for high noise variance

(q2 = 0.01). Each simulation is repeated 3,000 times. The jump sizes reported in columns

three and four belong to the null hypothesis of no spread jump, while all other columns

correspond to the alternative of a jump in the spread.

Under the null of no spread jump, all three tests exhibit reasonable size properties, with

actual sizes below the nominal level of 1%. We conduct two experiments: (i) Neither of the

two underlying bond yields has a jump at time τ (column three of Table B.1); (ii) Both

bond yields have a jump of the same size (column four of Table B.1). In the latter case, the

IUT detects jumps in the bond yields with high probability in the first step, and its test

outcome is almost fully determined by the test for equal returns in the second step. As a

result, rejection rates of all three tests are almost identical across different noise levels and

sample sizes. In particular, there is little difference between the Bonferroni and χ2-based

IUT tests under the null hypothesis.

The Power advantage of the χ2-based IUT over the Bonferroni approach becomes appar-

ent when the spread jump is induced by a jump in only one of the two bond yields. These

results are shown in columns five to seven of Table B.1. The Bonferroni-based IUT always

has lower power than the χ2 approach, because it does not make use of the information on

the covariance between the two bond yields. When the jump size is small (2γ) and noise

level is high (q = 0.1), the power loss of using the Bonferroni-based IUT compared to the

univaraite Lee-Mykland test on the spread is well above 50%. These results are consistent
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Table B.1: Rejection frequencies of spread jump tests.

Jump
size

Bond a 0 4γ 2γ 3γ 4γ 4γ 5γ

Bond b 0 4γ 0 0 0 2γ 2γ

Noise level: q = 0.01

30-sec
(n=360)

LM 0.009 0.009 0.309 0.679 0.926 0.302 0.670
IUT(Bonf) 0.000 0.008 0.044 0.168 0.415 0.168 0.486
IUT(χ2) 0.003 0.009 0.227 0.596 0.896 0.275 0.649

5-sec
(n=2,160)

LM 0.015 0.011 0.591 0.938 0.998 0.605 0.938
IUT(Bonf) 0.001 0.011 0.136 0.479 0.773 0.506 0.887
IUT(χ2) 0.009 0.011 0.506 0.914 0.996 0.596 0.937

Noise level: q = 0.1

30-sec
(n=360)

LM 0.000 0.000 0.776 0.999 1.000 0.782 1.000
IUT(Bonf) 0.000 0.000 0.085 0.560 0.960 0.757 0.999
IUT(χ2) 0.000 0.000 0.650 0.999 1.000 0.781 1.000

5-sec
(n=2,160)

LM 0.001 0.001 0.776 0.998 1.000 0.762 0.998
IUT(Bonf) 0.000 0.001 0.141 0.594 0.941 0.726 0.995
IUT(χ2) 0.000 0.001 0.670 0.995 1.000 0.760 0.998

Note: Jump sizes in the first two rows are given as a multiple of the estimation noise γ, which is defined
in equation (B.1). Each cell shows the frequency of rejections at significance level α = 0.01 across 3,000
repetitions. LM indicates the Lee-Mykland test applied to the spread (9). IUT(Bonf) is the Bonferroni-
adjusted IUT (7) that uses the Bonferroni-adjusted Lee-Mykland test to test for jumps in the two bond
yields in the first step. IUT(χ2) implements the χ2 bivariate jump test (8) in the first step.

with findings in Section 3 under the alternative of a spread jump. In contrast, the χ2-

based IUT does not suffer from such large power loss over the univariate Lee-Mykland test.

The difference in the rejection frequencies between these two tests are below 10%, and

approaches 0 as the jump size becomes larger.

The last two columns of Table B.1 show jump detection rates when the jump in the

spread is induced by jumps of different sizes in the two bond yields. Compared to situations

when the jump in the spread is induced by a jump in only one of the two bond yields, the

test power of the univariate Lee-Mykland test is not much affected. This is because it

does not take into account the properties of the underlying bond yields. In contrast, the

two IUT procedures have higher detection rate. This increase in test power is driven the

bivariate jump test in the first step of the IUT, where jumps in the two bond yields are
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more easily detected than a jump in only one of them. For the same reason, the difference

between the Bonferroni and χ2-based IUT procedures also become smaller.

