
Supplemental Appendix to

A Stochastic Recurrence Equations Approach for

Score Driven Correlation Models

Francisco Blasquesa, André Lucasa and Erkki Sildea,b

(a)
VU University Amsterdam and Tinbergen Institute

(b)
Duisenberg School of Finance

28



B Student’s t updating recursion driven by i.i.d.

noise

We consider the general model yt ∼ p(yt), yt = h(ft)ut, h(ft) ∈ R
n,n and ut ∼ p(ut) i.i.d.,

which implies the relationship p(yt) = |h(ft)|−1p(h(ft)
−1ut). We are able to model the time-

variation in dependence by parameterizing Lt in terms the dynamic factors ρ(ft).

The most general distributional form we consider is the multivariate Student’s t distribu-

tion,the density of which defined by

p(yt|ν,Σt) =
Γ [(ν + k)/2]

Γ(ν/2)[(ν − 2)π]k/2 |Σt|1/2
[

1 +
1

ν − 2
y′
tΣt

−1yt

]−(ν+k)/2

, (B.1)

which has the additional closure property of yt and ut being in the same class of distributions.

This definition of the t-density implies E[yt] = 0 and Var[yt] = Σt, i.e. the shape parameter

ν affects only the tail thickness without having a direct influence on the variance.

We consider a multivariate Student’s t density in equation (B.1). Theorem 1 in Creal et

al. (2011) gives the following expression for the information matrix,

Iρ,t =
1

(ν + 4)(1− ρ2t )
2

(

(ν + 2)(1 + ρ2t )− 2ρ2t
)

, (B.2)

and the score

∇ρ,t =
1

(1− ρ2t )
2

1

ν − 2 + ǫ2t + η2t

{

ν
(

(1 + ρ2t )(y1ty2t − ρt)− ρt(y
2
1t + y22t − 2)

)

+

(1 + ρ2t )
(

2y1ty2t − ρt(ǫ
2
t + η2t − 2)

)

− 2ρt
(

y21t + y21t − (ǫ2t + η2t − 2)
)

}

. (B.3)

Next we write the score entirely in terms of the independent noise ut = (ǫt, ηt)
⊤ such that

E[utu
⊤
t ] = I2. However this decomposition is not unique. Two prominent choices are:

1. Cholesky root, obtained by setting ψ(ρ) = arcsin(ρ) in equation (12) of the paper:

h(f) =





1 0

ρ(f)
√

1− ρ(f)2



 ,

∇ρ,t =
1

1− ρ2t

1

ν − 2 + ǫ2t + η2t

{

ν

[

√

1− ρ2t ǫtηt − ρt(η
2
t − 1)

]

+

2

[

√

1− ρ2t ǫtηt + ρt

(

1

2
(ǫ2t − η2t )− 1

)]}

.
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2. Symmetric root, obtained by setting ψ(ρ) = 1/2 arcsin(ρ) in equation (12) of the paper:

h(f) =





1

2
(
√

1 + ρ(f) +
√

1− ρ(f)) 1

2
(
√

1 + ρ(f)−
√

1− ρ(f))

1

2
(
√

1 + ρ(f)−
√

1− ρ(f)) 1

2
(
√

1 + ρ(f) +
√

1− ρ(f))



 ,

∇ρ,t =
1

1− ρ2t

1

ν − 2 + ǫ2t + η2t

{

ν

[

ǫtηt −
1

2
ρt(ǫ

2
t + η2t − 2)

]

+ 2 [ǫtηt − ρt]

}

.

Notice from the above how the limiting case ν → ∞ reduces to updating corresponding

to the normal distribution.

Appropriate scalings and transformations of the above then yield closed-form expressions

for the updating equation. Also note that reparameterizing the correlation parameter by the

Fisher transformation ρt = tanh(ft), result in multiplying the score by a factor (1− ρ2t ), and

thus the information matrix by a factor (1− ρ2t )
2 by an application of the chain rule.

30



C Further numerical results

Figure C.1 plots the SE regions for the Student’s t case with different degrees of freedom. For

the symmetric root case (panel (a)), in the relevant first quadrant lower degrees of freedom

result in larger regions. The opposite holds for the Cholesky decomposition; see panel (b).

