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Appendix A: Full Conditional Distributions

We provide details about the full conditional distributions for the multi-population multistate

Jolly-Seber (MP-MSJS) model with covariates using state-space modeling.

• [Nk|·], k = 1, 2, . . . , K.

[Nk|·] ∝
(
Nk

nk

)[
1−

T∑
t=1

G∑
s=1

αt(s)p
k
t (s)

]Nk−nk

π(Nk)1(Nk ≥ nk),

where αk1(s) = βk0 (s) and for t = 1, 2, . . . , T − 1 the recursion follows that

αkt+1(s) = βkt (s) +
G∑
r=1

αkt (r)
[
1− pkt (r)

]
qkt (r, s), s ∈ G.

Let λk =
∑T

t=1

∑G
r=1 α

k
t (r)p

k
t (r) refer to the probability for individuals of population

Pk in the study area to be marked, it then follows

Nk − nk|· ∼

NegBin(nk, λk), if π(Nh) ∝ 1
Nk

NegBin(nk + 1, λk), if π(Nk) ∝ 1

where NegBin(n, p) denotes the negative binomial distribution with probability mass

function being

pX(x) =

(
n+ x− 1

x

)
pn(1− λ)x, x = 0, 1, . . . , n > 0 and 0 < p ≤ 1

• [ψk
t (r, ·)|·], r ∈ G and k = 1, 2, . . . , K.

[ψk
t (r, ·)|·] ∝

G∏
s=1

ψkt (r, s)W
k
t (r,s).

where W k
t (r, s) =

∑Nk

i=1 z
k
i,t+1(s)z

k
i,t(r) for s ∈ G. Therefore,

ψk
t (r, ·)|· ∼ Dirichlet

(
ekt (r, 1) +W k

t (r, 1), . . . , ekt (r,G) +W k
t (r,G)

)
.
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• [βk|·], r ∈ G, t = 0, . . . , T − 1 and k = 1, 2, . . . , K.

[βk|·] ∝
T−1∏
t=0

G∏
r=1

{
βkt (r)E

k
t (r)
}

[β],

i.e.,

βk ∼ Dirichlet(γkt (r) + Ek
t (r); r ∈ G, t = 0, . . . , T − 1).

where Ek
t (r, s) =

∑Nk

i=1 1
(
zki,t+1 = r

)
1
(
zki,t = ?

)
• [θp|·], p = 1, 2, . . . , P .

θp|· ∼ N(µθp|·, σ
2
θp|·),

where

σ2
θp|· =

{
K∑
k=1

∑T
t=1

∑G
r=1 x

2
tr,p

σ2
k

+
1

σ2
θp

}−1
,

µθp|· = σ2
θp|·

{
K∑
k=1

∑T
t=1

∑G
r=1 xtr,p(p̃

k
t (r)−

∑
s 6=p xtr,sθs)

σ2
k

+
µθp
σ2
θp

}
.

• σ2
k|· ∼ IG(C∗k , D

∗
k), k = 1, 2, . . . , K and

C∗k =
TG

2
+ Ck,

D∗k =

∑T
t=1

∑G
r=1(p̃

k
t (r)−X′trθ)2

2
+Dk.

• γm|· ∼ N(µγm|·, σ
2
γm|·), m = 1, 2, . . . ,M , where

σ2
γm|· =

{
K∑
k=1

∑T−1
t=1

∑G
r=1 Ω2

tr,m

ξ2k
+

1

σ2
γm

}−1
,

µγm|· = σ2
γm|·

{
K∑
k=1

∑T−1
t=1

∑G
r=1 Ωtr,m(φ̃kt (r)−

∑
s 6=k Ωtr,sγs)

ξ2k
+
µγm
σ2
γm

}
.

• ξ2k|· ∼ IG(A∗k, B
∗
k), k = 1, 2, . . . , K and

A∗k =
(T − 1)G

2
+ Ak,

B∗k =

∑T−1
t=1

∑G
r=1(φ̃

k
t (r)−Ω′trγ)2

2
+Bk.
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• [p̃kt (r)|·], t = 1, 2, . . . , T , k = 1, 2, . . . , K and r ∈ G

[p̃kt (r)|·] ∝
{

exp(p̃kt (r))
}Uk

t (r)
{

1 + exp(p̃kt (r))
}−Nk

t (r) exp

{
−(p̃kt (r)−X′trθ)2

2σ2
k

}
.

