Taylor & Francis Group
Browse
gtec_a_1687706_sm5098.docx (13.46 kB)

Determination of minimum inhibitory concentration and half maximal inhibitory concentration of antibiotics and their degradation products to assess the eco-toxicological potential

Download (13.46 kB)
journal contribution
posted on 2019-11-15, 08:03 authored by Melanie Voigt, Indra Bartels, Anna Nickisch-Hartfiel, Martin Jaeger

Numerous studies have been reported on today’s ubiquitous presence of antibiotics in surface waters causing the emergence of multidrug-resistant bacteria. Advanced water treatment procedures aim at the complete prevention and elimination of antibiotics from entering natural water bodies. In this study, photoinduced degradation processes using UVC-irradiation were applied toward selected fluoroquinolone, tetracycline, macrolide, and sulfonamide antibiotics. Photodegradation products were elucidated using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). Rate constants and quantum efficiencies were determined for the active substances and their photo-transformation products. As a measure of ecotoxicity, minimum inhibitory and half-maximal inhibitory concentrations were determined against the Gram-negative bacterium Pseudomonas fluorescens and the Gram-positive Bacillus subtilis in a standard assay format. These values were further recorded as a function of UV exposure time. The irradiation time-dependent increase of minimum inhibitory concentration (MIC) values agreed well with the kinetic models. After 10 min of irradiation, the compound solutions ceased to inhibit bacterial cell growth, indicating removal of the pharmaceutical activity. These findings were found in agreement with quantitative structure–activity relationship analysis. The combination of microbiological activity testing, molecular structure analysis, chemical kinetic investigation, and quantitative structure–activity relationship models proved to be able to predict irradiation times and evaluate potential ecotoxicological hazard of the irradiated drugs.

Funding

The authors thank Niederrhein University of Applied Sciences for further financial support.

History