Figure C.2 plots the results for ψ(ρ) = kψ arcsin(ρ). The left panel gives the result for

the symmetric matrix root kψ = 1/2. The right panel is for the Cholesky decomposition,

kψ = 1. Each panel presents 5 different regions. The outer region is based on the numerical

evaluation of the original condition (8), with the infimum over ψ replaced by the choice

ψ(ρ) = arcsin(ρ)/2. The next region is obtained a numerical evaluation of (8) after applying

Jensen’s inequality, interchanging the expectations and the log operator. The next region

follows after applying the triangle inequality, see the second line of equation (12). The final

two regions are obtained after applying the Cauchy-Schwarz, or a second triangle inequality;

see equations (12) and (13).
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Figure C.1: Stationarity and ergodicity sufficiency regions for different Student’s t
degrees of freedom (DoF) and a = 1/2
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Figure C.2: Stationarity and ergodicity sufficiency regions for the normal distribution
using unit scaling (S(f) ≡ 1) and the stricter inequalities in equation (12).
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D Primitive conditions for asymptotic properties

of MLE

D.1 Bivariate Gaussian model with δ · tanh link function and

unit scaling

We set ρt = δ · tanh(ft), with 0 < δ < 1 a fixed, user defined constant. We obtain

∂ρt
∂ft

= δ
(

1− tanh(ft)
2
)

= (δ2 − ρ2t )/δ, (D.1)

which reaches its maximum of δ < 1 at ft = ρt = 0. We also set S(ft) ≡ 1 and use the normal

distribution for the disturbances. The log likelihood function is given by

LT (θ, f1) =
T
∑

t=1

ℓt(θ, f1)

with

ℓt(θ, f1) = − log 2π − 1

2
log(1− ρ2t )−

1

2(1− ρ2t )

(

y21,t + y22,t − 2ρty1,ty2,t
)

.

D.1.1 Consistency

The high-level assumptions required for the consistency of the ML estimator are:

A1. {yt}t∈Z is SE and {ft(θ, f1)}t∈N converges e.a.s. to an SE process {ft(θ)}t∈Z;

A2. E supθ∈Θ |ℓt(θ, f1)| <∞;

A3. θ0 is the unique maximizer of Eℓt(θ, f1).

The first part of A1 is implied by the conditions of Lemma 1 and an application of

Krengel’s Ergodic Theorem to the observation equation in (1). The second part of A1 is

implied by the conditions of Lemma 3. The moment condition (i) in Lemma 3 is implied by

a compact parameter space and

E sup
θ∈Θ

∣

∣

∣

∣

∣

∂ρt
∂ft

(

ρt
1− ρ2t

−
ρt ·
(

y21,t + y22,t − 2ρty1,ty2,t
)

(1− ρ2t )
2

+
y1,ty2,t
1− ρ2t

)∣

∣

∣

∣

∣

≤ δ2

1− δ2
+ E

δ2 ·
(

y21,t + y22,t + 2δ|y1,ty2,t|
)

(1− δ2)2
+ δE

|y1,ty2,t|
1− δ2

<∞,

using the score expression from equation (D.2) below, where boundedness is implied by

requiring {yt}t∈Z to be SE and E|yi,tyj,t| to be finite for i = 1, 2 and j = 1, 2. The second

condition in Lemma 3 restricts the parameter space, in particular α and β.
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A2 is implied by selecting requiring E|yi,tyj,t| <∞ for i = 1, 2 and j = 1, 2, since

E sup
θ∈Θ

|ℓt(θ, f1)| ≤
1

2
E sup
θ∈Θ

| log(1− ρ2t )|+ E sup
θ∈Θ

∣

∣

∣

1

2(1− ρ2t )

(

y21,t + y22,t − 2ρty1,ty2,t
)

∣

∣

∣

≤ 1

2
| log(1− δ2)|+ 1

2(1− δ2)
E
∣

∣y21,t + y22,t − 2ρty1,ty2,t
∣

∣

and E|yi,tyj,t| <∞ implies

E
∣

∣y21,t + y22,t − 2ρty1,ty2,t
∣

∣ ≤ E|y1,t|2 + E|y2,t|2 + 2δE|y1,ty2,t| <∞.

A3 is implied by α 6= 0 and ∂qt(yt, ft)/∂y 6= 0 for every ft and almost every yt; see the

global identification conditions and Theorem 3 in Blasques et al. (2014) for a line of proof

that can easily be extended to the case of a bivariate yt = (y1,t, y2,t)
′.

‘Intermediate conditions’ for consistency are thus

A1′. Conditions of Lemma 1;

A2′. 0 < δ < 1;

A3′. E|yi,tyj,t| <∞ for i = 1, 2 and j = 1, 2;

A4′. α 6= 0;

A5′. ∂qt(yt, ft)/∂y 6= 0 for every ft and almost every yt.

Finally, we note that in the Gaussian unit-scaling case conditions A3′ and A5′ hold

trivially by inspection of equations (1) and (4). Furthermore, the conditions of Lemma 1

hold easily on a parameter space whose size depends on the choice of δ. Hence, we are

left with A2′ and A4′ for as the sole ‘primitive conditions’ required for consistency. Both

conditions are directly controlled by the researcher:

A2′. 0 < δ < 1;

A4′. α 6= 0.