• [φ̃kt (r)|·], t = 1, 2, . . . , T − 1, k = 1, 2, . . . , K and r ∈ G

[φ̃kt (r)|·] ∝
{

exp(φ̃kt (r))
}Wk

t (r) {
1 + exp(φ̃kt (r))

}−Nk
t (r)

exp

{
−(φ̃kt (r)−Ω′trγ)2

2ξ2k

}
.

Appendix B: Proof of Lemma 3.1

We can easily show that the full conditionals of p̃kt (r) and φ̃kt (r) take the following forms

[p̃kt (r)|·] ∝
{

exp(p̃kt (r))
}Uk

t (r)
{

1 + exp(p̃kt (r))
}−Nk

t (r) exp

{
−(p̃kt (r)−X′trθ)2

2σ2
k

}
, (B.1)

[φ̃kt (r)|·] ∝
{

exp(φ̃kt (r))
}Wk

t (r) {
1 + exp(φ̃kt (r))

}−Nk
t (r)

exp

{
−(φ̃kt (r)−Ω′trγ)2

2ξ2k

}
. (B.2)

where

Uk
t (r) =

nk∑
i=1

yki,t(r), t = 1, 2, . . . , T,

W k
t (r) =

Nk∑
i=1

G∑
s=1

1(zki,t+1 = s)1(zki,t = r), t = 1, 2, . . . , T − 1,

Nk
t (r) =

Nk∑
i=1

1(zki,t = r), t = 1, 2, . . . , T,

for k = 1, 2, . . . , K and r ∈ G. In other words, Uk
t (r) is the total number of individuals

from population Pk that are captured at location r at time t; W k
t (r) is the total number of

individuals from population Pk present at region r at time t that survive to time t+ 1; and

Nk
t (r) is the total number of individuals from population Pk that are alive and present at

region r at time t. Moreover, nk is the total number of individuals caught from population

Pk.
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Taking the logarithm of (B.1) and (B.2) yields

log[p̃kt (r)|·] = const + Uk
t (r)p̃kt (r)−Nk

t (r)log
{

1 + exp(p̃kt (r))
}
− (p̃kt (r)−X′trθ)2

2σ2
k

,

log[φ̃kt (r)|·] = const +W k
t (r)φ̃kt (r)−Nk

t (r)log
{

1 + exp(φ̃kt (r))
}
− (φ̃kt (r)−Ω′trγ)2

2ξ2k
,

where const denotes any constant.

The derivation of the first and the second derivatives of log[p̃kt (r)|·] with respect to p̃kt (r)

yields

∂log[p̃kt (r)|·]
∂p̃kt (r)

= Uk
t (r)−Nk

t (r)
exp{p̃kt (r)}

1 + exp{p̃kt (r)}
− p̃kt (r)−X ′trθ

σ2
k

,

∂2log[p̃kt (r)|·]
∂{p̃kt (r)}2

= −Nk
t (r)

exp{p̃kt (r)}
{1 + exp{p̃kt (r)}}2

− 1

σ2
k

< 0.

Similarly for φ̃kt (r), we have

∂log[φ̃kt (r)|·]
∂ φ̃kt (r)

= W k
t (r)−Nk

t (r)
exp{φ̃kt (r)}

1 + exp{φ̃kt (r)}
− φ̃kt (r)−Ω′trγ

ξ2k
,

∂2log[φ̃kt (r)|·]
∂ {φ̃kt (r)}2

= −Nk
t (r)

exp{φ̃kt (r)}
{1 + exp{φ̃kt (r)}}2

− 1

ξ2k
< 0.

As a result, the full conditionals of p̃kt (r) and φ̃kt (r) are log-concave.