Under the alternative hypothesis, it is not surprising that larger sample size n almost

always leads to higher detection rate. Its effect is more evident when the noise level is low

(q = 0.01). Comparing the top and bottom panels of Table B.1, we see that the power of

all tests increases when the noise level is higher, keeping other parameters fixed. This is

because the simulated jump sizes are multiples of the estimation noise γ defined in (B.1),

which increases with the variance of the microstructure noise. As a result, the simulated

jumps has larger magnitudes in the bottom panel for higher noise level.
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C Data

This section provides information on the U.S. macroeconomic news announcements and

Treasury bonds data used in the empirical analyses. Table C.1 presents the list of macroe-

conomic news announcements we use to investigate jumps in bond yields and yield spreads.

These announcements are classified into four broad categories: price, output, employment,

and consumption.

Table C.1: Macroeconomic news releases examined in the empirical analyses.

Subject Category Frequency Release time

Consumer price index Price Monthly 8:30 am
Producer price index Price Monthly 8:30 am
Employment cost index Price Quarterly 8:30 am

Gross domestic product Output Quarterly 8:30 am
Durable goods orders Output Monthly 8:30 am
ISM manufacturing Output Monthly 10:00 am
Chicago PMI Output Monthly 9:45 am
Empire state manufacturing Output Monthly 8:30 am
Business inventories Output Monthly 10:00 am
Production and utilization Output Monthly 9:15 am

Employment report Employment Monthly 8:30 am
ADP employment change Employment Monthly 8:15 am
Initial jobless claims Employment Weekly 8:30 am

Personal spending Consumption Monthly 8:30 am
Advance retail sales Consumption Monthly 8:30 am
Consumer confidence Consumption Monthly 10:00 am

The high-frequency data on U.S. Treasury bond yields are obtained from Refinitiv

DataScope Select provided by Thomson Reuters Tick History. Tables C.2 provides infor-

mation on the individual nominal (left column) and inflation-indexed bonds (right column).

We use maturities that are closest to 2, 5, 10, and 20 years at the time of each news release.

When there are several bonds available, we select the bond that has the highest number of

non-zero 30-second returns on the day of the announcement, which is considered to be the
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Table C.2: The list of U.S. Treasury bonds and TIPS used in the empirical analyses.

Treasury bonds TIPS

CUSIP Coupon Maturity CUSIP Coupon Maturity

912810ED6 8.125 15/08/2019 912828JX9 2.125 15/01/2019
912810EM6 7.250 15/08/2022 912828TE0 0.125 15/07/2022
912810EY0 6.500 15/11/2026 912828S50 0.125 15/07/2026
912810PU6 5.000 15/05/2037 912810QP6 2.125 15/02/2041
912810EZ7 6.625 15/02/2027 912810QF8 2.125 15/02/2040
912810PT9 4.750 15/02/2037 912828JE1 1.375 15/07/2018
912810FT0 4.500 15/02/2036 912828SA9 0.125 15/01/2022
912810FA1 6.375 15/08/2027 912828QV5 0.625 15/07/2021
912810EK0 8.125 15/08/2021 912828LA6 1.875 15/07/2019
912810EN4 7.725 15/11/2022 912810PS1 2.375 15/01/2027
912810PW2 4.375 15/02/2038 912828X39 0.125 15/04/2022
912810EC8 8.875 15/02/2019 912828V49 0.375 15/01/2027
912810EE4 8.500 15/02/2020 912828C99 0.125 15/04/2019
912810EL8 8.000 15/11/2021 912828UH1 0.125 15/01/2023
912810FB9 6.125 15/11/2027 912828MF4 1.375 15/01/2020
912810EP9 7.125 15/02/2023 912810PV4 1.750 15/01/2028
912810FE3 5.500 15/08/2028 9128282L3 0.375 15/07/2027
912810PX0 4.500 15/05/2038 912810FQ6 3.375 15/04/2032
912810EF1 8.750 15/05/2020 912828VM9 0.375 15/07/2023
912810EQ7 6.250 15/08/2023 912810FD5 3.625 15/04/2028
912810EG9 8.750 15/08/2020 912828K33 1.375 15/04/2020
912810QA9 3.500 15/02/2039 912828NM8 1.250 15/07/2020
912810FF0 5.250 15/11/2028 912810PZ5 2.500 15/01/2029
912810ES3 7.500 15/11/2024 9128283R9 0.500 15/01/2028
912810EH7 7.875 15/02/2021 9128284H0 0.625 15/04/2023
912810QB7 4.250 15/05/2039 912828B25 0.625 15/01/2024
912810FG8 5.250 15/02/2029 912828PP9 1.125 15/01/2021
912810EJ3 8.125 15/05/2021 912828Y38 0.750 15/07/2028
912810FJ2 6.125 15/08/2029 912828WU0 0.125 15/07/2024
912810ET1 7.625 15/02/2025 912810FH6 3.875 15/04/2029
912810QC5 4.500 15/08/2039 912828Q60 0.125 15/04/2021
912810QD3 4.375 15/11/2039 9128286N5 0.500 15/04/2024
912810FM5 6.250 15/05/2030 912810FR4 2.375 15/01/2025
912810QE1 4.625 15/02/2040 912828YL8 0.125 15/10/2024
912810FP8 5.375 15/02/2031 912828XL9 0.375 15/07/2025
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most liquid bond at a given maturity.