D.1.2 Asymptotic Normality

In this Gaussian setting each element of the score vector is given by

∇jℓt(θ, f1) =
∂ℓt(θ, f1)

∂θj
=
∂ρt
∂ft

∂ft(θ, f1)

∂θj
ρt(1− ρ2t )

−1

− ∂ρt
∂ft

∂ft(θ, f1)

∂θj
ρt(1− ρ2t )

−2
(

y21,t + y22,t − 2ρty1,ty2,t
)

+ y1,ty2,t
∂ρt
∂ft

∂ft(θ, f1)

∂θj
(1− ρ2t )

−1 (D.2)
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Furthermore, the elements of the log likelihood’s second derivative are given by

∇2
ijℓt(θ, f1) =

∂2ρt
∂f2t

∂ft(θ, f1)

∂θi

∂ft(θ, f1)

∂θj
ρt(1− ρ2t )

−1

+
∂ρt
∂ft

∂2ft(θ, f1)

∂θj∂θi
ρt(1− ρ2t )

−1

+

(

∂ρt
∂ft

)2 ∂ft(θ, f1)

∂θi

∂ft(θ, f1)

∂θj
(1 + ρ2t )(1 + ρ2t )

−2

− ∂2ρt
∂f2t

∂ft(θ, f1)

∂θi

∂ft(θ, f1)

∂θj
ρt(1− ρ2t )

−2
(

y21,t + y22,t − 2ρty1,ty2,t
)

− ∂ρt
∂ft

∂2ft(θ, f1)

∂θj∂θi
ρt(1− ρ2t )

−2
(

y21,t + y22,t − 2ρty1,ty2,t
)

−
(

∂ρt
∂ft

)2 ∂ft(θ, f1)

∂θi

∂ft(θ, f1)

∂θj
(1 + 3ρ2t )(1− ρ2t )

−3
(

y21,t + y22,t − 2ρty1,ty2,t
)

+ 2

(

∂ρt
∂ft

)2 ∂ft(θ, f1)

∂θi

∂ft(θ, f1)

∂θj
ρt(1− ρ2t )

−2y1,ty2,t

+y1,ty2,t
∂2ρt
∂f2t

∂ft(θ, f1)

∂θi

∂ft(θ, f1)

∂θj
(1− ρ2t )

−1

+y1,ty2,t
∂ρt
∂ft

∂2ft(θ, f1)

∂θj∂θi
(1− ρ2t )

−1

+2y1,ty2,t

(

∂ρt
∂ft

)2 ∂ft(θ, f1)

∂θi

∂ft(θ, f1)

∂θj
ρt(1− ρ2t )

−2. (D.3)

In addition to the consistency conditions, Theorem 2 (Asymptotic Normality) imposes

the following high-level assumptions:5

AN1. E|ℓ̇t(θ0, f1)|2 <∞;

AN2. E supθ∈Θ |ℓ̈t(θ, f1)| <∞.

Note that ρt, (1 − ρ2t )
−1, ∂ρt/∂ft, and ∂2ρt/∂f

2
t are all uniformly (in ft) bounded.

Therefore, AN1 is implied by E

∣

∣

∣

∂ft(θ0,f1)
∂θh

∣

∣

∣

2
< ∞, h = 1, . . . , nθ (all elements of θ) and

E|∂ft(θ0,f1)∂θh
yi,tyj,t|2 < ∞ since by (Blasques et al., 2014a, Lemma SA.2) , there exists a con-

stant c > 0, such that

E|∇jℓt(θ0, f1)|2 ≤ δ2(1− δ2)−1c E
∣

∣

∣

∂ft(θ0, f1)

∂θj

∣

∣

∣

2

+ δ2(1− δ2)−2c E
∣

∣

∣

∂ft(θ0, f1)

∂θj

(

y21,t + y22,t + 2δ|y1,ty2,t|
)

∣

∣

∣

2

+ δ(1− δ2)−1c E
∣

∣

∣y1,ty2,t
∂ft(θ0, f1)

∂θj

∣

∣

∣

2
<∞,

5This presupposes the SE nature of ∂ft(θ, f1)/∂θ and ∂2ft(θ, f1)/∂θ∂θ
′. The conditions for this

are implied by the conditions for the existence of moments of these same quantities, which we establish
at the end of the proof.
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where the boundedness of the second term is obtained by a second application of (Blasques et al.,

2014a, Lemma SA.2)

E

∣

∣

∣

∂ft(θ0, f1)

∂θj

(

y21,t + y22,t + 2δ|y1,ty2,t|
)

∣

∣

∣

2
≤ c E

∣

∣

∣

∂ft(θ0, f1)

∂θj
y21,t

∣

∣

∣

2
+

c E
∣

∣

∣

∂ft(θ0, f1)

∂θj
y22,t

∣

∣

∣

2
+ 2c E

∣

∣

∣

∂ft(θ0, f1)