Appendix C: Sampling z

To update the latent variables zi, we adapt the sampling algorithm developed by Dupuis

and Schwarz (2007). For completeness, herein, we describe the algorithm in detail. Without

loss of generality, we consider the single species case with G = {1, 2, 3} and T = 10, since the

algorithm for the latent variables remains the same within each population. Let N denote

the population size. For i = 1, 2, . . . , N , we define two sets as follows:

S1 = {i : yi 6= 0},

S2 = {i : yi = 0},
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where yi = (yi,1, . . . , yi,T ) denotes the capture history for an individual i. In other words,

the set S1 contains individuals that are captured at least once during T sampling occasions;

whereas the set S2 includes individuals that are never captured during the study. The update

of latent variables zi will depend on the set that an individual i falls into. For example,

consider a capture history of the form

yi = 0010030020, (C.1)

which indicates that an individual i is captured in location 1 at t = 3, in location 3 at t = 6,

and last captured in location 2 at t = 9. It follows from (C.1) that the corresponding zi

takes the form of zi = · · 1 · · 3 · · 2·, where · denotes a missing location that needs to be

simulated.

Before we move on to the sampling algorithm, we need to introduce some notation.

First, we define fi and li as the first and last times that an individual i ∈ S1 is captured.

Moreover, define ei as the time that individual i first enters the study area, which is unknown.

Furthermore, three types of blocks due to Dupuis and Schwarz (2007) need to be in place.

First, the Type I block B1(i) consists of state variables corresponding to sampling times

up to fi. Second, the Type II block B2(i) includes state variables corresponding to two

successive capture events. Third, the Type III block B3(i) is comprised of state variables

corresponding to sampling occasions right after li to time T . Hence, for the capture history

given in (C.1), it follows

B1(i) = {zi,1, zi,2, zi,3},

B2(i) = {(zi,ei , zi,3), (zi,3, zi,6), (zi,6, zi,9)},

B3(i) = {zi,10},

where ei denotes the time that individual i first enters the study area and it is unknown.

For convenience of exposition, define mt2,r
t1,s as the probability that an individual moves

from location s at time t1 to location r at time t2, where t2 > t1. The following recursive
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relationship

mt+1,r
t,s = φt(s)ψt(s, r), for t1 ≤ t < t2,

mt+2,r
t,s =

G∑
s′=1

mt+1,s′

t,s mt+2,r
t+1,s′ , for t1 ≤ t < t2 − 1,

is needed to derive mt2,r
t1,s for s, r ∈ G and 1 ≤ t1 < t2 ≤ T .

We now elaborate on the updating scheme of zi for i ∈ S1. For t = 1, 2, . . . , T − 1 and

r ∈ G, define λt(r) as

λt+1(r) = βt(r) +
G∑
s=1

λt(s){1− pt(s)}φt(s)ψt(s, r),

and λ1(r) = β0(r). For Type I block simulation, we need to determine ei and zi,ei , which

can be achieved by first simulating ui ∼ Multinomial(1, ξi) where

ui = (ui,1(1), . . . , ui,1(G), ui,2(1), . . . , ui,2(G), . . . , ui,fi(1), . . . , ui,fi(G)),

ξi = (ξi,1(1), . . . , ξi,1(G), ξi,2(1), . . . , ξi,2(G), . . . , ξi,fi(1), . . . , ξi,fi(G)),

ξi,t(s) =
βt−1(s){1− pt(s)}mfi,r

t,s

λfi(r)
, r, s ∈ G and t = 1, 2, . . . , fi.

As a result, we can determine ei and zi,ei according to

ei = T (ui),

zi,ei = S(ui).

where

T (ui) = 1 +

⌊
Ind(ui)− 1

G

⌋
,

S(ui) =

G, if (Ind(ui) mod G) = 0,

Ind(ui) mod G, otherwise,
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where for a standard unit vector x in Rd, Ind(x) = j if xj = 1 for 1 ≤ j ≤ d. Moreover, buc

denotes the largest integer not greater than u. After ei is determined, we then set zi,t = ?

for 1 ≤ t < ei.