Table C.3 presents some statistics of the nominal and inflation-indexed bond yields used

in the empirical analyses. These statistics are calculated using 30-second bond yields data

on 430 unique announcement dates from 7am to 5pm. Panel A summarizes some simple

descriptive statistics of the 30-second returns. The first row reports that the average

number of non-zero returns ranges from 230 to 450 for different bond types and maturities.

In general, long-dated bonds tend to have more movements in the yields, which partly

reflect the liquidity level of the bond. The average yield change is always very close to

zero. We also present the mean of the yield changes after taking the absolute value of the

change to show the typical size of a 30-second return. It varies between 0.03 to 0.05 basis

points for different types of bonds and maturities on these announcement days. Lastly, the

standard deviation of the yield changes ranges between 0.09 to 0.18 basis points, which is

much larger than the average size of the return.

Table C.3: Descriptive statistics of government bond yields and yield spreads.

Maturity
Nominal bonds Indexed bonds

2Y 5Y 10Y 20Y 5Y 10Y 20Y

Panel A: observed 30-second returns

# ∆ỹi ̸= 0 269 252 300 387 233 270 442
Mean ∆ỹi -0.0001 -0.0004 -0.0001 -0.0001 -0.0002 -0.0002 -0.0001
Mean |∆ỹi| 0.0387 0.0366 0.0384 0.0431 0.0455 0.0471 0.0493
St.dev. ∆ỹi 0.1114 0.1809 0.0972 0.0976 0.1537 0.1263 0.1107

Panel B: microstructure noise

p-value 0.027 0.149 0.204 0.142 0.091 0.116 0.194
rejection rate 93.7% 64.2% 52.1% 61.2% 77.9% 71.9% 53.7%
noise level 0.105 0.103 0.092 0.094 0.131 0.123 0.105

Note: The bond data are 30-second observations from 7am to 5pm on 430 macroeconomic news release
dates from 2017 to 2019. The reported sizes of the return are in basis points. The p-value refers to the
autocorrelation based test for microstructure noise proposed by Aı̈t-Sahalia and Xiu (2019). The fraction
of rejecting the null of no noise using the same test at 5% significance level is reported in row labeled
rejection rate. The average noise level is estimated using Proposition 1 of Lee and Mykland (2012).
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Panel B of Table C.3 provides evidence on the prevalence of market microstructure

noise in the bond data. We report the median p-value and the percentage of rejections at a

5% level for the autocorrelation based noise test proposed by Aı̈t-Sahalia and Xiu (2019).

The small p-values and high rejection rates of no noise, particularly for shorter-term bond

yields and yield spreads, support the importance of our noise-robust method proposed in

Section 2. The noise level in the last row of Table C.3 reports the average value of the

estimated η, obtained using the noise estimator of Lee and Mykland (2012). The noise level

has similar magnitudes to the high noise level used in the simulation in Section 3 across

different bonds and spreads, and is comparable to the standard deviation of the 30-second

returns.
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