∂θj
y1,ty2,t

∣

∣

∣

2
<∞

AN2 is implied by the following additional conditions

E sup
θ∈Θ

∣

∣

∣

∂ft(θ, f1)

∂θh

∣

∣

∣

2
<∞, E sup

θ∈Θ

∣

∣

∣

∂ft(θ, f1)

∂θh
yi,tyj,t

∣

∣

∣

2
<∞,

E sup
θ∈Θ

∣

∣

∣

∂2ft(θ, f1)

∂θh∂θh′

∣

∣

∣
<∞, E sup

θ∈Θ

∣

∣

∣

∂2ft(θ, f1)

∂θh∂θh′
yi,tyj,t

∣

∣

∣
<∞.

This follows directly by inspecting the expression for the second derivative of the log

likelihood contribution in (D.3) and an application of norm sub-additivity inequalities.

Summing up, the additional ‘intermediate conditions’ used for establishing asymptotic

normality are

AN1′ E

∣

∣

∣

∂ft(θ0,f1)
∂θh

∣

∣

∣

2
<∞;

AN2′ E|∂ft(θ0,f1)∂θh
yi,tyj,t|2 <∞;

AN3′ E supθ∈Θ

∣

∣

∣

∂ft(θ,f1)
∂θh

∣

∣

∣

2
<∞;

AN4′ E supθ∈Θ |∂ft(θ,f1)∂θh
yi,tyj,t|2 <∞;

AN5′ E supθ∈Θ

∣

∣

∣

∂2ft(θ,f1)
∂θh∂θh′

∣

∣

∣
<∞;

AN6′ E supθ∈Θ |∂2ft(θ,f1)∂θh∂θh′
yi,tyj,t| <∞.

Clearly, AN1′ and AN2′ are implied by AN3′ and AN4′. Furthermore, since yt has mo-

ments of arbitrary order due to the normality assumption, then by application of a general-

ized Holder’s inequality we can substitute AN4′ and AN6′ by E supθ∈Θ |∂ft(θ,f1)∂θh
|2+d <∞ and

E supθ∈Θ |∂
2ft(θ,f1)
∂θh∂θh′

|1+d < ∞ for some d > 0. As a result, the set of ‘intermediate conditions’

for asymptotic normality can be reduced to

AN1′′ E supθ∈Θ |∂ft(θ,f1)∂θh
|2+d <∞ for some d > 0;

AN2′′ E supθ∈Θ |∂2ft(θ,f1)∂θh∂θh′
|1+d <∞ for some d > 0.

Finally, we obtain the desired moments for the derivative processes by application of

Proposition SA.2 from the supplemental appendix to Blasques et al. (2014a). These con-

ditions also imply the SE nature of these derivative processes. Before we formulate the
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conditions, we spell out the derivatives in terms of their primitives. We have

∂ft+1

∂θj
=
∂ω

∂θj
+
∂α

∂θj
q(yt, ft) +

∂β

∂θj
ft +

(

β + α
∂q(yt, ft)

∂ft

)

∂ft(θ, f1)

∂θj
,

where q(yt, ft) is defined as the score with respect to the time-varying parameter (the right-

hand side in (D.2), but with the factors ∂ft(θ, f1)/∂θj dropped). Similarly, we have for the

second derivatives

∂2ft+1

∂θi∂θj
=

∂2ω

∂θi∂θj
+

∂2α

∂θi∂θj
q(yt, ft) +

∂2β

∂θi∂θj
ft +

∂α

∂θj

∂q(yt, ft)

∂ft

∂ft(θ, f1)

∂θi
+
∂β

∂θj

∂ft(θ, f1)

∂θi
+

(

∂β

∂θi
+
∂α

∂θi

∂q(yt, ft)

∂ft
+ α

∂2q(yt, ft)

∂f2t

∂ft(θ, f1)

∂θi

)

∂ft(θ, f1)

∂θj
+

(

β + α
∂q(yt, ft)

∂ft

)

∂2ft(θ, f1)

∂θi∂θj
.

Following Proposition SA.2 from the supplemental appendix to Blasques et al. (2014a) and

assuming fixed initial conditions ∂f1(θ, f1)/∂θ and ∂2f1(θ, f1)/∂θ∂θ
′, the conditions become

AN1a′′ E sup(θ,f)∈Θ×F

∣

∣

∣β + α∂q(yt,f)∂ft

∣

∣

∣

2+d
< 1 for some d > 0;

AN1b′′ E supθ∈Θ

∣

∣

∣

∂ω
∂θj

+ ∂α
∂θj
q(yt, f1) +

∂β
∂θj
f1

∣

∣

∣

2+d
<∞ for some d > 0;

