Taylor & Francis Group
Browse
tnst_a_1644247_sm7376.pdf (131.4 kB)

Analysis of VIP-BWR reactor core physics experiments on UO2 and MOX mockup fuel assemblies - part 2: analysis with SIMULATE5

Download (131.4 kB)
journal contribution
posted on 2019-07-18, 13:33 authored by Toru Yamamoto, Daiki Iwahashi, Tomohiro Sakai

Analysis of the three test cores in the VIP-BWR program was performed in a two-dimensional geometrical model with CASMO5 coupled with the JENDL-4.0-based neutron data library, and reported in the previous paper. Following the study, interpretation of the experiments were carried out in a three-dimensional geometrical model with SIMULATE5 for the code validation study. The nuclear libraries for the SIMULATE5 calculations were generated with CASMO5 with the JENDL-4.0-based neutron data library. The effective multiplication factors of the critical cores ranged from 0.9983 to 1.0023 with measurement uncertainties of 0.0003 to 0.0004 (one σ). The root mean squares of (the calculated/the measured-1) for the fission rates at the core-mid plain of all the measured fuel rods were about 3% for the three cores. It was noticed that the calculations underestimated the fission rates of the UO2 fuel rods and overestimated those of the MOX fuel rods for the test cores loaded with MOX fuel rods, which was consistent with trends in the preceding analysis studies of the VIP-BWR program and other MOX core experiments, and the biases were confirmed in the calculation results of power distributions in MOX-fueled light water reactor cores.

History