Taylor & Francis Group
Browse
idrd_a_1726526_sm6936.docx (924.27 kB)

Bicomponent polymeric micelles for pH-controlled delivery of doxorubicin

Download (924.27 kB)
journal contribution
posted on 2020-02-24, 13:15 authored by Chunyun Wang, Peilan Qi, Yan Lu, Lei Liu, Yanan Zhang, Qianli Sheng, Tianshun Wang, Mengying Zhang, Rui Wang, Shiyong Song

Stimuli-responsive drug delivery systems (DDSs) are expected to realize site-specific drug release and kill cancer cells selectively. In this study, a pH-responsive micelle was designed utilizing the pH-sensitivity of borate bonds formed between dopamine and boronic acid. First, methyl (polyethylene glycol)-block-polycaprolactone (mPEG-PCL) was conjugated with 4-cyano-4-(thiobenzoylthio)pentanoic acid (CTP) to obtain a macroinitiator. Two different segments poly(dopamine methacrylamide) (PDMA) and poly(vinylphenylboronic acid) (PVBA) were then grafted to the end of mPEG-PCL. Two triblock copolymers, mPEG-PCL-PDMA and mPEG-PCL-PVBA, were then obtained by reversible addition–fragmentation transfer (RAFT) polymerization. These copolymers and their mixture self-assembled in aqueous solution to form micelles that were able to load hydrophobic anticancer drug doxorubicin (DOX). These two-component micelles were found to be pH-sensitive, in contrast to the one-component micelles. Furthermore, MTT studies showed that the micelles were almost nontoxic. The DOX-loaded micelles showed cytotoxicity equivalent to that of DOX at high concentration. In vivo antitumor experiments showed that this pH-sensitive polymeric micellar system had an enhanced therapeutic effect on tumors. These two-component boronate-based pH micelles are universally applicable to the delivery of anticancer drugs, showing great potential for cancer therapy.

Funding

This work was supported by the National Natural Science Foundation of China [U1804176]; the key projects funded by the Education Department of Henan Province [18A350005]; and the key project funded by the Science and Technology Department of Henan Province [182102210236].

History