AN2a′′ E sup(θ,f)∈Θ×F

∣

∣

∣
β + α∂q(yt,f)∂ft

∣

∣

∣

1+d
< 1 for some d > 0;

AN2b′′ E supθ∈Θ

∣

∣

∣

∣

∣

∂2ω
∂θi∂θj

+ ∂2α
∂θi∂θj

q(yt, f1) +
∂2β
∂θi∂θj

f1 +
∂α
∂θj

∂q(yt,f1)
∂ft

∂f1(θ,f1)
∂θi

+ ∂β
∂θj

∂f1(θ,f1)
∂θi

+

(

∂β
∂θi

+ ∂α
∂θi

∂q(yt,f1)
∂ft

+ α∂
2q(yt,f1)
∂f2t

∂f1(θ,f1)
∂θi

)

∂f1(θ,f1)
∂θj

∣

∣

∣

∣

∣

1+d

<∞

for some fixed initial condition ∂f1(θ, f1)/∂θ and d > 0.

By (Blasques et al., 2014a, Lemma SA.2) we obtain via similar lines as before that AN1b′′

is satisfied if E|yi,tyj,t|2+d < ∞, which trivially holds due to the conditional Gaussianity of

yi,t. The expressions for ∂q(yt, f1)/∂ft and ∂
2q(yt, f1)/∂f

2
t are highly cumbersome. Looking

at the expression in equation (D.3), however, we can see that both these derivatives are

polynomials in ρt, ∂
jρt/∂f

j
t for j = 1, 2, 3, (1−ρ2t )−1, and (yi,tyj,t). Given the fact that all of

these have bounded moments under the assumption of conditional normality and 0 < δ < 1,

AN2b′′ is automatically satisfied by the previous sets of conditions.

Since AN1a′′ implies AN2a′′, we are finally left with AN1a′′ as the sole additional condition

needed to obtain asymptotic normality. Building on the consistency conditions, we thus

obtain the asymptotic normality of the MLE from:

A1′. Conditions of Lemma 1;
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A2′. 0 < δ < 1;

A4′. α 6= 0;

AN1a′′ E sup(θ,f)∈Θ×F

∣

∣

∣
β + α∂q(yt,f)∂ft

∣

∣

∣

2+d
< 1 for some d > 0;

Finally, we note that Condition AN1a′′ restricts the parameter space in a very similar

way as do the contraction conditions in Lemma 1, and we already showed how the size of

these regions depend on 0 < δ < 1. Hence, we are left as before with two conditions that are

directly controlled by the researcher:

A2′. 0 < δ < 1;

A4′. α 6= 0.

D.2 Bivariate Student’s t model with δ · tanh link function and

unit scaling

As previously, we set ρt = δ · tanh(ft), with 0 < δ < 1 a fixed, user defined constant. We also

set S(ft) ≡ 1 and again have the result from equation (D.1). For the Student’s t model with

ν < ∞ degrees of freedom, we follow the same lines as for the Gaussian case (i.e., the case

ν → ∞) in Appendix D.1. The likelihood contribution at time t for the Student’s t model is

given by

ℓt(θ, f1) = log
(

1

2
ν
)

− log(2π (ν − 2))− 1

2
log(1− ρ2t ) (D.4)

− 1

2
(ν + 2) log

(

1 +
1

(ν − 2)(1− ρ2t )
(y21,t + y22,t − 2ρty1,ty2,t)

)

,

with 2 < ν ≤ ν ≤ ν <∞. The score is given by

q(yt, ft) =
ρt

1− ρ2t

∂ρt
∂ft

− (ν + 2)
ρt
y2
1,t+y

2

2,t−2ρty1,ty2,t

(ν−2)(1−ρ2t )
2

− y1,ty2,t
(ν−2)(1−ρ2t )

1 +
y2
1,t+y

2

2,t−2ρty1,ty2,t

(ν−2)(1−ρ2t )

∂ρt
∂ft

. (D.5)

Note that we have parameterized the correlation matrix in this case by assuming ν > 2,

such that variances exist. Alternatively, we could interpret the scaling matrix in the data

generating process as a pure scaling matrix and drop the requirement that second moments

exist (ν > 2). The arguments below would continue to apply to that case as well, with the

number of required moments of the data dropping to the existence of an arbitrarily small

moment. To see this, it is important to note that for 0 < δ < 1 we have 0 ≤ ρ2t ≤ δ2 < 1
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such that the correlation matrix is positive definite and therefore

sup
yi,yj∈R

|yiyj |
1 + (ν − 2)−1(1− ρ2t )

−1(y21 + y22 − 2ρty1y2)
≤ c <∞, (D.6)

for some constant c.

D.2.1 Consistency

The high-level assumptions required for the consistency of the ML estimator are:

B1. {yt}t∈Z is SE and {ft(θ, f1)}t∈N converges e.a.s. to an SE process {ft(θ)}t∈Z;

B2. E supθ∈Θ |ℓt(θ, f1)| <∞;

B3. θ0 is the unique maximizer of Eℓt(θ, f1).

