Novel nanostructured lipid carriers with lurasidone hydrochloride for intranasal administration for improved bioavailability
This research aims to develop nanostructured lipid carriers containing Lurasidone hydrochloride (LH) with Quality by Design (QbD) methodology to enhance its bioavailability, given LH’s low water solubility (0.224 mg/ml) and bioavailability (9–19%).
The optimized LH-NLC formulation contains Glyceryl monostearate (GMS) as solid lipid, Caproyl 90 as liquid lipid and co-surfactant, and Tween 80 as surfactant. The hot emulsification method was used to formulate the LH-NLC using a three-factor, three-level Box-Behnken design (BBD)for ascertaining functional relationships between particle size and entrapment efficiency (EE). Particle size, polydispersity index (PDI), zeta potential, surface morphology, percentage EE, and in vitro and ex-vivo release were assessed. Wistar rats were used to estimate plasma drug concentration after LH-NLC administration.
The developed formulation exhibited a particle size of 190.98 ± 4.72 nm, zeta potential of + 17.47 mV, and encapsulation efficiency of 94 ± 1.26% w/w. LH-NLCs showed a drug release rate of 95.37% within 24 hours. Intranasal administration of LH-NLCs resulted in 5.16 times higher bioavailability compared to intranasally administered lurasidone.
The study successfully applied QbD methodology to develop NLCs for LH with enhanced bioavailability, demonstrating improved drug entrapment and delivery efficacy for treating psychosis.