For (zi,t1 , zi,t2) ∈ B2(i), we need to simulate latent states between two consecutive “cap-

ture occasions” t1 and t2. For the trivial case where t1 = t2 − 1, there is no need to update

the latent state variable. As a result, we assume zi,t1 = s and zi,t2 = r for 1 ≤ t1 < t2 ≤ T

and r, s ∈ G. Our goal is to simulate missing state variables zi,t for t1 < t < t2. To this end,

we define

αj
′,r
j,s (s′) = P (zi,j+1 = s′|zi,j = s, zi,j+1 = ·, . . . , zi,j′−1 = ·, zi,j′ = r)

=
φj(s)ψj(s, s

′){1− pj+1(s
′)}mj′,r

j+1,s′

mj′,r
j,s

,

for j < j′. Subsequently, we simulate vi ∼ Multinomial(1,α) withα = (αt2,rj,1 , α
t2,r
j,2 , . . . , α

t2,r
j,G ).

Then, we set zi,j+1 = Ind(vi) for t1 ≤ j < t2 − 1.

Next, we discuss the simulation for the latent variables in the Type III block. For

1 ≤ t < T and s ∈ G, let wt(s) denote the probability that an individual leaves the study

area after time t at location s. We can obtain wt(s) using the recursion

wt(s) = 1− φt(s) + φt(s)
G∑
s′=1

ψt(s, s
′){1− pt+1(s

′)}wt+1(s
′), t = T − 1, T − 2, . . . , 1,

and wT (s) = 1. To update zi,t ∈ B3(i) for t = li + 1, . . . , T , we first simulate oi,t from

oi,t(s) ∼ Bernoulli

(
1− φt−1(s)
wt−1(s)

)
,

and then determine zi,t according to

zi,t =

†, if zi,t−1 = † or oi,t(s) = 1,

Ind(τ i,t), otherwise,

(C.2)

where τ i,t ∼ Multinomial(1, ς t) with ς t = (ςt(1), . . . , ςt(G)) and

ςt(r) =
φt(s)ψt(s, r){1− pt+1(r)}wt+1(r)

wt(s)
, for r ∈ G,
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assuming zi,t−1 = s ∈ G.

Lastly, we address the simulation of the latent variables zi ∈ S2, i.e., for an individual

that is never captured during the entire study. This requires us to first determine the time

that an individual first enters the population (i.e., Type I block simulation) followed by

ascertaining the status at subsequent sampling occasions after its entrance (i.e., Type III

block simulation). To this end, we define ρ as the probability that an individual is never

captured. Then, we can derive the following

ρ = 1−
T∑
t=1

G∑
r=1

λt(r)pt(r).

To determine ei for an individual i, we simulate ζi ∼ Multinomial(1,$) where

ζ = (ζ1(1), . . . , ζ1(G), ζ2(1), . . . , ζ2(G), . . . , ζT (1), . . . , ζT (G)),

$ = ($1(1), . . . , $1(G), $2(1), . . . , $2(G), . . . , $T (1), . . . , $T (G)),

$t(s) =
βt−1(s){1− pt(s)}wt(s)

ρ
, s ∈ G and t = 1, 2, . . . , T.

Then we can determine ei and zi,ei according to

ei = T (ζ),

zi,ei = S(ζ).

After ei and zi,ei are determined, we need to perform the Type III block simulation for S2.

The details are omitted here due to its similarity with the Type III block simulation for S1

in the previous discussion.
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Appendix D: Likelihood function for complete data

The likelihood function for complete data L(Y , z|Θ) has the following form

L(Y , z|Θ) =
K∏
k=1

Lkφ,ψ × Lkβ × Lkp

=
K∏
k=1

{
T−1∏
t=0

∏
r∈G

(
βkt (r)

)Ek
t (r)

}

×

{
T−1∏
t=1

∏
r∈G

(
φkt (r)

)Wk
t (r) (

1− φkt (r)
)Nk

t (r)−Wk
t (r)
∏
s∈G

(
ψkt (r, s)

)Wk
t (r,s)

}

×
T∏
t=1

∏
r∈G

(
pkt (r)

)Uk
t (r)
(
1− pkt (r)

)Nk
t (r)−Uk

t (r) .

The log-likelihood function for complete data `(Y , z|Θ) = lnL(Y , z|Θ).
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