The first part of B1 is implied by the conditions of Lemma 1 and an application of

Krengel’s theorem to the observation equation (1), and possible non-degenerate regions were

presented in the paper. For the second part of B1, we require a compact parameter space

and

B1a′. E supθ∈Θ log supf∈F

∣

∣

∣
β + α∂q(yt,f)∂ft

∣

∣

∣
< 0;

B1b′. E supθ∈Θ |q(yt, f1)| <∞.

Given the score expression in (D.5) and assuming 0 < δ < 1 such that (D.6) applies, we have

E sup
θ∈Θ

|q(yt, f1)| <
δ2

1− δ2
+ E sup

θ∈Θ
δ (ν + 2)

(

ρt
(

1− ρ2t
)2 +

|y1,tyt,2|
(ν − 2)(1− ρ2t ) + y21,t + y22,t − 2ρty1,ty2,t

)

≤ δ2

1− δ2
+ δ (ν + 2)

(

δ

(1− δ2)2
+ c

)

<∞,

for some constant c. To obtain the second term in the first line, we have used the fact that

x/(1 + x) ≤ 1 for x ≥ 0.

B2 follows by first noting that ρ2t ≤ δ2, such that

E sup
θ∈Θ

|ℓt(θ, f1)| ≤ sup
θ∈Θ

(∣

∣

∣
log

1

2
ν
∣

∣

∣
+ |log(2π (ν − 2))|+ 1

2

∣

∣log(1− δ2)
∣

∣

)

(D.7)

+ E sup
θ∈Θ

ν + 2

2
log

(

1 +
y21,t + y22,t − 2ρty1,ty2,t

(ν − 2)(1− δ2)

)

.

The assumptions 0 < δ < 1 and E|yi,tyj,t|ǫ <∞ for some ǫ > 0 then imply E supθ∈Θ |ℓt(θ, f1)| <
∞. An ǫ = 2 moment of yi,tyj,t is implied by the existence of second moments in the data
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generating process (1).6

B3 is satisfied using precisely the same arguments as for the Gaussian case.

Consistency is thus ensured by the following primitive conditions:

B1′. Conditions of Lemma 1 and Lemma 3;

B2′. 0 < δ < 1;

B3′. α 6= 0.

B4′. 2 < ν ≤ ν ≤ ν <∞.

D.2.2 Asymptotic Normality

For the Student’s t setting, each element of the score vector is given by

∇jℓt(θ, f1) =
∂ρt
∂ft

∂ft(θ, f1)

∂θj
ρt(1− ρ2t )

−1 +

(

1

ν
− 1

ν − 2

)

∂ν

∂θj

− 1

2

∂ν

∂θj
log

(

1 +
y21,t + y22,t − 2ρty1,ty2,t

(ν − 2)(1− ρ2t )

)

+
ν + 2

2(ν − 2)

∂ν

∂θj

y21,t + y22,t − 2ρty1,ty2,t

(ν − 2)(1− ρ2t ) + y21,t + y22,t − 2ρty1,ty2,t

− (ν + 2)
∂ρt
∂ft

∂ft(θ, f1)

∂θj

ρt(1− ρ2t )
−1(y21,t + y22,t − 2ρty1,ty2,t)

(ν − 2)(1− ρ2t ) + y21,t + y22,t − 2ρty1,ty2,t

+ (ν + 2)
∂ρt
∂ft

∂ft(θ, f1)

∂θj

y1,ty2,t
(ν − 2)(1− ρ2t ) + y21,t + y22,t − 2ρty1,ty2,t

.

(D.8)

Again, we have to satisfy the high-level conditions

BN1. E|ℓ̇t(θ0, f1)|2 <∞;

BN2. E supθ∈Θ |ℓ̈t(θ, f1)| <∞.

Using equation (D.8), (Blasques et al., 2014a, Lemma SA.2) and the δ · tanh parameteri-

zation with 0 < δ < 1, we can substitute BN1 by the following conditions for all elements of

the derivative processes:

BN1a′. E

∣

∣

∣

∂ft(θ0,f1)
∂θj

∣

∣

∣

2
<∞;

BN1b′. E

∣

∣

∣

∣

log

(

1 +
y2
1,t+y

2

2,t−2ρty1,ty2,t

(ν−2)(1−ρ2t )

)∣

∣

∣

∣

2

<∞;

BN1c′. E

∣

∣

∣

∣

y2
1,t+y

2

2,t−2ρty1,ty2,t

(ν−2)(1−ρ2t )+y
2

1,t+y
2

2,t−2ρty1,ty2,t

∣

∣

∣

∣

2

<∞;

