Mechanistic characterization of fast dissolving PVP-I powder with multipolymer approaches and investigation on their molecular interaction
Povidone-iodine (PVP-I) is widely used as an antiseptic in medical applications. However, its effectiveness is limited by certain drawbacks, such as low solubility in water and high volatility. Therefore, a formulation of a stable solid PVP-I is desirable. In this study, complexes of molecular PVP-I with polyethylene glycol–polyvinyl alcohol copolymer (PEG–PVA copolymer) were considered water-soluble iodophors. Two different methods were used to prepare the solids: physical mixtures and kneading. The physical characteristics of the obtained solids were evaluated using several spectroscopic methods. The presence of iodine was confirmed by a potentiometric titration and antimicrobial activity was tested. The results showed that the PEG–PVA copolymer interacted with povidone primarily through hydrogen bonding between the hydroxyl part of the PEG–PVA copolymer and the amide part of povidone with an estimated binding energy of 3.2 kcal/mol. The amide groups polarity in povidone made them more likely to form hydrogen bonds with the PEG–PVA copolymer. Also, the protonated pyrrolidone bonded to the triiodide anions by intermolecular hydrogen bonds, which increased PVP-I solubility in water. The kneading method provided a faster dissolution rate than physical mixing and pure PVP-I. The iodine contents were within an acceptable range (10–12%), and the antimicrobial activity proved effective against Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus mutans.