6For the case of a pure scaling matrix, the requirement follows due to the existence of a moment
0 < ǫ < ν under the Student’s t assumption.
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BN1d′. E

∣

∣

∣

∣

∂ft(θ0,f1)
∂θj

(y2
1,t+y

2

2,t−2ρty1,ty2,t)

(ν−2)(1−ρ2t )+y
2

1,t+y
2

2,t−2ρty1,ty2,t

∣

∣

∣

∣

2

<∞;

BN1e′. E

∣

∣

∣

∣

∂ft(θ0,f1)
∂θj

y1,ty2,t
(ν−2)(1−ρ2t )+y

2

1,t+y
2

2,t−2ρty1,ty2,t

∣

∣

∣

∣

2

<∞;

BN1b′ is directly implied by the existence of second moments of yt. BN1a′ implies BN1c′,

BN1d′, and BN1e′ due to equation (D.6). Note that conditions for the existence of second

moments of the derivative process will also imply the e.a.s. convergence to an SE process

of the first and second order derivative processes using Proposition SA.2 from Blasques et al.

(2014a).

Rather than spelling out the second derivative of the likelihood in detail, we draw atten-

tion to the expression in equation (D.8). From this and using (D.6), it becomes clear that

BN2 is satisfied if

BN1f′. E supθ∈Θ

∣

∣

∣

∂ft(θ,f1)
∂θj

∣

∣

∣

2
<∞;

BN1g′. E supθ∈Θ

∣

∣

∣

∂2ft(θ,f1)
∂θi∂θj

∣

∣

∣

2
<∞.

BN1f′ implies BN1a′.

Similar as for the Gaussian case, we can use the results for general stochastic recurrence

equations in Proposition SA.2 by Blasques et al. (2014a). The expressions for the derivatives

of ft(θ, f0) are similar to the ones for the Gaussian case, but with additional terms to ac-

count for the parameter ν, in particular terms involving ∂q(yt, ft)/∂ν and ∂2q(yt, ft)/∂ν
2, for

example

∂ft+1

∂θj
=
∂ω

∂θj
+
∂α

∂θj
q(yt, ft) + α

∂q(yt, ft)

∂ν

∂ν

∂θj
+
∂β

∂θj
ft +

(

β + α
∂q(yt, ft)

∂ft

)

∂ft(θ, f1)

∂θj
.

Using equation (D.6) once more, the uniform boundedness ensures that BN1a′–BN1g′ as well

as BN2 are satisfied if

BN1′′ E sup(θ,f)∈Θ×F

∣

∣

∣
β + α∂q(yt,ft)∂ft

∣

∣

∣

2
< 1.

BN1′′ restricts the parameter space, in particular the permissible values of α and β, in a

similar way as the conditions in Lemma 1 and Lemma 3 in the paper and result in similar

regions as the one shown in the paper.
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E Complementary results to the empirical applica-

tion

E.1 FTSE: Diagnostic checks on the univariate models in the

GJR family

First, we use the GJR family

σ2(t) = c+ g1σ
2(t− 1) + . . .+ gPσ

2(t− P ) + a1y(t− 1)2 + . . .+ aQy(t−Q)2

+ L1 1[y(t− 1) < 0]y(t− 1)2 + . . .+ LQ 1[y(t−Q) < 0]y(t− q)2

The GJR(1,2) specification is preferred as it gives the log-likelihood of −5121.31 as opposed

to −5127 of the GJR(1,1) model and −5129 of the EGARCH(1,2) model. Adding more lags

is neither significant, nor do the diagnostics change.

Table E.1: GJR(1,2) Conditional Variance Model for FTSE 100 Index

Parameter Value Standard Error t- Statistic

Constant 0.0372671 0.008906 4.18449
GARCH1 0.874143 0.0129657 67.4199
ARCH1 0.00225888 0.0132958 0.169894
ARCH2 0.0755335 0.0188271 4.01196
Leverage1 0.0816841 0.0189078 4.32013

DoF 7.18691 0.956046 7.51732

Table E.2: Results of Ljung-Box Test for Remaining ARCH effects (H0:none)

lags Result Hypothesis pValue Statistic Crit Val

10 0 0.7749 6.4643 18.3070
15 0 0.8144 10.0840 24.9958
20 0 0.8900 12.6963 31.4104
25 0 0.8866 16.8668 37.6525
30 0 0.7492 24.4944 43.7730
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Table E.3: Results of Engle’s Test for Remaining ARCH effects (H0:none)

lags Result Hypothesis pValue Statistic Crit Val

10 0 0.7826 6.3780 18.3070
15 0 0.8018 10.2799 24.9958
20 0 0.8865 12.7830 31.4104
25 0 0.8919 16.7129 37.6525
30 0 0.7266 24.9676 43.7730

E.2 Athex Composite Index: Diagnostic checks on the uni-

variate models in the EGARCH family

Here the EGARCH family

log[σ2(t)] = c+ g1 log[σ
2(t− 1)] + . . .+ gP log[σ2(t− P )]

+ a1(|y(t− 1)| − E|y(t− 1)|) + aQ(|y(t−Q)| − E|y(t−Q)|)

+ L1y(t− 1) + . . .+ LQy(t−Q)

is chosen. EGARCH(1,2) is preferred as it gives a log-likelihood of −4041.02 as opposed to

−4046.13 of the EGARCH(1,1) model and −4052.14 of the GJR(1,2) model. Adding more

lags is neither signficant, nor do the diagnostics change.

Table E.4: EGARCH(1,2) Conditional Variance Model for Athex Composite Index

Parameter Value Standard Error t- Statistic

Constant -0.000106474 0.00194011 -0.0548802
GARCH1 0.98243 0.00240827 407.941
ARCH1 -0.0192319 0.0413664 -0.464917
ARCH2 0.143411 0.0429705 3.33744
Leverage1 -0.130415 0.010867 -12.0011

DoF 12.8521 2.86693 4.48289

Table E.5: Results of Ljung-Box Test for Remaining ARCH effects (H0:none)

lags Result Hypothesis pValue Statistic Crit Val

10 0 0.8610 5.4257 18.3070
15 0 0.5087 14.2230 24.9958
20 0 0.5506 18.5588 31.4104
25 1 0.0261 40.4590 37.6525
30 1 0.0399 44.8484 43.7730
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Table E.6: Results of Engle’s Test for Remaining ARCH effects (H0:none)

lags Result Hypothesis pValue Statistic Crit Val

10 0 0.8653 5.3680 18.3070
15 0 0.5097 14.2092 24.9958
20 0 0.5547 18.4975 31.4104
25 1 0.0390 38.7546 37.6525
30 0 0.0546 43.3479 43.7730

E.3 Robustness check: Modeling both marginals by an EGARCH(1,2)

model

The results in this section show that reasonable leave our results practically unaltered. We

model both series by an EGARCH(1,2). We omit the robustness check of modeling both

series by as for the Athex Composite Index, as the GJR binding positivity result in an

inferior model fit (a likehood decrease of more than 10 points).

45



Table E.7: Both EGARCH(1,2) marginals. Full Estimation Results.

EWMA1 EWMA2 EWMA3 t(∞)GAS t(∞)GAS t(∞)GAS t(5)GAS t(5)GAS t(5)GAS t(·)GAS
(a=0) (a=0.5) (a=1) (a=0) (a=0.5) (a=1) (a=1)

λ 5 5 8.6648 ∞ ∞ ∞ 5 5 5 8.9598
0.00742 0.8788

c 0.0002 0.0010 0.0115 0.0112 0.0109 0.0089 0.0089 0.0088 0.0112
0.0003 0.0003 0.0448 0.0451 0.0358 0.0111 0.0113 0.0067 0.0071

A 0.0254 0.0281 0.0310 0.0334 0.0315 0.0296 0.0356
0.0481 0.0472 0.0416 0.0172 0.0144 0.0089 0.0100

B 0.9771 0.9769 0.9761 0.9757 0.9763 0.9770 0.9798 0.9799 0.9801 0.9766
0.0069 0.0048 0.0019 0.1098 0.0914 0.0723 0.0237 0.0240 0.0142 0.0141

Log-likelihood In-sample −7845 −7844 −7812 −7886 −7886 −7886 −7838 −7838 −7838 −7803
AIC 15691 15692 15629 15779 15779 15778 15682 15682 15682 15615
BIC 15697 15704 15647 15797 15797 15796 15700 15700 15700 15639
# estimated parameters 1 2 3 3 3 3 3 3 3 4

Reject Zero Const Corr at 0.05 level Yes Yes No No No No No No No No
Reject Const Corr at 0.05 level Yes Yes Yes Yes Yes No Yes Yes Yes No

Notes: The second line underneath each parameter estimate depicts HAC sandwich standard errors. For volatility, EGARCH(1,2) marginals are used for
both series.
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Table E.8: Location of parameter estimates with respect to the SE contraction region

t(∞)GAS(1,1) t(∞)GAS(1,1) t(∞)GAS(1,1) t(5)GAS(1,1) t(5)GAS(1,1) t(5)GAS(1,1) t(9)GAS(1,1)
(a=0) (a=0.5) (a=1) (a=0) (a=0.5) (a=1) (a=1)

Inside SE region?
kψ = 1 (Cholesky) Yes Yes No No No No No
kψ = 1/2 (Symmetric) Yes Yes Yes Yes Yes Yes Yes

Notes: For volatility, EGARCH(1,2) marginals are used for both series.
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